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Lecture 1:
Review of Stellar Astrophysics

(and other useful stuff)
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Understanding Galaxy Properties and the Milky Way

Binney & Tremaine: “Always majestic, often spectacularly beau-

tiful, galaxies are the fundamental building blocks of the Uni-

verse.”

The goals of this class are:

• Understanding the correlations between various galaxy prop-

erties using simple physical principles; discussion of the for-

mation and evolution of galaxies

• Understanding in detail the Milky Way structure (distribu-

tion of stars and ISM, stellar kinematics, metallicity and age

distributions)

• Reproducing some published work
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The Basics of Basics

Assumed that you are all familiar with these terms:

• general: distance modulus, absolute magnitude, bolometric

luminosity, the Planck function

• types of stars: white dwarfs, horizontal branch, red giants,

supergiants, subgiants, subdwarfs, etc.

• stellar properties: effective temperature, spectral class, met-

alicity, mass, age
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Outline

1. What do we observe: a summary of the measurement process

2. Hertzsprung-Russell Diagram: a summary of gas ball physics

3. Stellar parameters: (mass, age, chemical composition) vs.

(temperature, surface gravity, metalicity)

4. Population Synthesis: cooking up a galaxy

5. Virial Theorem: a very useful tool
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What do we measure? Radiation Intensity:

Iν(λ, α, δ, t, p)

• Iν - energy (or number of photons) / time / Hz/ solid angle

• λ - γ-ray to radio, depending on resolution: spectroscopy,
narrow-band photometry, broad-band photometry

• α, δ - direction (position on the sky); the resolution around
that direction splits sources into unresolved (point) and re-
solved; interferometry, adaptive optics,...

• t - static vs. variable universe, sampling rate,...

• p polarization
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Examples:

Imaging (photometry):

Ibandν (< α >,< δ >,< t >) =
∫ ∞

0
S(λ)dλ

∫ T
0
dt
∫
θ
dΩ Iν(λ, α, δ, t,p)

(1)

SDSS: T = 54.1 sec, θ ∼1.5 arcsec, filter width ∼1000 Å

Spectroscopy:

F objectν (λ,< t >) =
∫ ∞

0
R(λ)dλ

∫ T
0
dt
∫
A
dΩ Iν(λ, α0, δ0, t,p) (2)

SDSS: T = 45 min, A: 3 arcsec fibers (∼6 kpc at the redshift

of 0.1), R∼2 Å (∼70 km/s)
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SDSS and 2MASS photometric band-
passes
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An example: SDSS photometry

• Magnitudes: there are five different types! Aperture, fiber,

psf, model and Petrosian magnitudes.

• Radial Profiles: all magnitudes are measured using circular-

ized brightness profiles extracted for a predefined set of radii

• Do we really need all these magnitudes?
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SDSS photometry

• Magnitudes: we need different magnitudes because, depend-
ing on an object’s brightness profile, they have different noise
properties

• Unresolved sources: aperture magnitudes are the best, but
only for bright stars; for a given error, psf magnitudes go 1-2
mags deeper; fiber magnitudes measure flux within 3 arcsec
aperture, and thus estimate the flux seen by spectroscopic
fibers

• Resolved sources: psf magnitudes don’t include the total
flux, actually none of the various magnitudes includes the
total flux for resolved sources! Petrosian magnitudes include
the same fraction of flux, independent of galaxy’s angular
size, however, they are very noisy for faint galaxies; model
magnitudes have smaller noise for faint galaxies (especially if
you are interested only in colors)
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The count (uncalibrated flux) extraction

• In the limit of a circular source, all fluxes (magnitudes) can

be computed as:

flux(type) ∝
∫
p(x) Φ(x) 2πx dx

• type: aperture, fiber, psf, Petrosian, model

• p(x): circularized brightness profile

• Φ(x): type-dependent weight function

– aperture: Φ(x) = 1 for x < 7.4 arcsec, 0 otherwise

– fiber: Φ(x) = 1 for x < 1.5 arcsec, 0 otherwise
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– psf: Φ(x) = psf(x) for x < 3 arcsec, 0 otherwise, photo

uses 2D integration (angle dependence)

– Petrosian: Φ(x) = 1 for x < R arcsec, 0 otherwise, R

depends on the measured galaxy profile: defined by the

ratio of the local surface brightness to the mean surface

brightness within the same radius

– model: Φ(x) from a best-fit (deV or exp) 3-parameter

pre-computed profile (convolved with seeing); must be

2D integration

For signal-to-noise calculation, see document An LSST doc-

ument on astronomical signal-to-noise calculation and

flux extraction linked to the class webpage.

More information about SDSS galaxy photometry can be

found in Strauss et al. (2002, AJ 124, 1810).



Calibrated flux and magnitudes

• Given a specific flux of an object at the top of the atmo-

sphere, Fν(λ), a broad-band photometric system measures

the in-band flux

Fb =
∫ ∞

0
Fν(λ)φb(λ)dλ, (3)

where φb(λ) is the normalized system response for a given

band (e.g. for SDSS b = ugriz)

φb(λ) =
λ−1Sb(λ)∫∞

0 λ−1Sb(λ)dλ
. (4)

• The overall atmosphere + system throughput, Sb(λ), is ob-

tained from

Sb(λ) = Satm(λ)× Ssysb (λ). (5)
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LSST throughput
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Atmosphere
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Calibrated flux and magnitudes

• Photometric measurements are fully described by Fb and its

corresponding φb(λ). The relevant temporal, spatial and

wavelength scales on which φb(λ) is known determine photo-

metric accuracy. Typically, it is assumed that φb(λ) “defines”

a photometric system (e.g. Johnson, Strömgren, SDSS)

• Traditionally, the in-band flux is reported on a magnitude

scale

mb = −2.5 log10

(
Fb
FAB

)
. (6)

where FAB = 3631 Jy (1 Jansky = 10−26 W Hz−1 m−2 =

10−23 erg s−1 Hz−1 cm−2) is the flux normalization for AB

magnitudes (Oke & Gunn 1983). These magnitudes are also

called “flat” because for a source with “flat” spectral energy

distribution (SED) Fν(λ) = F0, Fb = F0.
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• Note: it might be a bit confusing that Fν(λ) is integrated over

wavelength in eq. 3, and yet the result, Fb, has the same units

as Fν(λ). This happens because the product φb(λ)dλ is di-

mensionless, and eq. 3 formally represents weighting of Fν(λ)

rather than its area integral. Of course, this is a consequence

of the definition of AB system∗ in terms of Fν(λ).

∗The fact that Fν(λ) is multiplied by Sb(λ)/λ and then integrated over wave-
length is a consequence of the fact that CCDs are photon-counting devices.
That is, the units for Fb are not arbitrary. For more details, see Maiz
Apellániz 2006 (AJ 131, 1184).



SDSS and 2MASS photometric band-
passes
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SDSS-2MASS sources
• Blue/red: blue and red

stars; green/magenta: blue

and red galaxies, Circles:

quasars (z < 2.5)

• Optical/IR colors allow an

efficient star-quasar-galaxy

separation

• 8-band accurate and robust

photometry excellent for

finding objects with atypi-

cal SEDs (e.g. red AGNs,

L/T dwarfs, binary stars)
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Check out HR simulator at

http://www.astro.ubc.ca/~scharein/a311/Sim/hr/HRdiagram.html

Hertzsprung-Russell
Diagram

• Stars are balls of hot gas in

hydrodynamical and thermo-

dynamical equilibrium

• Equilibrium based on two

forces, gravity: inward, radi-

ation pressure: outward

• Temperature and size cannot

take arbitrary values: the al-

lowed ones are summarized in

HR diagram

• L = Area x Flux = 4πR2σT4

• Luminosity and size span a

huge dynamic range!
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HR Diagram: Stellar Age
• The main sequence is where

most of lifetime is spent.

• The position on the main se-

quence is determined by mass!

• The lifetime depends on mass:

massive (hot and blue) stars

have much shorter lifetimes

than red stars

• After a burst of star forma-

tion, blue stars disappear very

quickly, 108 years or so

• Galaxies are made of stars: if

there is no ongoing star for-

mation, they are red; if blue,

there must be actively making

stars!

• Turn-off color depends on

both age and metallicity

(later...)
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Stellar Parameters
• The stellar spectral energy

distribution is a function of

mass, chemical composition

and age, a theorist would say

• The stellar spectral energy

distribution is a function of

effective temperature, surface

gravity and metallicity (at the

accuracy level of 1%); the

first two simply describe the

position in the HR diagram

• Kurucz models (1979) de-

scribe SEDs of (not too cold)

main sequence stars, as a

function of Teff, log(g) and

[Fe/H]

19



Population Synthesis:
modeling SEDs of galaxies
1. A burst of star formation:

a bunch of stars (i.e. our

galaxy) was formed some time

ago: age

2. The mass distribution of these

stars is given by a func-

tion called initial mass func-

tion, IMF, roughly a power-

law n(M) ∝M−3

3. The stellar distribution in the

HR diagram is given by the

adopted age and IMF; equiva-

lently, can adopt a CMD for a

globular or open cluster; as-

sume metallicity and get a

model (i.e. stellar SED, e.g.

from Kurucz) for each star

and add them up
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Population Synthesis:
modeling SED of

galaxies
1. A burst of star formation:

age

2. The initial mass function,

IMF

3. The stellar distribution in

the HR diagram and metal-

licity: add SEDs for all

stars, the result is

4. Simple stellar population

as a function of age and

metallicity

5. Star-formation history, or

the distribution of stel-

lar ages, tells us how to

combine such simple stellar

populations to get SED of

a realistic galaxy
21
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The Virial Theorem
• In a system of N particles, grav-

itational forces tend to pull the

system together and the stel-

lar velocities tend to make it fly

apart. It is possible to relate ki-

netic and potential energy of a

system through the change of its

moment of intertia

• In a steady-state system, these

tendencies are balanced, which is

expressed quantitatively through

the the Virial Theorem.

• A system that is not in balance

will tend to move towards its viri-

alized state.
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The Virial Theorem(s)

• The Scalar Virial Theorem tells us that the average kinetic
and potential energy must be in balance.

• The tensor Virial Theorem tells us that the kinetic and po-
tential energy must be in balance in each separate direction.

• The scalar virial theorem is useful for estimating global av-
erage properties, such as total mass, escape velocity and
relaxation time, while the tensor virial theorem is useful for
relating shapes of systems to their kinematics, e.g. the flat-
ness of elliptical galaxies to their rotational speed (for a wide
range of applications, see Chandrasekhar (1987, Ellipsodial
Figures of Equilibrium, New York: Dover).

• Remember that the virial theorem is a good intuitive tool but
one that can be dangerous to put to quantitative use (King,
unpublished).
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The Virial Theorem

Zwicki’s derivation: (Ap. J. 1937, 86, 217)

mi
d2~xi
dt2

= ~Fi (7)

where ~Fi is the total forces on galaxy i.

Scalar multiplication with ~xi gives:

1

2

d2

dt2
(mix

2
i ) = ~xi · ~Fi +mi

(
d~xi
dt

)2

(8)

(summing over all system particles is implied). The term on the

left side represents the change of the momentum of inertia, the

second term on the right side is related to kinetic energy, and

the first term on the right side is called virial.

26



The Virial Theorem

It can be shown (the so-called Euler theorem from classical me-

chanics) that for Φ ∝ 1/r∑
~xi · ~Fi = −

∑
~xi · ∇Φ = Φ (9)

That is, the virial is related to potential energy of the system

(true for any homogeneous function of the order k such that

Φ(λx) = λkΦ(x) – the virial is equal to −kΦ).

In a steady state,

1

2

d2

dt2
(mix

2
i ) = 0, (10)

and, for a self-gravitating system in steady state

2K + Φ = 0 (11)

where K = M < v2 > /2 is the kinetic energy. Thus,

E = K + Φ = −K =
1

2
Φ (12)
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The Scalar Virial Theorem: Applications

• If a system collapses from infinity, half of the potential en-

ergy will end up in kinetic energy, and the other half will be

disposed of! From the measurement of the circular veloc-

ity and the mass of Milky Way (which constrain the kinetic

energy), we conclude that during their formation, galaxies

radiate away about 3× 10−7 of their rest-mass energy.

• For a virialized spherical system, M = 2Rσ2/G. We can

estimate total mass from the size and velocity dispersion.

E.g. for a cluster with σ=12 km/s, and R=3 pc, we get

M = 2× 105 M� (note that G = 233 in these units)

• Think about this for the next time: Evil aliens give a ”kick”

to our Moon that increases its kinetic energy by 10%. What

will happen with its orbit?
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