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Lecture 8: Equilibria

of Collisionless Systems. II

The Jeans Equations
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The collisonless Boltzmann Equation

∂f

∂t
+

3∑
i=1

[
vi

∂f

∂xi
−

∂Φ

∂xi

∂f

∂vi

]
= 0 (1)

or
∂f

∂t
+ v∇f = ∇Φ

∂f

∂v
(2)

where

f ≡ f(x,v) (3)

Introduce the summing convention, so that

∂f

∂t
+ vi

∂f

∂xi
−

∂Φ

∂xi

∂f

∂vi
= 0 (4)
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The Moment Equations

Now let us integrate the CBE expressed in form (4) over all
velocities: ∫

∂f

∂t
d3v +

∫
vi

∂f

∂xi
d3v −

∂Φ

∂xi

∫
∂f

∂vi
d3v = 0. (5)

How do we evaluate these integrals? Two rules:

1. Derivative wrt x, or a function of x, can be taken out

2. Introduce notation∫
g(v)fd3v = < g >

∫
fd3v (6)

where

ν(x) =
∫

fd3v (7)

is the number density as a function of position.
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The Moment Equations

Then ∫
∂f

∂t
d3v +

∫
vi

∂f

∂xi
d3v −

∂Φ

∂xi

∫
∂f

∂vi
d3v = 0. (8)

with

vi ≡
1

ν

∫
fvid

3v, (9)

becomes

∂ν

∂t
+

∂(νvi)

∂xi
= 0. (10)

This is just the continuity equation for the stellar number density

in real space.

More interesting results are obtained by multiplying the CBE

with higher powers of v.
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The Moment Equations

E.g. take the first velocity moment of the CBE. Then∫
∂f

∂t
d3v +

∫
vi

∂f

∂xi
d3v −

∂Φ

∂xi

∫
∂f

∂vi
d3v = 0. (11)

becomes

∂

∂t

∫
fvjd

3v +
∫

vivj
∂f

∂xi
d3v −

∂Φ

∂xi

∫
vj

∂f

∂vi
d3v = 0. (12)

We can use the divergence theorem to manipulate the last term∫
vj

∂f

∂vi
d3v = −

∫ ∂vj

∂vi
fd3v = −

∫
δijfd3v = −δijν, (13)

Note that

vj
∂f

∂vi
= −f

∂vj

∂vi
+

∂(vjf)

∂vi
(14)

and the last term must be 0 when the integration surface is

expendend to infinity (where f must vanish).
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The Moment Equations

Eq.(13) can be substituted into (12) giving

∂(νvj)

∂t
+

∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0, (15)

where

vivj ≡
1

ν

∫
vivjfd3v. (16)

This is an equation of momentum conservation.

Each velocity can be expressed as a sum of the mean value (aka

streaming motion) and the so-called peculiar velocity

vi = vi + wi (17)

where wi = 0 by definition.
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The Moment Equations

Then

σ2
ij ≡ wiwj = (vi − vi)(vj − vj) = vivj − vivj. (18)

At each point x the symmetric tensor σ2 defines an ellipsoid

whose principal axes run parallel to σ2’s eigenvectors and whose

semi-axes are proportional to the square roots of σ2’s eigenval-

ues. This is called the velocity ellipsoid at x.
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The Jeans Equations

The continuity equation:

∂ν

∂t
+

∂(νvi)

∂xi
= 0. (19)

and the momentum equation

ν
∂vj

∂t
+ νvi

∂vj

∂xi
= −ν

∂Φ

∂xj
−

∂(νσ2
ij)

∂xi
(20)

The term −νσ2
ij is a stress tensor – it describes an anisotropic

pressure.

Note that the system is not closed: there is no “equation of

state”! The multiplication by higher powers of v doesn’t help –

need an ansatz. In practice one assumes a particular form for

σ2
ij, e.g. for isotropic velocity dispersion σ2

ij = σ2δij
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The Jeans Equations

Specialization for an axially symmetric system:

First express the CBE in cylindrical coordinates

∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0 (21)

With Ṙ ≡ vR, φ̇ ≡ vφ/R, and ż ≡ vz, and

v̇R = −
∂Φ

∂R
+

v2
φ

R
(22)

v̇φ = −
1

R

∂Φ

∂φ
−

vRvφ

R
(23)

v̇z = −
∂Φ

∂z
(24)

we get
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The Jeans Equations

∂f

∂t
+vR

∂f

∂R
+vz

∂f

∂z
+

v2
φ

R
−

∂Φ

∂R

 ∂f

∂vR
−

vRvφ

R

∂f

∂vφ
−

∂Φ

∂z

∂f

∂vz
= 0 (25)

where it was assumed that ∂/∂φ ≡ 0.

Now we multiply by vR, vz and vφ, and integrate over all velocities

to get (assuming steady state)

∂(νv2
R)

∂R
+

∂νvRvz

∂z
+ ν

v2
R − v2

φ

R
+

∂Φ

∂R

 = 0,

∂(νvRvφ

∂R
+

∂(νvφvz)

∂z
+

2ν

R
vφvR = 0, (26)

∂(νvRvz)

∂R
+

∂(νv2
z )

∂z
+

νvRvz

R
+ ν

∂Φ

∂z
= 0.

Lovely! And powerful.
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Some Applications of the Jeans Equations

• Asymmetric drift

• The local mass density

• The shape of local velocity ellipsoid

• Spheroidal components with isotropic velocity dispersion
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Asymmetric drift

Observations indicate that stars with large v2
R rotate more slowly:

vφ = vc − v2
R/D (27)

with D ≈ 120 km/s. This can be explained using the vR Jeans

equation.

Limit the consideration to z = 0, assume ∂ν/∂z = 0, define

σ2
φ = v2

φ − vφ
2, and note that v2

c = R(∂Φ/∂R), to get

vφ = vc −
v2
R

2vc
ζ, (28)

where

ζ =
σ2

φ

v2
R

− 1−
∂ ln(νv2

R)

∂ lnR
−

R

v2
R

∂(vRvz)

∂z
(29)
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Asymmetric drift

Assuming that vc ≈ 220 km/s, we are done if we can convince

ourselves that ζ ≈ 2vc/D ≈ 2.6. Can we?

1. Locally v2
z /v2

R ≈ σ2
φ/v2

R ≈ 0.45

2. For (∂ ln(νv2
R)/∂ lnR) assume that v2

R ∝ ν because observa-

tions indicate that v2
z ∝ ν

3. R(∂(vRvz)/∂z)/v2
R is somewhere between 0 and 0.55 – this is

significantly smaller than other terms

Hence, ζ does seem to be confined to a very narrow range of

plausible values, and thus va ≡ vφ − vc ∝ v2
R.
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