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Lecture 4:
Luminosity and mass functions
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Outline

• Basic concepts

• LF for SDSS galaxies

• Methods for estimating LF from data

• Stellar mass function in the Milky Way
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p(M, z) = 1
NΨ(M, z)dVdz s(M, z, ..)

Luminosity Function
• Luminosity Function is the

distribution in the luminosity–

position plane; how many

galaxies per unit interval in lu-

minosity and unit volume (or

redshift): Ψ(M, z)

• Imagine a tiny area with the

widths ∆Mr and ∆z centered

at some Mr and z in the plot

to the left: count the number

of galaxies, divide by ∆Mr∆z,

correct for the fraction of sky

covered by your survey, and

for the selection probability (a

function of Mr, z, and pos-

sibly many other parameters):

this gives you Ψ(M, z).
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Luminosity Function

• Luminosity Function is the distribution in the luminosity–
position plane; how many galaxies per unit interval in lumi-
nosity and unit volume: Ψ(M, z)

• Often, this is a separable function: Ψ(M, z) = Φ(M)n(z),
where Φ(M) is the absolute magnitude (i.e. luminosity) dis-
tribution, and n(z) is the number volume density.

• Luminosity is a product of flux and distance squared (ignore
cosmological effects for simplicity): L = 4πD2F

• The samples are usually flux-limited (meaning: all sources
brighter than some flux limit are detected) – the minimum
detectable luminosity depends on distance: L > 4πD2Fmin,
or for absolute magnitude M < Mmax(D) (c.f. the first plot)
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Schechter Function

Galaxy luminosity distribution resembles a power-law, with an ex-

ponential cutoff. This distribution is usually modeled by Schechter

function:

Φ(L) = Φ∗
(
L

L∗

)α
e−L/L∗ (1)

Or using absolute magnitudes:

Φ(Mr) = 0.4Φ∗ e−0.4(α+1)(Mr−M∗) e−e−0.4(Mr−M∗)
(2)
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Note: this LF cannot be

expressed as Φ(M, z) = f(M) g(z)

– not separable!

The LF in the SDSS r band
• The thick solid line is the

SDSS r band luminosity func-

tion, and the gray band is its

uncertainty.

• The dashed line is a

Schechter-like fit that

also includes the effects of

changing luminosity and the

number density with time

(i.e. distance, or redshift).

Q > 0 indicates that galaxies

were more luminous in the

past, and P > 0 that galaxies

were more numerous in the

past. For detailed discussion,

see Blanton et al. 2003

(Astronomical Journal, 592,

819-838)
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Ho as “a function of time”
• the first three points: Lemaitre

(1927), Robertson (1928), Hubble

(1929), all based on Hubble’s data

• the early low value (290

km/s/Mpc): Jan Oort

• the first major revision: discovery of

Population II stars by Baade

• the very recent convergence to val-

ues near 65±10 km/sec/Mpc

• the best Cepheid-based value for

the local Ho determination is

71±7 km/s/Mpc, the WMAP5

value based on cosmic microwave

background measurements: 72±3

km/s/Mpc.

• WMAP9: 69.3±0.8 km/s/Mpc,

and the Planck Mission: Ho =

67.8± 0.8 km/s/Mpc (h = 0.678)

• Thusly, −5log10(h) = 0.84 mag!
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The dependence of LF on
wavelength

• Top: SDSS ugiz bands

• Bottom: 2MASS K band

• The Schechter function is still a good

fit, but best-fit parameters vary.

• Since the SEDs of galaxies are nearly

one-dimensional families, once the LF

for a sample selected by color or mor-

phology is known, the LFs at other

wavelengths can be simply obtained by

shifting the M axis by the appropriate

color difference.

• This doesn’t work for the LFs in the

top four panels because they are com-

puted for the whole sample.
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The dependence of LF on galaxy
type

• The top panel shows the distribution of

SDSS galaxies in the absolute magni-

tude – color plane (in a narrow redshift

range)

• In the bottom three panels, the same

distribution is compared to the dis-

tributions for subsamples selected by

their emission line properties

• Note that the most luminous galax-

ies (Mr < −20) are predominantly red

(P1 > 0.2), while faint galaxies (Mr >

−19) are blue (P1 < 0.2)
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The dependence of LF on galaxy
type

• The comparison of LFs for blue and

red galaxies (from Baldry et al. 2004,

ApJ, 600, 681-694)

• The red distribution has a more lumi-

nous characteristic magnitude and a

shallower faint-end slope, compared to

the blue distribution

• The transition between the two types

corresponds to stellar mass of ∼ 3 ×
1010 M�
• The differences between the two LFs

are consistent with the red distribution

being formed from major galaxy merg-

ers.
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The C− method for estimating LF

• Lynden-Bell (1971, MNRAS 155, 95); a non-parametric method
that works for separable LFs, Ψ(L, z) = Φ(L)n(z)

• practically all non-parametric methods can be reduced to the
C− method (Petrosian 1992)

• parametric methods are usually based on maximizing likeli-
hood (e.g. Marshall 1985)

• the simplest and most famous method, the Vmax method
(Schmidt 1968), requires binning in two axes simultaneously,
while with the C− method data is binned only one axis at a
time (e.g. Fan et al. 2001)

• How do we know that separable LF is a good guess for our
data?
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C− method

• Given a set of measured pairs (xi, yi), with i = 1 . . . N , and
known relation ymax(x), estimate the two-dimensional distri-
bution, n(x, y), from which the sample was drawn. Assume
that measurement errors for both x and y are negligible com-
pared to their observed ranges, that x is measured within a
range defined by xmin and xmax, and that the selection func-
tion is 1 for 0 ≤ y ≤ ymax(x) and xmin ≤ x ≤ xmax, and 0
otherwise.
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C− method

• C− method is applicable when the distributions along the two

coordinates x and y are uncorrelated, that is, when we can

assume that the bivariate distribution n(x, y) is separable

n(x, y) = Ψ(x) ρ(y). (3)

Therefore, before using the C− method we need to demon-

strate that this assumption is valid.
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C− method

• Define a comparable or associated set for each object i such
that Ji = {j : xj < xi, yj < ymax(xi)}; this is the largest
x-limited and y-limited data subset for object i, with Ni ele-
ments (see the left panel).

• Sort the set Ji by yj; this gives us the rank Rj for each object
(ranging from 1 to Ni)
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C− method

• Define a comparable or associated set for each object i such

that Ji = {j : xj < xi, yj < ymax(xi)}; this is the largest

x-limited and y-limited data subset for object i, with Ni ele-

ments.

• Sort the set Ji by yj; this gives us the rank Rj for each object

(ranging from 1 to Ni)

• Define the rank Ri for object i in its associated set: this is

essentially the number of objects with y < yi in set Ji.

• If x and y are truly independent, Ri must be distributed uni-

formly between 0 and Ni.
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C− method

• If x and y are truly independent, Ri must be distributed uni-

formly between 0 and Ni.

• In this case, it is trivial to determine the expectation value

and variance for Ri: E(Ri) = Ei = Ni/2 and V (Ri) = Vi =

N2
i /12. We can define the statistic

τ =

∑
i(Ri − Ei)√∑

i Vi
(4)

If τ < 1, then x and y are uncorrelated at ∼ 1σ level!
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C− method

Assuming that τ < 1, it is straightforward to show using relatively

simple probability integral analysis (e.g., see Appendix in Fan

et al. 2001), as well as the original Lynden-Bell’s paper, how

to determine cumulative distribution functions. The cumulative

distributions are defined as

Φ(x) =
∫ x
−∞

Ψ(x′)dx′, (5)

and

Σ(y) =
∫ y
−∞

ρ(y′)dy′. (6)

Then,

Φ(xi) = Φ(x1) Πi
k=2(1 + 1/Nk) (7)

where it is assumed that xi are sorted (x1 ≤ xk ≤ xN).
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C− method

Analogously, if Mk is the number of objects in a set defined by

Jk = {j : yj < yk, ymax(xj) > yk} (see the right panel of figure

below), then

Σ(yj) = Σ(y1) Πj
k=2(1 + 1/Mk). (8)

x

y

y
max (x)

x
m
a
x

(xi, yi)
Ji

x

y
y
max (x)

x
m
a
x

(xk, yk)

Jk

19



astroML implementation of the C− method

• Note that both Φ(xj) and Σ(yj) are defined on non-uniform
grids with N values, corresponding to the N measured values.

• Essentially, the C− method assumes a piece-wise constant
model for Φ(x) and Σ(y) between data points (equivalently,
differential distributions are modeled as Dirac’s δ functions
at the position of each data point).

• As shown by Petrosian (1992), Φ(x) and Σ(y) represent an
optimal data summary.

• The differential distributions Ψ(x) and ρ(y) can be obtained
by differentiating cumulative distributions in the relevant axis;
an approximate normalization can be obtained by requiring
that the total predicted number of objects is equal to their
observed number.
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• astroML Book Figure 4.9: The right panel shows a real-

ization of truncated separable two-dimensional Gaussian dis-

tribution (with the truncation given by the solid line). The

lines in the left panel show the true one-dimensional distri-

butions of x and y, and the points are computed from the

truncated data set using the C− method (with error bars

from 20 bootstrap resamples).

http://astroml.github.com/

book_figures/chapter4/fig_lyndenbell_toy.html
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book_figures/chapter4/fig_lyndenbell_gals.html

• astroML Book Figure 4.10:

The luminosity function for two

u−r color-selected subsamples of

SDSS galaxies from the spectro-

scopic sample, with redshift in

the range 0.08 < z < 0.12 and

flux limited to r < 17.7.

• The left panels show the

distribution of sources as a

function of redshift and absolute

magnitude. The distribution

p(z,M) = ρ(z)Φ(m) is obtained

using Lynden-Bell’s method,

with errors determined by 20

bootstrap resamples, and shown

in the right panels.
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Test of L-z Correlation. II

• In reality, the selection function is typically complex: s(L, z|SED, ...)
(no sharp faint limit!)

• First define a generalized comparable set (Fan et al. 2001;
AJ 121, 54) Ji = {j : Lj > Li}; this is a luminosity limited
data subset for object i

• Then generalize Ni to

Ti =
Ni∑
j=1

s(Li, zj|SEDj)
s(Lj, zj|SEDj)

, (9)

and redefine the rank accordingly

Ri =
Ni∑
j=1

s(Li, zj|SEDj)
s(Lj, zj|SEDj)

, (10)

for zj < zi. It follows that E(Ri) = Ti/2 and V (Ri) = T2
i /12.
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LF normalization

• The C− method does not know (or need) details about our
sample; in particular, it cannot give us the overall LF nor-
malization!

• We will use HW#2 problem to discuss normalization in more
detail; we can talk about three levels of normalization in this
case:

1. The sample normalization: if we didn’t have the selection
effects, how many objects would our sample contain?

2. Normalization to the full sky: we need to know the sky
coverage for our sample (and have arguments why we can
extrapolate to the whole sky).

3. Extrapolation from the volume probed by the sample to
some other position; here, we want to know LF at Z = 0.
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LF normalization: the sample normalization

If we didn’t have the selection effects, how many objects would
our sample contain?

• To recap, the cumulative luminosity (absolute magnitude)
function is Φc(Mj) and the cumulative distance distribution
is nc(Dj) where j = 1...N .

• Both Φc(Mj) and nc(Dj) are direct outputs from the C−
method; let us renormalize them as Φc(MN) = 1 and nc(DN) =
1, where it is assumed that Mj and Dj arrays are sorted so
that MN and DN are their maxima (btw, C− would return
Φc(MN) = N and nc(DN) = N).

• The number of points, n, brighter than some arbitrary M∗
and closer than D∗ is then

n(M < M∗ and D < D∗) = C Φc(M
∗)nc(D∗). (11)

where we (still) don’t know C (n.b. C is dimensionless).
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LF normalization: the sample normalization

• Now, if make sure that M∗ and D∗ are within our selection
volume (the implied apparent mag must be above our cutoff)
and thus unaffected by selection effects, then we get C from

No(M < Mo and D < Do) = C Φc(M
o)nc(D

o), (12)

which is almost the same expression as on the previous page,
except that here n(M < M∗ and D < D∗) is replaced by
No(M < Mo and D < Do): the actual number of objects
in our sample that satisfy this condition.

• This is not mathematically optimal solution for C because
No is a random variable, but with modern large samples this
is nit-picking; the optimal procedure would integrate over
the full sample, but nevertheless would still need to adopt an
interpolation procedure for Φc(M) and nc(D)...

• Given the real sample size, N , that is affected by selection
effects, the “corrected” sample size is C!
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LF normalization: the sample normalization

• The number of points per unit two-dimensional area, dA =

dM dD, is then

d2N

dMdD
= C

(
dΦc(M)

dM

) (
dnc(D)

dD

)
, (13)

where we now know C and can easily take (numerical) deriva-

tives dΦc(M)/dM and dnc(D)/dD (where Φc(M) and nc(D)

came from C− and are normalized to 1).

• The quantities in parenthesis are differential distribution func-

tions.

• When normalizing to the full sky (step #2), we need to know

the fraction of sky, fsky, covered by our sample; if justified,

we need to multiply C by 1/fsky: Csky = C/fsky.
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LF normalization: extrapolation

How do we go from d2N/(dMdD) to volume density?

Φ(M,D) ≡ d2N

dMdV
=

d2N

dMdD

dD

dV
, (14)

where dV = 4πD2dD. We have two cases of interest:

• Case 1: We seek the volume density vs. D, ρ(D), and we
don’t care about M distribution:

ρ(D) =
∫

Φ(M,D)dM =
Csky

4πD2

(
dnc(D)

dD

)
, (15)

where we used the fact that
∫∞
−∞

(
dΦc(M)
dM

)
dM = Φc(MN) = 1.

• Unit for ρ(D) is the number of objects per (distance unit)3

(remember that nc(D) was dimensionless and normalized to
unity at D = DN ; the unit comes from taking derivative with
respect to D, dnc(D)/dD).
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LF normalization: extrapolation

• Given ρ(D), we can fit some function to it and extrapolate
to get ρ(D = D0) (and thus the ratio ρ(D)/ρ(D = D0) for
any D0, including ρ(D0)/ρ(DN)).

• Case 2: We want to know the M distribution at some D =
D0, call it ψ(M |D = D0) (e.g. D0 = 0 corresponding to solar
neighborhood, as discussed in this HW). First, at D = DN
(recall nc(DN) = 1)

ψ(M |D = DN) =
∫

Φ(M,D)dD = Csky

(
dΦc(M)

dM

)
. (16)

• Then, extrapolating to D0 (unit for ψ is the number of ob-
jects per mag; this is what we compare to the “true” LF)

ψ(M |D = D0) = ψ(M |D = DN)
ρ(D0)

ρ(DN)
. (17)
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Evolving Luminosity Function

• The C− method is simple and optimal, but it is valid only for

uncorrelated variables (separable luminosity function). What

do we do when the τ test suggests correlated variables?

• Recent work by Kelly, Fan and Vestergaard (2008, ApJ 682,

874) describes a powerful and completely general Bayesian

approach (see their Appendix A for a nice introduction to

Bayesian methodology). While too complex for homework,

this is a fantastic method – if you ever come again across the

problem of estimating a general multi-dimensional distribu-

tion that is sampled with non-negligible and possibly complex

selection function, remember it!
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Stellar Mass Function

• Analogously to luminosity function, the mass function is the

distribution of mass of stars, galaxies, etc.

• The term Stellar mass function can refer to the distribution

of galaxies with respect to their stellar mass (mass of all

their stars), or to the distribution of mass of stars in the

Milky Way!

• The distribution of mass of stars in the Milky Way is often

parametrized by a power law, dN/dM ∝ M−α, with α = 2.35

(called Salpeter function in this context; FYI: power law is

called the Pareto distribution in statistics...)

• Kroupa, Tout & Gilmore (1993, MNRAS 262, 545) proposed

a three-part power law
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Mass Function of Disk stars
• Determination of a three-

part power law mass function

by Kroupa, Tout & Gilmore

(1993)

• Top: the measured number of

stars per MV bin

• Bottom: the mass-luminosity

relation adopted in deriving

the mass function
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Mass Function of Disk stars
• Determination of a three-

part power law mass function

by Kroupa, Tout & Gilmore

(1993)

• Present-day mass function

(PDMF): dot-dashed line

• Initial mass function (IMF):

solid line

• Note that the PDMF and IMF

are equal below about 1 solar

mass.
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Luminosity and Mass
Function of Low-mass stars
• Bochanski et al. (2010, AJ

139, 2679)

• Based on SDSS data for 15

million low-mass stars!

• The mass range: 0.1–0.8 so-

lar masses (corresponding to

7 < Mr < 16)

• The turn-over and a local

maximum well detected!

• Data well described by a log-

normal distribution (over the

probed mass range).
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From Ivan Baldry:

http://www.astro.ljmu.ac.uk/~ikb/research/imf-use-in-cosmology.html

Initial Mass Function
• The stellar initial mass func-

tion (IMF) is used for comput-

ing stellar masses and colors

of galaxies in cosmology.

• There is substantial variation

between different estimates

(left).

• Kroupa (2001) claimed a vari-

able IMF (MNRAS 322, 231).
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From W. Chen

Initial Mass Function
• An approximate understand-

ing of the origin of different

slopes.

• A hard problem to solve! (e.g.

turbulence, magnetic fields...)
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