Astr 509: Astrophysics III: Stellar Dynamics
Winter Quarter 2005, University of Washington, Zeljko Ivezic¢

Lecture 6: The Orbits of Stars

AXisymmetric Potentials



Axisymmetric Potentials

The problem: given the initial conditions x(¢t,) and x(¢,), and
the potential ®(R, z), find x(t).

A better description of real galaxies than spherical poten-
tials, and the orbital structure is much more interesting.

e Poisson’s equation for axisymmetric potentials, meridional
plane

e Surfaces of Section

e Examples (non-axisymmetric!)

e Epicycle approximation



Axisymmetric Potentials

The equations of motion in an axisymmetric potential (cylindrical
coordinates) are
~ OPesr

R = 1
R (1)
and
— _ 2
Z 3, (2)
where
Cbeﬂf = —|— Lg (3)
2R?
Also

d . .
a(qu” =0 = R%=L. (4)



Axisymmetric Potentials

Hence, if solve the first two equations, the solution for ¢ can be
obtained from the third equation as

5(8) = 9(to) + (1) B2(t0) [ d /R (¢) (5)

Meridional plane: non-uniformly rotating plane. The three-dimensional

motion in the cylindrical (R, z,¢) space is reduced to a two-
dimensional problem in Cartesian coordinates R and z.

Example from the textbook (see figs. 3-2, 3-3 and 3-4).

_ 15 > | 27
® = _vgn (R +q—2> (6)
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Surfaces of Section

In the spherical or nearly spherical case, the third integral can
be found analytically (in addition to E and L)

In the general 2-D case, we can use a graphical device: Poincaré’s
surface of section.

1. Choose an energy condition

2. Choose a coordinate condition (e.g. x = 0 or z = 0)

3. Integrate the orbit for given initial conditions and potential

4. Plot the other coordinate vs. its conjugate momentum (the
consequent) whenever the coordinate condition is satisfied,
e.d. y VS. y, or vp VS. R



Surfaces of Section

e If the orbit is not restricted by another integral, the conse-
quents will fill an area.

e If the orbit is restricted by another integral, the consequents
will lie on a curve.



x=cos(t), y=2 cos(1.1t+2)
A =0.5, B = 0.605, dx/dt(t=0)=0
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Example: non-axisymmetric

harmonic oscillator

o &(z,y) = Az? + By?

e For A = B a single ellipse cen-
tered on the origin. Here a fi-
nite number of orbits because
A/B =n/m = 10/11. In general,
an infinite number of box orbits
which fill the whole box

e Surface of section: bottom
panel, y vs y for £ = 0



Loop Orbit




Box Orbit
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Banana Orbit
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Fish Orbit
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Box Orbit Scattered by a Point Mass
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AXisymmetric Potentials

For a modern approach, see Thomas et al. 2004, MNRAS 353,
391: orbit libraries, a VVoronoi tessellation of the surface of sec-
tion, the reconstruction of phase-space distribution function

For a more classic orbital analysis (and if you are interested
in finding out what is an “antipretzel” ), see Miralda-Escudé &

Schwarzschild 1989 (ApJ 339, 752):

Another classic paper is de Zeeuw 1985 (MNRAS 216, 272)
(interested in “unstable butterflies” ?)
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ORBIT STRUCTURE OF LOGARITHMIC POTENTIAL
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Epicycle Approximation

Assume an axisymmetric potential ®4¢ and nearly circular orbits;
expand P in @ Taylor series about its minimum:

1
dr = const + 2/4: 222 4+ 1/222 -+ . (7)
where
92 52dP
r = R — Ry, K2 = 8R§fr R 5 2€fr : (8)
(Ry,0) 7 I(Ry,0)

The equations of motion decouple and we have two integrals:

x = X cos(kt + ¢p) z = Z cos(vt + ()
1 1
Bp= Wh+r*(R—Rp)?l  Bx=_[? +v%7
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Epicycle Approximation

Now compare the epicycle frequency, «, with the angular fre-
quency, 2.

02 — vg _10® _ 10®er | LZ (9)
~ R2 ROR R OR R4’
O(R?Q2)  3L2 0022
2 z 2
— — R 4 4072 10
" on TR o T (10)

Since €2 always decreases, but never faster than Keplerian,

Q <k <2Q0. (11)
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Epicycle Approximation

The epicycle approximation also makes a prediction for the ¢-
motion since L. = R2¢ is conserved. Let

y = Rglé — (¢0 + £21)] (12)

be the displacement in the ¢ direction from the “guiding center” .
If we expand L, to first order in displacements from the guiding
center, we obtain

202X |
¢ = ¢o + S2 — - sin(xt + ¢o)- (13)
g
T herefore
: Y 22
y = =Y sin(kt + ¢g) where }:—572 1. (14)
K

= The epicycles are elongated tangentially (for Keplerian motion
v = 2 — epicycles are not circles as assumed by Hipparchus and
Ptolomey!)
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The epicycle frequency (k) is related to Oort's constants:

1 d 1 dS?2
Az—(%—ﬁ> = _= (R—) (15)
2\R dR/gr, 2\ dR/g,
1 d 1 _dS2
BE——(UC—I— ”C> — —(—R——|—Q) —A-Qy (16)
2\R  dR/R, 2 dR R
Then
k2 = —4B(A — B) = —4BQ (17)
In the solar neighborhood,
A=1454+15 km/s/kpc, B = —12+ 3 km/s/kpc, (18)
and so
ko = 36 = 10 km/s/kpc, (19)
and
M0
— =13+0.2 (>1and < ?2!) (20)
940

For improvements to epicycle approximation see Dehnen 1999
(AJ 118, 1190)
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MISSED from Chapter 3:

e Non-Axysymmetric Potentials (box orbits, loop orbits, etc)

e Rotating Potentials, Lagrange Points

e Bar Potentials, Lindblad Resonances

e Phase-space structure, Stackel potentials, Delaunay variables
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Integrals

We define an integral to be a function I(x,v) of the phase-space
coordinates such that

drl

dt lorbit
We do not allow I to depend explicitely on time. In the spher-
ical case, Ly, Ly, L, and E are integrals, and any function of
integrals is also an integral (for example |L|?). When we start to
count integrals, we are actually looking for the largest number
of mutually independent integrals.

We expect each independent integral to impose a constraint,
I = constant on the phase space coordinates of the orbit. We
start out with a 6-D phase space, and each integral will lower
the dimensionality of the orbit by one.

For the Kepler problem we know of four integrals, but the Kepler
orbit is a 1-D curve. If we look at it in velocity space, it is still
22



a 1-D curve, so there must be a fifth integral. To find the fifth,
consider

a(l — e?)
T =
1 + ecos(y — o)
where
B L~ GM
a = = ——
GM(1 — e2) 2F

is the semi-major axis. Note that a(F) and e(E, L) are integrals.
Solving for g, we find that it is also an integral:

Yo(x,v) = ¢ — arccos {1 [g(l —e?) — 1] } .

(&
So we've found that the number of integrals is (6 — the di-
mensionality of the orbit). However the number of integrals can
exceed this. Consider

®=—-GM (1 + T—g> .

r r
An orbit in this potential creates a rosette, which fills a 2-D area
of real space, (and also fills a 2-D area in phase space) yet the



potential still has a fifth integral, ¥g. The equation of motion is
now

This is, as in the Kepler case, the equation for a harmonic oscil-
lator, but the frequency is no longer 27. The solution of which

IS
GM [ o Y — g
T2 [K +€COS( K )]
where
o 2GMrg

So g is an integral. To see why it is not isolating, look at the
solution for :

o).

But we can always add 2mmn to the value of the arccos, adding
2mKm to ¢. But K will always be irrational so we can approach
any value of . Therefore, ¥g imposes no useful constraint on
the particle’'s motion.

Y = 1Yo + K arccos {1




