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Lecture 4:
Luminosity and mass functions
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Basic concepts

LF for SDSS galaxies

Methods for estimating LF from data

Stellar mass function in the Milky Way
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Luminosity Function

e Luminosity Function is the

distribution in the luminosity—
position plane; how many
galaxies per unit interval in lu-
minosity and unit volume (or
redshift): W(M, z)

Imagine a tiny area with the
widths AMr and Az centered
at some Mr and z in the plot
to the left: count the number
of galaxies, divide by AMrAz,
correct for the fraction of sky
covered by your survey, and
for the selection probability (a
function of Mr, z, and pos-
sibly many other parameters):
this gives you W (M, z).



Luminosity Function

Luminosity Function is the distribution in the luminosity—
position plane; how many galaxies per unit interval in lumi-
nosity and unit volume: W (M, 2)

Often, this is a separable function: W(M,z) = (M) n(z),
where ® (M) is the absolute magnitude (i.e. luminosity) dis-
tribution, and n(z) is the number volume density.

Luminosity is a product of flux and distance squared (ignore
cosmological effects for simplicity): L = 4rD2F

The samples are usually flux-limited (meaning: all sources
brighter than some flux limit are detected) — the minimum
detectable luminosity depends on distance: L > 4nD2?F,..,
or for absolute magnitude M < Mpaz(D) (c.f. the first plot)
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Schechter Function

Galaxy luminosity distribution resembles a power-law, with an ex-
ponential cutoff. This distribution is usually modeled by Schechter
function:
L (8%
(D(L) — P~ (L—) e_L/L* (1)

£

Or using absolute magnitudes:

_e—0.4(Mr—M*)

S (Mr) = 0.40* e~ 0-4la+D)(Mr—M") o (2)
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o* = 475 M, = —21.3 -
a= —1.05
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Magenta: red + blue
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The LF in the SDSS r band
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. — 5 log,ch = —20.44+0.01
= —-1.05+0.01
= 1.62+0.30
= 0.18+0.57
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Note: this LF cannot be
expressed as (M, z) = f(M) g(z)
— not separablel

e [ he thick solid line is the

SDSS r band luminosity func-
tion, and the gray band is its
uncertainty.

The dashed line is a
Schechter-like fit that
also includes the effects of
changing luminosity and the
number density with time
(i.e. distance, or redshift).
@ > O indicates that galaxies
were more luminous in the
past, and P > 0 that galaxies
were more numerous in the
past. For detailed discussion,
see Blanton et al. 2003
(Astronomical Journal, 592,
819-3838)
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e Thusly, —5log1g(h) = 0.84 mag!

H, as “a function of time”
e the first three points: Lemaitre

(1927), Robertson (1928), Hubble
(1929), all based on Hubble's data
the early low  value (290
km/s/Mpc): Jan Oort

the first major revision: discovery of
Population II stars by Baade

the very recent convergence to val-
ues near 654+10 km/sec/Mpc

the best Cepheid-based value for
the local H, determination is
717 km/s/Mpc, the WMAPS5
value based on cosmic microwave
background measurements: 7243
km/s/Mpc.

WMAPO9: 69.3+0.8 km/s/Mpc,
and the Planck Mission: H, =
67.8+ 0.8 km/s/Mpc (h = 0.678)
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The dependence of LF on
wavelength
Top: SDSS ugiz bands
Bottom: 2MASS K band

e T he Schechter function is still a good

fit, but best-fit parameters vary.

e Since the SEDs of galaxies are nearly

one-dimensional families, once the LF
for a sample selected by color or mor-
phology is known, the LFs at other
wavelengths can be simply obtained by
shifting the M axis by the appropriate
color difference.

This doesn’'t work for the LFs in the
top four panels because they are com-
puted for the whole sample.



0.028 < redshift < 0.032

The dependence of LF on galaxy

type

e [ he top panel shows the distribution of
SDSS galaxies in the absolute magni-
tude — color plane (in a narrow redshift
range)

e In the bottom three panels, the same
distribution is compared to the dis-
tributions for subsamples selected by
their emission line properties

e Note that the most luminous galax-
ies (M, < —20) are predominantly red
(P1 > 0.2), while faint galaxies (M, >
—19) are blue (P1 < 0.2)
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e [ he comparison of LFs for blue and

red galaxies (from Baldry et al. 2004,
Apd, 600, 681-694)

The red distribution has a more lumi-
nous characteristic magnitude and a
shallower faint-end slope, compared to
the blue distribution

The transition between the two types
corresponds to stellar mass of ~ 3 X
1010 Mg

The differences between the two LFs
are consistent with the red distribution
being formed from major galaxy merg-
ers.
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The CT method for estimating LF

Lynden-Bell (1971, MNRAS 155, 95); a non-parametric method
that works for separable LFs, W(L,z) = ®(L)n(z)

practically all non-parametric methods can be reduced to the
C~ method (Petrosian 1992)

parametric methods are usually based on maximizing likeli-
hood (e.g. Marshall 1985)

the simplest and most famous method, the Vi, method
(Schmidt 1968), requires binning in two axes simultaneously,
while with the ¢~ method data is binned only one axis at a
time (e.g. Fan et al. 2001)

How do we know that separable LF is a good guess for our
data?
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C™ method

e Given a set of measured pairs (x;,vy;), with ¢ = 1... N, and
known relation ymaez(x), estimate the two-dimensional distri-
bution, n(x,y), from which the sample was drawn. Assume
that measurement errors for both x and y are negligible com-
pared to their observed ranges, that x is measured within a
range defined by x,,;, and xzmaz, and that the selection func-
tion is 1 for 0 < y < ymaz(x) and zin < < Tmaz, and 0
otherwise.
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C™ method

e ('~ method is applicable when the distributions along the two
coordinates x and y are uncorrelated, that is, when we can
assume that the bivariate distribution n(z,vy) is separable

n(z,y) = W(z) p(y). (3)

T herefore, before using the C— method we need to demon-
strate that this assumption is valid.
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C™ method

e Define a comparable or associated set for each object ¢ such
that J;, = {j : z; < 25,95 < Ymax(x;)}, this is the largest
x-limited and y-limited data subset for object z, with N, ele-
ments (see the left panel).

e Sort the set J; by y;; this gives us the rank R; for each object
(ranging from 1 to N;)
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C™ method

Define a comparable or associated set for each object ¢ such
that J; = {j : z; < z;,y; < ymaa(x;)}, this is the largest
x-limited and y-limited data subset for object z, with N, ele-
ments.

Sort the set J; by Yj; this gives us the rank R; for each object
(ranging from 1 to N;)

Define the rank R; for object ¢ in its associated set: this is
essentially the number of objects with y < y; in set J;.

If x and y are truly independent, R; must be distributed uni-
formly between O and N;.
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C™ method

e If x and y are truly independent, R; must be distributed uni-
formly between O and N;.

e In this case, it is trivial to determine the expectation value
and variance for R;: E(R;) = E; = N;/2 and V(R;) = V; =
N?/12. We can define the statistic

__ >i(R; — E;)
V2o Vi

If <1, then x and y are uncorrelated at ~ 1o level!

(4)
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C™ method

Assuming that = < 1, it is straightforward to show using relatively
simple probability integral analysis (e.g., see Appendix in Fan
et al. 2001), as well as the original Lynden-Bell's paper, how
to determine cumulative distribution functions. The cumulative

distributions are defined as

d(x) = /x W (z)da/,

— 00
and
Yy
S(y) = / p(y")dy'.
— 0
Then,

P (z;) = P(21) Mi—s(1 + 1/Ng)

where it is assumed that x; are sorted (z1 <z < xzp).

18
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C™ method

Analogously, if M, is the number of objects in a set defined by
Je =17 ¥j < Yk, ymaa(x;) > yi} (see the right panel of figure
below), then

>(y;) = =(y1) M._o(1 + 1/Mj). (8)
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astroML implementation of the C— method

Note that both ®(z;) and X(y;) are defined on non-uniform
grids with N values, corresponding to the N measured values.

Essentially, the C~ method assumes a piece-wise constant
model for ®(x) and X (y) between data points (equivalently,
differential distributions are modeled as Dirac’s 6 functions
at the position of each data point).

As shown by Petrosian (1992), ®(x) and X (y) represent an
optimal data summary.

The differential distributions W(x) and p(y) can be obtained
by differentiating cumulative distributions in the relevant axis;
an approximate normalization can be obtained by requiring
that the total predicted number of objects is equal to their

observed number.
20



e astroML Book Figure 4.9: The right panel shows a real-
ization of truncated separable two-dimensional Gaussian dis-
tribution (with the truncation given by the solid line). The
lines in the left panel show the true one-dimensional distri-
butions of x and y, and the points are computed from the
truncated data set using the C— method (with error bars

from 20 bootstrap resamples).

http://astroml.github.com/

book_figures/chapter4/fig_lyndenbell_toy.html
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e astroML Book Figure 4.10:
The luminosity function for two
u—r7r color-selected subsamples of

Ny Rl w [Eeren) .
2| H ou-r<22| SDSS galaxies from the spectro-
| o * scopic sample, with redshift in
® oo z | the range 0.08 < z < 0.12 and
L L | flux limited to r < 17.7.
- i2f | e The left panels show the
0TS 0w o o o Ak o9 o0 o1 o distribution of sources as a

z z

function of redshift and absolute
magnitude. The distribution
p(z, M) = p(z)P(m) is obtained
using Lynden-Bell's method,

with errors determined by 20
Tl | bootstrap resamples, and shown
0w o oa o M in the right panels.
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http://astroml.github.com/

book_figures/chapter4/fig_lyndenbell_gals.html
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Test of L-z Correlation. 11

e In reality, the selection function is typically complex: s(L,z|SED,...)
(no sharp faint limit!)

e First define a generalized comparable set (Fan et al. 2001;
AJ 121, 54) J; = {j : L; > L;},; this is a luminosity limited
data subset for object 3

e T hen generalize N; to

N.
i L;:, z:|SED;
j=1 S(LJ,Z]|SED])
and redefine the rank accordingly
N; s .
s(L;, zj|SED;) (10)

R, = ,
‘ j; s(Lj, z;|SED;)

for z; < z;. It follows that E(R;) = T;/2 and V(R;) = Ti2/12.
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LF normalization

e The C~ method does not know (or need) details about our

sample; in particular, it cannot give us the overall LF nor-
malization!

e \We will use HW#2 problem to discuss normalization in more
detail; we can talk about three levels of normalization in this
case:

1. The sample normalization: if we didn’t have the selection
effects, how many objects would our sample contain?

2. Normalization to the full sky: we need to know the sky
coverage for our sample (and have arguments why we can
extrapolate to the whole sky).

3. Extrapolation from the volume probed by the sample to
some other position; here, we want to know LF at Z = 0.

24



LF normalization: the sample normalization

If we didn’'t have the selection effects, how many objects would
our sample contain?

e To recap, the cumulative luminosity (absolute magnitude)
function is ®.(M;) and the cumulative distance distribution
is nc(D;) where j = 1...N.

o Both ®.(M;) and n.(D;) are direct outputs from the C~
method; let us renormalize them as ®.(My) = 1 and n.(Dy) =
1, where it is assumed that M, and D; arrays are sorted so
that My and Dy are their maxima (btw, C~ would return
CDC(MN) = N and nC(DN) = N)

e The number of points, n, brighter than some arbitrary M*
and closer than D* is then

n(M < M* and D < D*) = C ®(M*) ne.(D¥). (11)
where we (still) don't know C (n.b. C is dimensionless).
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LF normalization: the sample normalization

e Now, if make sure that M™* and D* are within our selection
volume (the implied apparent mag must be above our cutoff)
and thus unaffected by selection effects, then we get C from

NO(M < M° and D < D°) = C ®«(M°) ne(D°), (12)

which is almost the same expression as on the previous page,
except that here n(M < M*and D < D*) is replaced by
NO(M < M°and D < D°): the actual number of objects
in our sample that satisfy this condition.

e T his is not mathematically optimal solution for C' because
N?° is a random variable, but with modern large samples this
IS nit-picking; the optimal procedure would integrate over
the full sample, but nevertheless would still need to adopt an
interpolation procedure for ®.(M) and nq(D)...

e Given the real sample size, N, that is affected by selection
effects, the “corrected” sample size is C'

26



LF normalization: the sample normalization

e T he number of points per unit two-dimensional area, dA =
dM dD, is then

d? N —C (dcbc(M)) (dnc(D))’

= (13)
dMdD dM dD

where we now know C and can easily take (numerical) deriva-
tives d®.(M)/dM and dnc.(D)/dD (where ®.(M) and n.(D)
came from C~ and are normalized to 1).

e [ he quantities in parenthesis are differential distribution func-
tions.

e When normalizing to the full sky (step #2), we need to know
the fraction of sky, fsky, covered by our sample; if justified,
we need to multiply C by 1/fs,: Csry = C/ fory-
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LF normalization: extrapolation

How do we go from d2N/(dMdD) to volume density?

S(M. D) = d?°N  d?°N dD (14)
T AMdAY dMdD dV'

where dV = 4rD?dD. We have two cases of interest:

e Case 1: We seek the volume density vs. D, p(D), and we
don’'t care about M distribution:

D=/<l>M,DdM: sky | 15
p(D) (M, D)dM = 2, ( g (15)
where we used the fact that [°F_ (ddﬁ%)) dM = ©(Mpy) = 1.

e Unit for p(D) is the number of objects per (distance unit)3
(remember that n.(D) was dimensionless and normalized to
unity at D = Dy;; the unit comes from taking derivative with
respect to D, dn.(D)/dD).
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LF normalization: extrapolation

e Given p(D), we can fit some function to it and extrapolate
to get p(D = Dg) (and thus the ratio p(D)/p(D = Dg) for

any Dq, including p(Dq)/p(Dy))-

e Case 2: We want to know the M distribution at some D =
Dq, call it v(M|D = Dg) (e.g. Dg = 0 corresponding to solar
neighborhood, as discussed in this HW). First, at D = Dy
(recall ne(Dy) = 1)

dd.(M)
dM

H(M|D = Dy) = /CD(M, D)dD = Cyp, ( > . (16)

e Then, extrapolating to Dy (unit for 1) is the number of ob-
jects per mag; this is what we compare to the “true” LF)

p(Dg)

$(M|D = Do) = y(M|D = Dy) P05,

(17)
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Evolving Luminosity Function

e [he C~ method is simple and optimal, but it is valid only for
uncorrelated variables (separable luminosity function). What
do we do when the 7 test suggests correlated variables?

e Recent work by Kelly, Fan and Vestergaard (2008, ApJ 682,
874) describes a powerful and completely general Bayesian
approach (see their Appendix A for a nice introduction to
Bayesian methodology). While too complex for homework,
this is a fantastic method — if you ever come again across the
problem of estimating a general multi-dimensional distribu-
tion that is sampled with non-negligible and possibly complex
selection function, remember it!
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Stellar Mass Function

Analogously to luminosity function, the mass function is the
distribution of mass of stars, galaxies, etc.

The term Stellar mass function can refer to the distribution
of galaxies with respect to their stellar mass (mass of all
their stars), or to the distribution of mass of stars in the
Milky Way!

The distribution of mass of stars in the Milky Way is often
parametrized by a power law, dN/dM « M™%, with a = 2.35
(called Salpeter function in this context; FYI. power law is
called the Pareto distribution in statistics...)

Kroupa, Tout & Gilmore (1993, MNRAS 262, 545) proposed
a three-part power law
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number of stars

800 —

400 —

Mass Function of Disk stars
e Determination of a three-
part power law mass function
by Kroupa, Tout & Gilmore
(1993)
e [Top: the measured number of
stars per My, bin
e Bottom: the mass-luminosity
relation adopted in deriving
the mass function
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Low-muass stars in the Galaciie dise 575
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Mass Function of Disk stars
e Determination of a three-
part power law mass function
by Kroupa, Tout & Gilmore
(1993)
e Present-day mass function
(PDMF): dot-dashed line
e Initial mass function (IMF):
: solid line
T, ! e Note that the PDMF and IMF
are equal below about 1 solar
Mmass.
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Figure 22, The sellar initial mas funetion [IMF | and present-day mass fenction (PDME |, The solid ine represents the IMF given by equation
{13}, and the long- and shon-dashed lines are for the cases a; = 1.85 and 0.70, respectively. The PDMF (a, =4.5, Section 2) 15 indicated by the
det—dashed line, At masses below aboot 1 M, the PDMF equals the IMFE, As a comparison, we show the PDME derived by Scalo (1986] by
solid dots. He corrects for stellar evolution; for a Galactic disc age of T, =% Gyr the IMF is indicated by stars, and for T, = 12 Gyr by crosses,
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Figure 21. Single-star (red filled circles) and system (black filled circles) LFs.
Note that the major differences between our system and single-star LFs occur at
low luminosities, since low-mass stars can be companions to stars of any higher
mass, including masses above those sampled here.
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Figure 27. Shown are the single-star MF and best lognormal fit from this study
(red filled circles and solid line), the Reid & Gizis (1997, open squares), MF
(open squares), and the Pleiades MF Moraux et al. (2004, green triangles). The
best fit extrapolated from our study systematically under-predicts the density at
masses outside the bounds of our data.

Luminosity and Mass

Function of Low-mass stars

Bochanski et al.
139, 2679)
Based on SDSS data for 15
million low-mass stars!

The mass range: 0.1-0.8 so-
lar masses (corresponding to
7 < M- < 16)

The turn-over and a
maximum well detected!
Data well described by a log-
normal distribution (over the
probed mass range).

(2010, AJ

local
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stellar Initial Mass Funections Initial Mass Function

LO0 R * Ser Mps "« s ™

T ¥ e [ he stellar initial mass func-
tion (IMF) is used for comput-
ing stellar masses and colors
of galaxies in cosmology.

< e [ here is substantial variation

us79 ! 'f between different estimates
_____ Sonloss = (left).
- ;| e Kroupa (2001) claimed a vari-
BGO2

Chabrier03 able IMF (MNRAS 322, 231).
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From Ivan Baldry:

http://www.astro.ljmu.ac.uk/"ikb/research/imf-use-in-cosmology.html
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Schematic IMF

Initial Mass Function

e An approximate understand-
= ing of the origin of different
= Fragmentation slopes.
= |Eiection ? e A hard problem to solve! (e.qg.
© turbulence, magnetic fields...)

Accretion
Log mass
Fig. 11— A schematic IMF showing the regions that are ex-

pected to be due to the individual processes. The peak of the IMF
and the charactenstic stellar mass are believed to be due to gravi-
tational fragmentation, while lower mass stars are best understood
as bemng due to fragmentation plus ejection or truncated accretion
while higher-mass stars are understood as being due to accretion,

From W. Chen
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