# SER-SAG in-kind proposal

Serbian AGN (SER-SAG) Team LSST AGN Science Collaboration

Presented by Dragana Ilic (dilic@matf.bg.ac.rs), University of Belgrade - Faculty of Mathematics

### **SER-SAG Team**

- Proposal Lead: Luka Popović (AOB)
- Core Team: Anđelka Kovačević (MatF), Maša Lakičević (AOB), Dragana Ilić (MatF)
- Other members:

Saša Simić (FSUK), Marko Stalevski (AOB), Oliver Vince (AOB), Edi Bon (AOB), Djordje Savić (AOB), Jelena Kovačević-Dojčinović (AOB), Nataša Bon (AOB), Nemanja Rakić (PhD Student, MatF), Isidora Jankov (PhD student, MatF), Sladjana Mandić-Marčeta (PhD student, AOB), Iva Čvorović Hajdinjak (PhD Student, MatF)

- Currently Serbian science facing huge challenges:
  - complete change in financing: institutional + limited projects
  - advices from the region most welcomed

# Research: AGN & microlensing

- Long experience of AGN research and microlensing
- Time-domain: special focus on AGN variability
  - Peridicity (oscilation in light curves; time-delays in light curves)
- Monitoring-campaigns (spectroscopy & photometry)





#### SMBH, EHT Collaboration, 2019



#### Broad line region, dusty torus

Κ



Narrow line region

# AGN variability hot topics

• AGN core difficult to resolve with current optical telescopes (except w/interferometry, e.g. GRAVITY Sturm+2018, EHT Collaboration, 2019)

 $\rightarrow$  we can resolve it in time-domain

study AGN accretion disk and BLR through reverberation mapping:
→ one of the priorities of LSST AGN SC
(e.g. Andjed Aadd SVačević







| Name                                                                                             | $FOV (deg^2)$                                                                        | bands                                                                                                      | mag. limit (exp)                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Energy Transient Explorer-2<br>Galaxy Evolution Explorer<br>Palomar–Quest<br>XBoötes Survey | $\begin{array}{c} 0.9, 1.6 \text{ srad} \\ 1.2 \\ 3.6 \times 4.6 \\ 9.3 \end{array}$ | soft, hard X-ray, $\gamma$<br>Near, Far UV<br>U, B, R, I, r, i, z<br>X-ray                                 | $\begin{array}{c} 8\times10^{-9}\frac{\text{erg}}{\text{cm}^{2}\text{s}}\\ 21\text{-}22\ (1\ \text{hr})\\ 17.5\text{-}21.0\ (140\text{sec})\\ (1\text{-}8)\times10^{-15}\frac{\text{erg}}{\text{cm}^{2}\text{s}}\end{array}$ |
| SkyMapper<br>South Pole Submillimeter Telescope<br>Low Frequency Array                           | $\begin{array}{c} 2.3\times2.4\\1\\20\end{array}$                                    | <i>u</i> , <i>v</i> , <i>g</i> , <i>r</i> , <i>i</i> , <i>z</i><br>sub-mm (350–850)μm<br>radio (10–240)MHz | 20.6-21.9 (110sec)<br>1 mJy (18-27 hr)<br>(0.03–2)mJy (1 hr)                                                                                                                                                                 |

# AGN long-term (decades) monitoring campaign



### our RM campaign features:

- long (10+ years) uniform dataset
- different sub-types of type 1 AGN of different variability and optical spectra behavior
- spectral campaign → some problems in light curves such as e.g. gaps, nonuniform cadence, etc.
- applied machine learning, i.e. Gaussian processes to model light curves → extract time lags

### GP modeled light curves of a changing look AGN: NGC 3516



e.g. Shapovalova et al. 2016, 2017, 2019 Ilic et al. 2020

### Gaussian PROcesses for TIme-Delays Estimates in AGN **GPro-TIDE**

- o a complementary tool for time-delays measurements
- utilizes generalized Gaussian processes to model the observed light curves used for extraction of time-delays (e.g. Kovačević et al. 2015, 2018)

# In-kind contributions of SER-SAG

- Software for analysis of variability of celestial sources
  - Feedback: medium
  - Non-directable software contribution
- Optical follow-up of bright LSST transients
  - Feedback: medium
  - Join via AEON
- Access to data on long-term variability of AGN
  - Feedback: low
  - Discouraged from including

# In-kind telescope time

- Astronomical Station Vidojevica, Southern Serbia
  - Average seeing ~1.5"
- 1.4m telescope
- possibility of fast response (telescope moving speed is 4-6 degree/sec)
- Photometer:
  - Andor iKon-L, pixel scale 0.244 arcsec/pixel, Field of view 8.3x8.3 arcmin
  - Filters: BVRI broad bands (+L very broad filter) + Halpha, SII, red continuum narrow bands
- 6-year long experience in the Gaia-FUN-TO
- In process of joining AEON





🔰 #rubin 2020

### Andjelka Kovačević

### METHODOLOGICAL STRATEGY TO CATCH VARIABLE SIGNAL IN LSST LIGHT CURVES

the observing strategy will affect LSST efficiency to detect CB-SMBBH candidates:

-the "rolling cadence" will prohibit LSST to build the long base-lines that are necessary for the search of CB-SMBBH

-a nominal cadence of 3 days will produce, due to the filters successively alternation, the light curves in each band with just a dozen points every

### vear

MUST INCLUDE NOVEL MACHINE LEARNING BASED PERIODICITY DETECTION METHODS INTO LSST PERIODICITY SEARCH FLOW:

### 2DHYBRID METHOD BASED ON GAUSSIAN PROCESS MODELING

Successfull on decadal AGN LC with cadences of > 80days!



Vera C. Rubin Observatory Project and Community Workshop 2020 | August 10 - 14, 2020

andjelka@matf.bg.ac.rs