ASTR 509: Physical Foundations of Astrophysics III: Stellar Dynamics

Željko Ivezić University of Washington, Winter Quarter 2005

Selected Problems for the Final Exam

- 1) "Derive" the colisionless Boltzmann equation and describe all the steps.
- 2) Given the colisionless Boltzmann equation, derive the Jeans equations in cylindrical geometry.
 - 3) Derive the scalar virial theorem.
 - 4) Derive the density as a function of height for an isothermal slab.
 - 5) Describe the basic properties of King models.
 - 6) Given expressions (5-7) to (5-10), derive and explain eq. 5-22
 - 7) Given eq. (6-40), explain what it means/implies.
 - 8) State and describe the Schwarzschild distribution function.
- 9) What are the similarities and differences between the Schwarzschild and Maxwell-Boltzmann distribution functions?
 - 10) What do you know about disk instabilities such as bars and spiral arms?
- 11) Describe the steps leading to, and the meaning of the Chadrasekhar dynamical friction formula.
 - 12) Define and discuss the two main regimes for galaxy encounters.
 - 13) Given eq. 4-17, derive eqs. 4-29c and 4-38
- 14) If distance to a stellar tracer population is overestimated by a factor of f, what is the effect of this error on the application of eq. 4-38. What if the photometric survey used to select the tracer stars is incomplete at the level x?
- 15) Given $\Omega(R)$ and Ω_p , find R for LRs and CR. Or, given $\Omega(R)$, find Ω_p for which ILR does not exist.
 - 16) Given the Milky Way rotation curve, find how far could 2-armed spiral extend.