# Automatic Morphological Classification of Galaxies - Vera C. Rubin data

Zsolt Frei, Tamás Kovács (Eötvös U.)

Plitvice; October 12, 2022







### **Outline:**

- Eötvös U. vs Eötvös LKH
- Traditional morphological classification
- Quantitative classifiers, workflow
- A sample galaxy processed
- Applications
- Future tasks

### Eötvös U. vs Eötvös LKH



# **Eötvös University**



## **Institute of Physics**

#### AZ ASZTROFIZIKA TERÜLETÉN MŰKÖDŐ KUTATÓCSOPORTJAINK

#### "Excellence" Program









#### **ELKH-ELTE Research Group**

#### A RÉSZECSKEFIZIKA TERÜLETÉN MŰKÖDŐ KUTATÓCSOPORTJAINK















Ízfizikai LHCb / CODEXb Kutatócsoport

### Details of the sequence:

### Hubble's 'tuning fork"

### A. Ellipticals: E0-E7

- B. Spirals: Sa-Sc:
  - Disk/bulge ratio changes
  - Opening angle changes
  - Prominence of arms change



### **Classifiers:**

#### First step: find a position angle



Even better: use the autocorrelation image

$$AC_{k,l} = \frac{\sum_{i,j} (I_{i,j} - \bar{I}) (I_{i+k,j+l} - \bar{I})}{N_{k,l}}$$
(2)

Second step: find the inclination angle

(a) from image moments:

$$I = \frac{\cos(2\phi)(m_{x^2} + m_{y^2}) + (m_{x^2} - m_{y^2})}{\cos(2\phi)(m_{x^2} + m_{y^2}) - (m_{x^2} - m_{y^2})}$$
(3)

(b) from silhouettes:



Third step: disk-bulge decomposition

$$B_b(r) = B_e \exp(-7.67[(\frac{r}{r_e})^{1/4} - 1]) \quad , \qquad (4)$$

$$B_d(r) = B_0 \exp(-\frac{r}{r_0})$$
 (5)

calculate the disk/bulge ratio:

$$DB \equiv 0.277 \frac{B_0 r_0^2}{B_e r_e^2}$$

and the concentration index:

$$c \equiv 5 \log(\frac{r_{80}}{r_{20}}) \tag{7}$$

(6)

#### Fourth step: Theta – log(r) pictures





Use A.C. to get opening angles, and skew the Theta – log(r) image:

#### Collapse the image vertically and compute FFT to "count" arms:







#### Fifth step: fine scale structure of the disk

- Calculate the "interquartile range"

   (third quartile first quartile divided by the median)
- Calculate the relative power of mode 0

compared to the total power in FFT

### Python framework

| File | Edit                                                          | View                                                                                                                     | Insert                                                                                   | Cell                                                             | Kernel                                                                                        | Widgets                                                                            | Help                                                                                   | 1                                        | Not Trusted     | Python 3 (ipykernel) |
|------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|-----------------|----------------------|
|      |                                                               | Basic                                                                                                                    | morp                                                                                     | holog                                                            | gical n                                                                                       | neasure                                                                            | es of nea                                                                              | rby spira                                | l gala:         | xies                 |
|      | : imp<br># 3<br>%cc<br>imp<br>#ma<br>imp<br>%ma<br>frc<br>imp | Set up ma<br>Set up ma<br>Donfig Inl<br>Doort matp<br>Doort matp<br>Doort nump<br>Doort nump<br>Doort nump<br>Doort glob | y as np<br>ineBacke<br>lotlib<br>p.rc_file<br>lotlib.p<br>y as np<br>inline<br>py.io imp | o and us<br>end.rc =<br>e("/<br>eyplot a<br>evert fit            | <pre>use a nicer set of plot parameters c = {} '/templates/matplotlibrc") t as plt fits</pre> |                                                                                    |                                                                                        |                                          |                 |                      |
|      | fro<br>fro<br>fro<br>fro<br>fro<br>fro                        | om photut<br>om photut<br>om photut<br>om photut<br>om astrop<br>om astrop                                               | ils impo<br>ils impo<br>ils impo<br>ils impo<br>y.table<br>y.stats                       | ort DAOS<br>ort cent<br>ort make<br>ort Circ<br>import<br>import | tarFinde<br>roid_com<br>_source_<br>ularAper<br>hstack,<br>SigmaCli                           | er, apertur<br>n, centroid<br>mask, Back<br>ture, Circ<br>vstack, Co<br>p, biweigh | e_photometry<br>_1dg, centroi<br>ground2D, Mec<br>ularAnnulus<br>lumn<br>t_location, m | id_2dg<br>dianBackgroun<br>mad_std, sigm | nd<br>na_clippe | ed_stats             |

/tmp/ipykernel\_22773/4032315326.py:2: DeprecationWarning: `photutils.centroid\_com` is a deprecated alias for `photutils.centroids

### The output

NGC3184



slice box = (slice(0, 12, None), slice(0, 12, None))

### Tested on our existing catalog:

- 113 galaxies, CCD images taken at the Lowell Obs. and at Palomar
- Foreground-star removal:
  - Fit an empirical 2D PSF
  - Fit and remove stars
  - Patch residuals



### Future tasks

#### Science:

- Optimization for large datasets and specific observations, Vera C. Rubin
- Developing new (better, parametric) statistical measures
- De-Mosaicking
- Galaxy dynamics and evolution constraints

### Software:

- Automated pipeline Rubin Contribution
- parallelization OpenMP, GPU, ML
- GitHub, Extensive set of example problems