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Lecture 6: The Orbits of Stars

Axisymmetric Potentials
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Axisymmetric Potentials

The problem: given the initial conditions x(to) and ẋ(to), and

the potential Φ(R, z), find x(t).

A better description of real galaxies than spherical poten-

tials, and the orbital structure is much more interesting.

• Poisson’s equation for axisymmetric potentials, meridional

plane

• Surfaces of Section

• Examples (non-axisymmetric!)

• Epicycle approximation
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Axisymmetric Potentials

The equations of motion in an axisymmetric potential (cylindrical

coordinates) are

R̈ = −
∂Φeff

∂R
(1)

and

z̈ = −
∂Φeff

∂z
(2)

where

Φeff ≡ Φ +
L2
z

2R2
(3)

Also
d

dt
(R2φ̇) = 0 ⇒ R2φ̇ = Lz. (4)
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Axisymmetric Potentials

Hence, if solve the first two equations, the solution for φ can be

obtained from the third equation as

φ(t) = φ(to) + φ̇(to)R
2(to)

∫ t
to
dt′/R2(t′) (5)

Meridional plane: non-uniformly rotating plane. The three-dimensional

motion in the cylindrical (R, z, φ) space is reduced to a two-

dimensional problem in Cartesian coordinates R and z.

Example from the textbook (see figs. 3-2, 3-3 and 3-4).

Φ =
1

2
v20 ln

(
R2 +

z2

q2

)
(6)
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Surfaces of Section

In the spherical or nearly spherical case, the third integral can

be found analytically (in addition to E and Lz)

In the general 2-D case, we can use a graphical device: Poincaré’s

surface of section.

1. Choose an energy condition

2. Choose a coordinate condition (e.g. x = 0 or z = 0)

3. Integrate the orbit for given initial conditions and potential

4. Plot the other coordinate vs. its conjugate momentum (the

consequent) whenever the coordinate condition is satisfied,

e.g. ẏ vs. y, or vR vs. R
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Surfaces of Section

• If the orbit is not restricted by another integral, the conse-

quents will fill an area.

• If the orbit is restricted by another integral, the consequents

will lie on a curve.
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A = 0.5, B = 0.605, dx/dt(t=0)=0

Example: non-axisymmetric
harmonic oscillator

• Φ(x, y) = Ax2 +B y2

• For A = B a single ellipse cen-

tered on the origin. Here a fi-

nite number of orbits because

A/B = n/m = 10/11. In general,

an infinite number of box orbits

which fill the whole box

• Surface of section: bottom

panel, ẏ vs y for x = 0
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Loop Orbit
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Box Orbit
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Banana Orbit
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Fish Orbit
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Box Orbit Scattered by a Point Mass
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Axisymmetric Potentials

For a modern approach, see Thomas et al. 2004, MNRAS 353,

391: orbit libraries, a Voronoi tessellation of the surface of sec-

tion, the reconstruction of phase-space distribution function

For a more classic orbital analysis (and if you are interested

in finding out what is an “antipretzel”), see Miralda-Escudé &

Schwarzschild 1989 (ApJ 339, 752):

Another classic paper is de Zeeuw 1985 (MNRAS 216, 272)

(interested in “unstable butterflies”?)

14



15



16



Epicycle Approximation

Assume an axisymmetric potential Φeff and nearly circular orbits;

expand Φeff in a Taylor series about its minimum:

Φeff = const +
1

2
κ2x2 +

1

2
ν2z2 + · · · , (7)

where

x ≡ R−Rg, κ2 ≡
∂2Φeff

∂R2

∣∣∣∣∣
(Rg,0)

, ν2 ≡
∂2Φeff

∂z2

∣∣∣∣∣
(Rg,0)

. (8)

The equations of motion decouple and we have two integrals:

x = X cos(κt+ φ0) z = Z cos(νt+ ζ)

ER ≡
1

2
[v2R + κ2(R−Rg)

2] Ez ≡
1

2
[v2z + ν2z2].
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Epicycle Approximation

Now compare the epicycle frequency, κ, with the angular fre-

quency, Ω.

Ω2 ≡
v2c
R2

=
1

R

∂Φ

∂R
=

1

R

∂Φeff

∂R
+
L2
z

R4
, (9)

κ2 =
∂(R2Ω2)

∂R
+

3L2
z

R4
= R

∂Ω2

∂R
+ 4Ω2. (10)

Since Ω always decreases, but never faster than Keplerian,

Ω ≤ κ ≤ 2Ω. (11)
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Epicycle Approximation

The epicycle approximation also makes a prediction for the φ-

motion since Lz = R2φ̇ is conserved. Let

y ≡ Rg[φ− (φ0 + Ωt)] (12)

be the displacement in the φ direction from the “guiding center”.

If we expand Lz to first order in displacements from the guiding

center, we obtain

φ = φ0 + Ωt−
2ΩX

κRg
sin(κt+ φ0). (13)

Therefore

y = −Y sin(κt+ φ0) where
Y

X
=

2Ω

κ
≡ γ ≥ 1. (14)

⇒ The epicycles are elongated tangentially (for Keplerian motion

γ = 2 – epicycles are not circles as assumed by Hipparchus and

Ptolomey!)
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The epicycle frequency (κ) is related to Oort’s constants:

A ≡
1

2

(
vc

R
−
dvc

dR

)
R�

= −
1

2

(
R
dΩ

dR

)
R�

(15)

B ≡ −
1

2

(
vc

R
+
dvc

dR

)
R�

= −
(
1

2
R
dΩ

dR
+ Ω

)
R�

= A−Ω� (16)

Then

κ2
� = −4B(A−B) = −4BΩ� (17)

In the solar neighborhood,

A = 14.5± 1.5 km/s/kpc, B = −12± 3 km/s/kpc, (18)

and so

κ� = 36± 10 km/s/kpc, (19)

and
κ�
Ω�

= 1.3± 0.2 (> 1and < 2!) (20)

For improvements to epicycle approximation see Dehnen 1999
(AJ 118, 1190)
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MISSED from Chapter 3:

• Non-Axysymmetric Potentials (box orbits, loop orbits, etc)

• Rotating Potentials, Lagrange Points

• Bar Potentials, Lindblad Resonances

• Phase-space structure, Stäckel potentials, Delaunay variables

. . .
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Integrals

We define an integral to be a function I(x,v) of the phase-space

coordinates such that

dI

dt

∣∣∣∣
orbit

= 0.

We do not allow I to depend explicitely on time. In the spher-

ical case, Lx, Ly, Lz, and E are integrals, and any function of

integrals is also an integral (for example |L|2). When we start to

count integrals, we are actually looking for the largest number

of mutually independent integrals.

We expect each independent integral to impose a constraint,

I = constant on the phase space coordinates of the orbit. We

start out with a 6-D phase space, and each integral will lower

the dimensionality of the orbit by one.

For the Kepler problem we know of four integrals, but the Kepler

orbit is a 1-D curve. If we look at it in velocity space, it is still
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a 1-D curve, so there must be a fifth integral. To find the fifth,

consider

r =
a(1− e2)

1 + e cos(ψ − ψ0)

where

a ≡
L2

GM(1− e2)
= −

GM

2E

is the semi-major axis. Note that a(E) and e(E,L) are integrals.

Solving for ψ0, we find that it is also an integral:

ψ0(x,v) = ψ − arccos
{
1

e

[
a

r
(1− e2)− 1

]}
.

So we’ve found that the number of integrals is (6 − the di-

mensionality of the orbit). However the number of integrals can

exceed this. Consider

Φ = −GM
(
1

r
+
r0
r2

)
.

An orbit in this potential creates a rosette, which fills a 2-D area

of real space, (and also fills a 2-D area in phase space) yet the



potential still has a fifth integral, ψ0. The equation of motion is
now

d2u

dψ2
+
(
1−

2GMr0
L2

)
u =

GM

L2
.

This is, as in the Kepler case, the equation for a harmonic oscil-
lator, but the frequency is no longer 2π. The solution of which
is

u =
GM

L2

[
K2 + e cos

(
ψ − ψ0

K

)]
,

where

K ≡ 1/

√
1−

2GMr0
L2

.

So ψ0 is an integral. To see why it is not isolating, look at the
solution for ψ:

ψ = ψ0 +K arccos
{
1

e

[
a

r
(1− e2)−K2

]}
.

But we can always add 2mπ to the value of the arccos, adding
2mKπ to ψ. But K will always be irrational so we can approach
any value of ψ. Therefore, ψ0 imposes no useful constraint on
the particle’s motion.


