Astr 509: Astrophysics III: Stellar Dynamics

Winter Quarter 2005, University of Washington, Željko Ivezić

Lecture 8: Equilibria of Collisionless Systems. II

The Jeans Equations

The collisonless Boltzmann Equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\sum_{i=1}^{3}\left[v_{i} \frac{\partial f}{\partial x_{i}}-\frac{\partial \Phi}{\partial x_{i}} \frac{\partial f}{\partial v_{i}}\right]=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \nabla f=\nabla \Phi \frac{\partial f}{\partial \mathbf{v}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f \equiv f(\mathbf{x}, \mathbf{v}) \tag{3}
\end{equation*}
$$

Introduce the summing convention, so that

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v_{i} \frac{\partial f}{\partial x_{i}}-\frac{\partial \Phi}{\partial x_{i}} \frac{\partial f}{\partial v_{i}}=0 \tag{4}
\end{equation*}
$$

The Moment Equations

Now let us integrate the CBE expressed in form (4) over all velocities:

$$
\begin{equation*}
\int \frac{\partial f}{\partial t} \mathrm{~d}^{3} \mathbf{v}+\int v_{i} \frac{\partial f}{\partial x_{i}} \mathrm{~d}^{3} \mathbf{v}-\frac{\partial \Phi}{\partial x_{i}} \int \frac{\partial f}{\partial v_{i}} \mathrm{~d}^{3} \mathbf{v}=0 \tag{5}
\end{equation*}
$$

How do we evaluate these integrals? Two rules:

1. Derivative wrt \mathbf{x}, or a function of \mathbf{x}, can be taken out
2. Introduce notation

$$
\begin{equation*}
\int g(\mathbf{v}) f \mathrm{~d}^{3} \mathbf{v}=<g>\int f \mathrm{~d}^{3} \mathbf{v} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu(\mathrm{x})=\int f \mathrm{~d}^{3} \mathbf{v} \tag{7}
\end{equation*}
$$

is the number density as a function of position.

The Moment Equations

Then

$$
\begin{equation*}
\int \frac{\partial f}{\partial t} \mathrm{~d}^{3} \mathbf{v}+\int v_{i} \frac{\partial f}{\partial x_{i}} \mathrm{~d}^{3} \mathbf{v}-\frac{\partial \Phi}{\partial x_{i}} \int \frac{\partial f}{\partial v_{i}} \mathrm{~d}^{3} \mathbf{v}=0 . \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{v}_{i} \equiv \frac{1}{\nu} \int f v_{i} \mathrm{~d}^{3} \mathbf{v} \tag{9}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{\partial \nu}{\partial t}+\frac{\partial\left(\nu \bar{v}_{i}\right)}{\partial x_{i}}=0 . \tag{10}
\end{equation*}
$$

This is just the continuity equation for the stellar number density in real space.

More interesting results are obtained by multiplying the CBE with higher powers of \mathbf{v}.

The Moment Equations

E.g. take the first velocity moment of the CBE. Then

$$
\begin{equation*}
\int \frac{\partial f}{\partial t} \mathrm{~d}^{3} \mathbf{v}+\int v_{i} \frac{\partial f}{\partial x_{i}} \mathrm{~d}^{3} \mathbf{v}-\frac{\partial \Phi}{\partial x_{i}} \int \frac{\partial f}{\partial v_{i}} \mathrm{~d}^{3} \mathbf{v}=0 \tag{11}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{\partial}{\partial t} \int f v_{j} \mathrm{~d}^{3} \mathbf{v}+\int v_{i} v_{j} \frac{\partial f}{\partial x_{i}} \mathrm{~d}^{3} \mathbf{v}-\frac{\partial \Phi}{\partial x_{i}} \int v_{j} \frac{\partial f}{\partial v_{i}} \mathrm{~d}^{3} \mathbf{v}=0 \tag{12}
\end{equation*}
$$

We can use the divergence theorem to manipulate the last term

$$
\begin{equation*}
\int v_{j} \frac{\partial f}{\partial v_{i}} \mathrm{~d}^{3} \mathbf{v}=-\int \frac{\partial v_{j}}{\partial v_{i}} f \mathrm{~d}^{3} \mathbf{v}=-\int \delta_{i j} f \mathrm{~d}^{3} \mathbf{v}=-\delta_{i j} \nu \tag{13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
v_{j} \frac{\partial f}{\partial v_{i}}=-f \frac{\partial v_{j}}{\partial v_{i}}+\frac{\partial\left(v_{j} f\right)}{\partial v_{i}} \tag{14}
\end{equation*}
$$

and the last term must be 0 when the integration surface is expendend to infinity (where f must vanish).

The Moment Equations

Eq.(13) can be substituted into (12) giving

$$
\begin{equation*}
\frac{\partial\left(\nu \overline{v_{j}}\right)}{\partial t}+\frac{\partial\left(\nu \overline{v_{i} v_{j}}\right)}{\partial x_{i}}+\nu \frac{\partial \Phi}{\partial x_{j}}=0, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{v_{i} v_{j}} \equiv \frac{1}{\nu} \int v_{i} v_{j} f \mathrm{~d}^{3} \mathbf{v} . \tag{16}
\end{equation*}
$$

This is an equation of momentum conservation.

Each velocity can be expressed as a sum of the mean value (aka streaming motion) and the so-called peculiar velocity

$$
\begin{equation*}
v_{i}=\overline{v_{i}}+w_{i} \tag{17}
\end{equation*}
$$

where $\overline{w_{i}}=0$ by definition.

The Moment Equations

Then

$$
\begin{equation*}
\sigma_{i j}^{2} \equiv \overline{w_{i} w_{j}}=\overline{\left(v_{i}-\bar{v}_{i}\right)\left(v_{j}-\bar{v}_{j}\right)}=\overline{v_{i} v_{j}}-\bar{v}_{i} \bar{v}_{j} \tag{18}
\end{equation*}
$$

At each point \mathbf{x} the symmetric tensor σ^{2} defines an ellipsoid whose principal axes run parallel to σ^{2} 's eigenvectors and whose semi-axes are proportional to the square roots of σ^{2} 's eigenvalues. This is called the velocity ellipsoid at x .

The Jeans Equations

The continuity equation:

$$
\begin{equation*}
\frac{\partial \nu}{\partial t}+\frac{\partial\left(\nu \bar{v}_{i}\right)}{\partial x_{i}}=0 . \tag{19}
\end{equation*}
$$

and the momentum equation

$$
\begin{equation*}
\nu \frac{\partial \overline{v_{j}}}{\partial t}+\nu \overline{v_{i}} \frac{\partial \bar{v}_{j}}{\partial x_{i}}=-\nu \frac{\partial \Phi}{\partial x_{j}}-\frac{\partial\left(\nu \sigma_{i j}^{2}\right)}{\partial x_{i}} \tag{20}
\end{equation*}
$$

The term $-\nu \sigma_{i j}^{2}$ is a stress tensor - it describes an anisotropic pressure.

Note that the system is not closed: there is no "equation of state"! The multiplication by higher powers of \mathbf{v} doesn't help need an ansatz. In practice one assumes a particular form for $\sigma_{i j}^{2}$, e.g. for isotropic velocity dispersion $\sigma_{i j}^{2}=\sigma^{2} \delta_{i j}$

The Jeans Equations

Specialization for an axially symmetric system:

First express the CBE in cylindrical coordinates

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\dot{R} \frac{\partial f}{\partial R}+\dot{\phi} \frac{\partial f}{\partial \phi}+\dot{z} \frac{\partial f}{\partial z}+\dot{v}_{R} \frac{\partial f}{\partial v_{R}}+\dot{v}_{\phi} \frac{\partial f}{\partial v_{\phi}}+\dot{v}_{z} \frac{\partial f}{\partial v_{z}}=0 \tag{21}
\end{equation*}
$$

With $\dot{R} \equiv v_{R}, \dot{\phi} \equiv v_{\phi} / R$, and $\dot{z} \equiv v_{z}$, and

$$
\begin{gather*}
\dot{v}_{R}=-\frac{\partial \Phi}{\partial R}+\frac{v_{\phi}^{2}}{R} \tag{22}\\
\dot{v}_{\phi}=-\frac{1}{R} \frac{\partial \Phi}{\partial \phi}-\frac{v_{R} v_{\phi}}{R} \tag{23}\\
\dot{v}_{z}=-\frac{\partial \Phi}{\partial z} \tag{24}
\end{gather*}
$$

we get

The Jeans Equations

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v_{R} \frac{\partial f}{\partial R}+v_{z} \frac{\partial f}{\partial z}+\left[\frac{v_{\phi}^{2}}{R}-\frac{\partial \Phi}{\partial R}\right] \frac{\partial f}{\partial v_{R}}-\frac{v_{R} v_{\phi}}{R} \frac{\partial f}{\partial v_{\phi}}-\frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial v_{z}}=0 \tag{25}
\end{equation*}
$$

where it was assumed that $\partial / \partial \phi \equiv 0$.

Now we multiply by v_{R}, v_{z} and v_{ϕ}, and integrate over all velocities to get (assuming steady state)

$$
\begin{align*}
\frac{\partial\left(\nu \overline{v_{R}^{2}}\right)}{\partial R}+\frac{\partial \nu \overline{v_{R} v_{z}}}{\partial z}+\nu\left(\frac{\overline{v_{R}^{2}}-\overline{v_{\phi}^{2}}}{R}+\frac{\partial \Phi}{\partial R}\right) & =0 \\
\frac{\partial\left(\nu \overline{v_{R} v_{\phi}}\right.}{\partial R}+\frac{\partial\left(\nu \overline{v_{\phi} v_{z}}\right)}{\partial z}+\frac{2 \nu}{R} \overline{v_{\phi} v_{R}} & =0 \tag{26}\\
\frac{\partial\left(\nu \overline{v_{R} v_{z}}\right)}{\partial R}+\frac{\partial\left(\nu \overline{v_{z}^{2}}\right)}{\partial z}+\frac{\nu \overline{v_{R} v_{z}}}{R}+\nu \frac{\partial \Phi}{\partial z} & =0
\end{align*}
$$

Lovely! And powerful.

Some Applications of the Jeans Equations

- Asymmetric drift
- The local mass density
- The shape of local velocity ellipsoid
- Spheroidal components with isotropic velocity dispersion

Asymmetric drift

Observations indicate that stars with large $\overline{v_{R}^{2}}$ rotate more slowly:

$$
\begin{equation*}
\overline{v_{\phi}}=v_{c}-\overline{v_{R}^{2}} / D \tag{27}
\end{equation*}
$$

with $D \approx 120 \mathrm{~km} / \mathrm{s}$. This can be explained using the v_{R} Jeans equation.

Limit the consideration to $z=0$, assume $\partial \nu / \partial z=0$, define $\sigma_{\phi}^{2}=\overline{v_{\phi}^{2}}-{\overline{v_{\phi}}}^{2}$, and note that $v_{c}^{2}=R(\partial \Phi / \partial R)$, to get

$$
\begin{equation*}
\overline{v_{\phi}}=v_{c}-\frac{\overline{v_{R}^{2}}}{2 v_{c}} \zeta \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta=\frac{\sigma_{\phi}^{2}}{\overline{v_{R}^{2}}}-1-\frac{\partial \ln \left(\nu \overline{v_{R}^{2}}\right)}{\partial \ln R}-\frac{R}{\overline{v_{R}^{2}}} \frac{\partial\left(\overline{v_{R} v_{z}}\right)}{\partial z} \tag{29}
\end{equation*}
$$

Asymmetric drift

Assuming that $v_{c} \approx 220 \mathrm{~km} / \mathrm{s}$, we are done if we can convince ourselves that $\zeta \approx 2 v_{c} / D \approx 2.6$. Can we?

1. Locally $\overline{v_{z}^{2}} / \overline{v_{R}^{2}} \approx \sigma_{\phi}^{2} / \overline{v_{R}^{2}} \approx 0.45$
2. For $\left(\partial \ln \left(\nu \overline{v_{R}^{2}}\right) / \partial \ln R\right)$ assume that $\overline{v_{R}^{2}} \propto \nu$ because observations indicate that $\overline{v_{z}^{2}} \propto \nu$
3. $R\left(\partial\left(\overline{v_{R} v_{z}}\right) / \partial z\right) / \overline{v_{R}^{2}}$ is somewhere between 0 and 0.55 - this is significantly smaller than other terms

Hence, ζ does seem to be confined to a very narrow range of plausible values, and thus $v_{a} \equiv \overline{v_{\phi}}-v_{c} \propto \overline{v_{R}^{2}}$.

