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Review Lecture:
Stellar kinematics: a bit of theory
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Outline

1. Introduction to potentials and orbits

• Spherical potentials

• Axial potentials

• Stellar orbits

• Epicycle approximation

2. Statistical analysis: basic equations

• Boltzmann equation

• Jeans’ equations

3. Applications of Jeans’ aquations
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• Asymmetric drift for disk stars

• Local mass density

• The shape of local velocity ellipsoid

• Halo mass density profile

4. The Scattering of Disk Stars

For the last four, see Lecture 9.

Reading:

• Binney & Merrifield: ch. 10

• Smith et al. 2009 (MNRAS 399, 1223): Sec. 3.2 at least

• Carollo et al. 2010 (ApJ 712, 692): Sec. 8 at least



Spherical Systems – Important Quantities

The velocity of a test particle on a circular orbit is the circular
speed, vc. Setting the centripetal acceleration equal to the force
we get

v2
c = r

dΦ

dr
= r|F| =

GM(r)

r
. (1)

The circular speed is a measure of the mass interior to r, M(r).

If vc as a function of r is known, and we assume that the potential
is spherical, we can compute the mass as a function of r (not
the case for a non-spherical distribution.)

Another important quantity is the escape speed, ve, defined by

ve(r) =
√

2|Φ(r)|. (2)

This definition comes from setting the kinetic energy of a star
equal to the absolute value of its potential energy. That is, stars
with positive total energy are not bound to the system. In order
for a star to escape from from the gravitational field represented
by Φ, it is necessary that its speed be greater than ve. This can
be used to get the local Φ of the galaxy.
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Spherical Systems – Simple Examples

Point mass:

Φ(r) = −
GM

r
; vc(r) =

√
GM

r
; ve(r) =

√
2GM

r
. (3)

Whenever the circular speed declines as r−1/2, it is referred to
as Keplerian. It usually implies that there is no significant mass
at that radius.

Homogeneous sphere:

M =
4

3
πr3ρ ; vc =

√
4πGρ

3
r. (4)

The equation of motion for a particle in such a body is

d2r

dt2
= −

GM(r)

r2
= −

4πGρ

3
r, (5)

which describes a harmonic oscillator with period

T =

√
3π

Gρ
. (6)
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Spherical Systems – Simple Examples

Independent of r, if a particle is started at r, it will reach the

center in a time

tdyn =
T

4
=

√
3π

16Gρ
, (7)

known as the dynamical time. Although this result is only true

for a homogeneous sphere, it is a common practice to use this

definition with any system of density ρ.

By integrating the density for a homogeneous sphere, we can get

the potental:

Φ =

 −2πGρ(a2 − 1
3r

2), r < a

−4πGρa3

3r , r > a.

One would expect the center of a galaxy to have a potential of

this type if there is no cusp in the central density (implying a

linear rise in vc).
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Spherical Systems – Simple Examples

Isochrone potential:

Φ(r) = −
GM

b+
√
b2 + r2

. (8)

This has the nice property of going from a harmonic oscillator in

the middle to a Keplerian potential at large r, with the transition

occurring at a scale b.

The circular speed is

v2
c =

GMr2

(b+ a)2a
, (9)

where a ≡
√
b2 + r2.

Using Poisson’s equation (∇2Φ = 4πGρ), we can find the density:

ρ(r) =
1

4πGr2

d

dr

(
r2dΦ

dr

)
= M

[
3(b+ a)a2 − r2(b+ 3a)

4π(b+ a)3a3

]
. (10)
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So the central density is

ρ(0) =
3M

16πb3
, (11)

and the asymptotic density is

ρ(r) ≈
bM

2πr4
. (12)

Other commonly discussed profiles are modified Hubble profile

and power-law profile.



Potential–Density Pairs

Simple models can be used to illustrate the dynamics of axisy-

metric galaxies.

Plummer’s (1911) model: spherically symmetric

Kuzmin’s (1956) model: infinitely thin disk (aka Toomre’s

model 1)

Plummer–Kuzmin models’: introduced by Miyamoto & Nagai

(1975), smooth transition from Plummer’s to Kuzmin’s models

Logarithmic potentials: the circular speed is a constant at

large radii
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The Milky Way Potential

The most popular Milky Way models are double exponential disk

(thin and thick in the Z direction, also exponential dependence

in the R direction), with a power-law or logarithmic halo.

In general, the potentials are constrained using the spatial distri-

bution of stars, or the kinematic information (e.g. the rotation

curve; later in this lecture).

Some recent good reviews:

Bahcall (1986, ARA&A 24, 577)

Gilmore, Wyse & Kuijken (1989, ARA&A 27, 555)

Majewski (1993, ARA&A 31, 575)

Freeman & Bland-Hawthorn (2002, ARA&A 40, 487)
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Orbits in Static Spherical Potentials

The problem: given the initial conditions x(to) and ẋ(to), and

the potential Φ(r), find x(t).

Orbits in spherical potentials are easy to consider and lead

to some important concepts.

• Some general considerations

• Example 1: Spherical harmonic oscillator: Φ(r) = A+B r2

• Example 2: Point mass potential: Φ(r) = −GM
r

• Example 3: Isochrone potential: Φ(r) = −GM
b+
√
b2+r2
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General considerations

The initial conditions are 6-dimensional and thus a general solu-

tion includes six orbital parameters. (aka constants of motion)

The equation of motion in a spherical potential is:

r̈ = F (r)êr, (13)

i.e. the force is always radial!

Crossing through by r, we show that the angular momentum

vector, L ≡ r× ṙ is conserved:

d

dt
(r× ṙ) =

dr

dt
×

dr

dt
+ r×

d2r

dt2
= F (r)× êr = 0 (14)

Therefore, the motion is constrained to the plane perpendicular

to L, and can be fully described in cylindrical coordinate system,

r and ψ (v = ṙ êr + rψ̇ êψ)
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General considerations

The equations of motion in the plane are

r̈ − rψ̇2 = F (r)

2ṙψ̇ + rψ̈ = 0.

The second equation comes from r2ψ̇ = L = const. (note that
this is the second Kepler’s law!)

ψ̇ can be eliminated using ψ̇ = L/r2, leading to a one-dimensional
equation of motion:

r̈ − L2/r3 = F (r). (15)

This equation motivates a definition of an effective potential

−∇Φeff ≡ F (r) + L2/r3, (16)

and thus

Φeff(r) ≡ Φ(r) +
L2

2r2
. (17)
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General considerations

The energy per unit mass is

E =
1

2
v2 +Φ(r) =

1

2
(ṙ2 +r2ψ̇2)+Φ(r) =

1

2

(
ṙ2 + Φeff(r)

)
. (18)

For bound orbits r oscillates between an inner radius, or pericen-

ter (rmin), and an outer radius, or apocenter (rmax). The radial

period is

Tr = 2
∫ rmax

rmin

(
√

2[E −Φeff(r)])−1 dr (19)

The pericenter and apocenter are the solutions of Φeff(r) = E.
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General considerations

The azimuthal period is

Tψ =
2π

∆ψ
Tr (20)

where

∆ψ = 2L
∫ rmax

rmin

(r2
√

2[E −Φeff(r)])−1 dr (21)

The orbit is closed only for ∆ψ = k(2π) – in general case,

the orbit forms a rosette.

The orbital precession rate:

Ωp =
∆ψ − 2π

Tr
(22)
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General considerations

If we eliminate t rather than ψ, then we have an equation for the

orbit’s shape. In terms of the variable u ≡ 1/r

d2u

dψ2
+ u = −

F (u)

L2u2
⇒

d2u

dψ2
= ζ(u). (23)

This is a second order differential equation for u(ψ), where ζ(u)

and the initial conditions are presumably specified.

Let’s now look at specific examples.
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The harmonic potential

Φ = Φ0 +
1

2
Ω2r2. (24)

Generated by homogeneous density distribution.

The motion decouples in cartesian co-ordinates to ẍ = −Ω2x

and ÿ = −Ωy, and the solution is:

x = X cos(Ωt+ φx), y = Y sin(Ωt+ φy), (25)

where X, Y , φx and φy are arbitrary constants (determined from

initial conditions).

This is the equation for an ellipse centered on the origin.

Orbits are closed since the periods for x and y oscillations are

identical.
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Point mass (Keplerian) potential

d2u

dψ2
+ u =

GM

L2
⇒ u =

GM

L2
[1 + e cos(ψ − ψ0)]. (26)

This is the equation for an ellipse with one focus at the origin

and eccentricity e (the first Kepler’s law). The semi-major axis

is a = L2/GM(1− e2).

The motion is periodic in ψ with period 2π. This gives a closed

orbit with

Tr = Tψ = 2π

√
a3

GM
= 2πGM(2|E|)−3/2 (27)

Note that T2 ∝ a3 – the third Kepler’s law!
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Isochrone Potential

Φ(r) =
−GM

b+
√
b2 + r2

(28)

More extended than point mass, less extended than harmonic

potential.

Tr same as for the Keplerian case (Tr = 2πGM(2|E|)−3/2).

However,

∆ψ = π

1 +
L√

L2 + 4GMb

 (29)

i.e. π < ∆ψ < 2π, and hence the orbits are not closed!
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Axisymmetric Potentials

The problem: given the initial conditions x(to) and ẋ(to), and

the potential Φ(R, z), find x(t).

A better description of real galaxies than spherical poten-

tials, and the orbital structure is much more interesting.

• Poisson’s equation for axisymmetric potentials, meridional

plane

• Non-axisymmetric examples

• Epicycle approximation
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Axisymmetric Potentials

The equations of motion in an axisymmetric potential (cylindrical

coordinates) are

R̈ = −
∂Φeff

∂R
(30)

and

z̈ = −
∂Φeff

∂z
(31)

where

Φeff ≡ Φ +
L2
z

2R2
(32)

Also
d

dt
(R2φ̇) = 0 ⇒ R2φ̇ = Lz. (33)
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Axisymmetric Potentials

Hence, if we solve the first two equations, the solution for φ can

be obtained from the third equation as

φ(t) = φ(to) + φ̇(to)R
2(to)

∫ t
to
dt′/R2(t′) (34)

Meridional plane: non-uniformly rotating plane. The three-dimensional

motion in the cylindrical (R, z, φ) space is reduced to a two-

dimensional problem in Cartesian coordinates R and z.

Example from the Binney & Tremaine (see figs. 3-2, 3-3 and

3-4):

Φ =
1

2
v2

0 ln

(
R2 +

z2

q2

)
(35)
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Loop Orbit
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Box Orbit

23



Banana Orbit
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Fish Orbit
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Box Orbit Scattered by a Point Mass
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Axisymmetric Potentials

For a modern approach, see Thomas et al. 2004, MNRAS 353,

391: orbit libraries, a Voronoi tessellation of the surface of sec-

tion, the reconstruction of phase-space distribution function

For a more classic orbital analysis (and if you are interested

in finding out what is an “antipretzel”), see Miralda-Escudé &

Schwarzschild 1989 (ApJ 339, 752):

Another classic paper is de Zeeuw 1985 (MNRAS 216, 272)

(interested in “unstable butterflies”?)
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Epicycle Approximation for Orbits

Assume an axisymmetric potential Φeff and nearly circular or-

bits; expand Φeff in a Taylor series about its minimum:

Φeff = const +
1

2
κ2x2 +

1

2
ν2z2 + · · · , (36)

where

x ≡ R−Rg, κ2 ≡
∂2Φeff

∂R2

∣∣∣∣∣
(Rg,0)

, ν2 ≡
∂2Φeff

∂z2

∣∣∣∣∣
(Rg,0)

. (37)

The equations of motion decouple and we have two integrals:

x = X cos(κt+ φ0) z = Z cos(νt+ ζ)

ER ≡
1

2
[v2
R + κ2(R−Rg)2] Ez ≡

1

2
[v2
z + ν2z2].
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Epicycle Approximation

Now compare the epicycle frequency, κ, with the angular fre-

quency, Ω.

Ω2 ≡
v2
c

R2
=

1

R

∂Φ

∂R
=

1

R

∂Φeff

∂R
+
L2
z

R4
, (38)

κ2 =
∂(R2Ω2)

∂R
+

3L2
z

R4
= R

∂Ω2

∂R
+ 4Ω2. (39)

Since Ω always decreases, but never faster than Keplerian,

Ω ≤ κ ≤ 2Ω. (40)

These are not the infamous epicycles of Ptolemy’s!
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Epicycle Approximation

The epicycle approximation also makes a prediction for the φ-

motion since Lz = R2φ̇ is conserved. Let

y ≡ Rg[φ− (φ0 + Ωt)] (41)

be the displacement in the φ direction from the “guiding center”.

If we expand Lz to first order in displacements from the guiding

center, we obtain

φ = φ0 + Ωt−
2ΩX

κRg
sin(κt+ φ0). (42)

Therefore

y = −Y sin(κt+ φ0) where
Y

X
=

2Ω

κ
≡ γ ≥ 1. (43)

⇒ The epicycles are elongated tangentially (for Keplerian motion

γ = 2: epicycles are not circles as assumed by Hipparchus and

Ptolomey!)
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The epicycle frequency (κ) is related to Oort’s constants:

A ≡
1

2

(
vc

R
−
dvc

dR

)
R�

= −
1

2

(
R
dΩ

dR

)
R�

(44)

B ≡ −
1

2

(
vc

R
+
dvc

dR

)
R�

= −
(

1

2
R
dΩ

dR
+ Ω

)
R�

= A−Ω� (45)

Then

κ2
� = −4B(A−B) = −4BΩ� (46)

In the solar neighborhood,

A = 14.5± 1.5 km/s/kpc, B = −12± 3 km/s/kpc, (47)

and so

κ� = 36± 10 km/s/kpc, (48)

and
κ�
Ω�

= 1.3± 0.2 (> 1 and < 2!) (49)

For improvements to epicycle approximation see Dehnen 1999
(AJ 118, 1190)
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Stellar Dynamics and the Boltzmann Equation

The positions and motions of stars can be described by a phase-

space distribution function f(x,v, t) (aka the phase-space prob-

ability density)

The time evolution of f(x,v, t) is described by Newtonian dy-

namics

Assuming that stars can be neither created nor destroyed, a con-

tinuity equation can be applied to f(x,v, t). In six-dimensional

space described by wi = (x,v) = (x1, x2, x3, v1, v2, v3),

∂f(w, t)

∂t
+

6∑
i=1

∂ (f(w, t)ẇi)

∂wi
= 0. (50)
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The collisonless Boltzmann Equation

∂(fẇi)

∂wi
= ẇi

∂f

∂wi
+ f

∂ẇi
∂wi

(51)

Note that the last term is either (∂vi/∂xi), or (∂v̇i/∂vi).

This term is always 0: in the first case because vi and xi are

independent coordinates, and in the second case because v̇i =

−(∂Φ/∂xi), and Φ does not depend on velocity (because it’s

gravitational potential). Hence,

∂f(w, t)

∂t
+

6∑
i=1

ẇi
∂f(w, t)

∂wi
= 0. (52)
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The collisonless Boltzmann Equation (CBE)

∂f(w, t)

∂t
+

6∑
i=1

ẇi
∂f(w, t)

∂wi
= 0. (53)

In other forms:

∂f

∂t
+

3∑
i=1

[
vi
∂f

∂xi
−
∂Φ

∂xi

∂f

∂vi

]
= 0 (54)

∂f

∂t
+ v∇f = ∇Φ

∂f

∂v
(55)
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The collisonless Boltzmann Equation (CBE)

The last (vector) notation is the most useful one for express-

ing the collisonless Boltzmann equation in arbitrary coordinate

systems

Very difficult to solve (and hence not terribly useful from that

standpoint), but forms the basis for deriving the Jeans equations.

A side note: encounters between stars require another term.

Another side note: the radiative transfer equation is also a special

case of the general Boltzmann Equation (in the limit that all

particles move at the same speed).
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The Moment Equations

Now let us integrate the CBE expressed in form (4) over all
velocities: ∫

∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v −

∂Φ

∂xi

∫
∂f

∂vi
d3v = 0. (56)

How do we evaluate these integrals? Two rules:

1. Derivative wrt x, or a function of x, can be taken out

2. Introduce notation∫
g(v)fd3v = < g >

∫
fd3v (57)

where

ν(x) =
∫
fd3v (58)

is the number density as a function of position.
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The Moment Equations

Then ∫
∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v −

∂Φ

∂xi

∫
∂f

∂vi
d3v = 0. (59)

with

vi ≡
1

ν

∫
fvid

3v, (60)

becomes

∂ν

∂t
+
∂(νvi)

∂xi
= 0. (61)

This is just the continuity equation for the stellar number density

in real space.

More interesting results are obtained by multiplying the CBE

with higher powers of v.
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The Moment Equations

E.g. take the first velocity moment of the CBE. Then∫
∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v −

∂Φ

∂xi

∫
∂f

∂vi
d3v = 0. (62)

becomes

∂

∂t

∫
fvjd

3v +
∫
vivj

∂f

∂xi
d3v −

∂Φ

∂xi

∫
vj
∂f

∂vi
d3v = 0. (63)

We can use the divergence theorem to manipulate the last term∫
vj
∂f

∂vi
d3v = −

∫ ∂vj

∂vi
fd3v = −

∫
δijfd3v = −δijν, (64)

Note that

vj
∂f

∂vi
= −f

∂vj

∂vi
+
∂(vjf)

∂vi
(65)

and the last term must be 0 when the integration surface is

expendend to infinity (where f must vanish).
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The Moment Equations

Eq.(64) can be substituted into (63) giving

∂(νvj)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0, (66)

where

vivj ≡
1

ν

∫
vivjfd3v. (67)

This is an equation of momentum conservation.

Each velocity can be expressed as a sum of the mean value (aka

streaming motion) and the so-called peculiar velocity

vi = vi + wi (68)

where wi = 0 by definition.
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The Moment Equations

Then

σ2
ij ≡ wiwj = (vi − vi)(vj − vj) = vivj − vivj. (69)

At each point x the symmetric tensor σ2 defines an ellipsoid

whose principal axes run parallel to σ2’s eigenvectors and whose

semi-axes are proportional to the square roots of σ2’s eigenval-

ues. This is called the velocity ellipsoid at x.

(for an example, see page 27 in Lecture 9)
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The Jeans Equations

The continuity equation:

∂ν

∂t
+
∂(νvi)

∂xi
= 0. (70)

and the momentum equation

ν
∂vj

∂t
+ νvi

∂vj

∂xi
= −ν

∂Φ

∂xj
−
∂(νσ2

ij)

∂xi
(71)

The term −νσ2
ij is a stress tensor – it describes an anisotropic

pressure.

Note that the system is not closed: there is no “equation of

state”! The multiplication by higher powers of v doesn’t help –

need an ansatz. In practice one assumes a particular form for

σ2
ij, e.g. for isotropic velocity dispersion σ2

ij = σ2δij
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The Jeans Equations

Specialization for an axially symmetric system:

First express the CBE in cylindrical coordinates

∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0 (72)

With Ṙ ≡ vR, φ̇ ≡ vφ/R, and ż ≡ vz, and

v̇R = −
∂Φ

∂R
+
v2
φ

R
(73)

v̇φ = −
1

R

∂Φ

∂φ
−
vRvφ

R
(74)

v̇z = −
∂Φ

∂z
(75)

we get
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The Jeans Equations

∂f

∂t
+vR

∂f

∂R
+vz

∂f

∂z
+

v2
φ

R
−
∂Φ

∂R

 ∂f

∂vR
−
vRvφ

R

∂f

∂vφ
−
∂Φ

∂z

∂f

∂vz
= 0 (76)

where it was assumed that ∂/∂φ ≡ 0.

Now we multiply by vR, vz and vφ, and integrate over all velocities

to get (assuming steady state)

∂(νv2
R)

∂R
+
∂νvRvz

∂z
+ ν

v2
R − v

2
φ

R
+
∂Φ

∂R

 = 0,

∂(νvRvφ
∂R

+
∂(νvφvz)

∂z
+

2ν

R
vφvR = 0, (77)

∂(νvRvz)

∂R
+
∂(νv2

z )

∂z
+
νvRvz

R
+ ν

∂Φ

∂z
= 0.

Lovely! And powerful.
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Some Applications of the Jeans Equations

• Asymmetric drift

• The local mass density

• The shape of local velocity ellipsoid

• Spheroidal components with isotropic velocity dispersion

• Halo mass density profile
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Asymmetric drift

Observations indicate that stars with large v2
R rotate more slowly:

vφ = vc − v2
R/D (78)

with D ≈ 120 km/s. This can be explained using the vR Jeans

equation.

From the vR Jeans equation at z = 0, with an assumed symmetry

around the equatorial plane, ∂ν/∂z = 0, and definitions σ2
φ =

v2
φ − vφ

2 and v2
c = R(∂Φ/∂R):

vφ = vc −
v2
R

2vc
ζ, (79)

where

ζ =
σ2
φ

v2
R

− 1−
∂ ln(νv2

R)

∂ lnR
−
R

v2
R

∂(vRvz)

∂z
(80)

How large is each of these terms?
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Asymmetric drift

ζ =
σ2
φ

v2
R

− 1−
∂ ln(νv2

R)

∂ lnR
−
R

v2
R

∂(vRvz)

∂z
(81)

1. We know that locally v2
z /v

2
R ≈ σ

2
φ/v

2
R ≈ 0.45

2. R(∂(vRvz)/∂z)/v2
R is somewhere between 0 and 0.55

3. The largest term is ∂ ln(νv2
R)/∂ lnR ≈ 2(∂ ln ν/∂ lnR) ≈ R�/Rd ≈

2.4, where it was assumed that v2
R ∝ ν and that ν(R) ∝

exp(−R/Rd).
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Asymmetric drift

Hence,

ζ = 0.45− 1− 4.8− x = −5.35− x (82)

where 0 < x < 0.55. That is, ζ is uncertain to within only 10%.

These arguments can be inverted, and the measured value of ζ

(from asymmetric drift slope) can be used to infer R�/Rd (or,

more generally, ∂ ln ν/∂ lnR).

If there were no density gradient, there would be no asymmetric

drift!
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