Term Project \# 1

Galactic Astronomy (Astr 511); Winter Quarter 2015
prof. Željko Ivezić, University of Washington
The data file Astr511HW1data.dat (linked to class webpage as a gzipped file) contains SDSS measurements for about 600,000 stars with $b>80^{\circ}$ (i.e. within 10° from the north galactic pole) and $14<r<21$. The data are listed as one line per star, with each line containing the following quantities:

- ra dec: right ascension and declination (J2000.0) in decimal degrees
- run: SDSS observing night identifier
- Ar: the value of the r band ISM extinction used to correct photometry (adopted from the SFD maps; for bands other than r standard SDSS coefficients are used)
- ugriz: SDSS photometry (corrected for the ISM extinction)
- uErr gErr rErr iErr zErr: photometric errors
- pmL pmB: proper motion vector components in the longitudinal and latitudinal directions (mas/yr); set to 999.99 when no measurement is available
- pmErr: mean proper motion error (mas/yr); set to 999.99 when no measurement is available

For stars from this file, compute absolute magnitude using a photometric parallax relation, $M_{r}(g-i,[F e / H])$, given by eqs. A2, A3 and A7 from Ivezić et al. 2008 (ApJ, 684, 287). For computing metallicity, $[\mathrm{Fe} / \mathrm{H}]$, instead of their eq. 4, use an updated expression from Bond et al. 2010 (ApJ, 716, 1):

$$
\begin{equation*}
[F e / H]=A+B x+C y+D x y+E x^{2}+F y^{2}+G x^{2} y+H x y^{2}+I x^{3}+J y^{3}, \tag{1}
\end{equation*}
$$

with $x=(u-g)$ and $y=(g-r)$, and the best-fit coefficients $(A-J)=(-13.13,14.09$, $28.04,-5.51,-5.90,-58.68,9.14,-20.61,0.0,58.20)$. This expression if valid only for $g-r<0.6$; for redder stars use $[F e / H]=-0.6$.

Since $b>80^{\circ}$, for these stars the distance from the galactic plane, Z, and the distance from us, D, are approximately the same. Using $Z=D$, where D is computed from $r-M_{r}=5 * \log (D /(10 \mathrm{pc}))$, do the following:

1. For stars with $0.2<g-r<0.4$, plot $\ln (\rho)$ vs. Z, where ρ is the stellar number density in a given bin (e.g. look at Figs. 5 and 15 in Jurić et al. 2008, ApJ, 673, 864 for similar examples). You can approximate $\rho(Z)=N(Z) / V(Z)$, where $N(Z)$ is the number of stars in a given bin, and $V(Z)$ is the bin volume (note that the solid angle is $\left.\Delta \Omega \sim 314 \operatorname{deg}^{\circ}\right)$. What is the Z range where you believe the results, and why?
2. Add $\ln (\rho)$ vs. Z for stars with $0.4<g-r<0.6,0.6<g-r<0.8$, and $0.8<g-r<1.0$ (you can rescale all curves to the same value at some fiducial Z, or leave them as they are). Discuss the differences compared to the $0.2<g-r<0.4$ subsample. Why do we expect larger systematic errors for $0.8<g-r<1.0$ than for the adjacent bin with $0.4<g-r<0.6$?
3. For subsample with $0.2<g-r<0.4$, separate stars into low-metallicity sample, $[F e / H]<-1.0$, and high-metallicity sample, $[F e / H]>-1.0$. Compare their $\ln (\rho)$ vs. Z curves. What do you conclude?
4. For these low-metallicity and high-metallicity samples, plot and compare their differential r band magnitude distributions (i.e. the number of sources per unit magnitude, in small, say 0.1 mag wide, r bins). What do you conclude? How would you numerically describe these curves (i.e. what kind of functional form for the fitting functions would you choose)?
5. What should be the faint r band limit for a survey to be able to map the $\ln (\rho)$ vs. Z profile out to 100 kpc using main-sequence stars? Assume the same color distribution as for the SDSS sample. For a solid angle of $1 \mathrm{deg}^{2}$, how many stars with $0.2<g-r<0.4$ would you expect with distances between 90 kpc and 100 kpc? Assume whatever additional information you need to solve this problem (not all required information is provided here).
