Astr 509: Astrophysics III: Stellar Dynamics

Winter Quarter 2005, University of Washington, Željko Ivezić

Lecture 6: The Orbits of Stars

Axisymmetric Potentials

Axisymmetric Potentials

The problem: given the initial conditions $\mathrm{x}\left(t_{o}\right)$ and $\dot{\mathrm{x}}\left(t_{o}\right)$, and the potential $\Phi(R, z)$, find $\mathrm{x}(t)$.

A better description of real galaxies than spherical potentials, and the orbital structure is much more interesting.

- Poisson's equation for axisymmetric potentials, meridional plane
- Surfaces of Section
- Examples (non-axisymmetric!)
- Epicycle approximation

Axisymmetric Potentials

The equations of motion in an axisymmetric potential (cylindrical coordinates) are

$$
\begin{equation*}
\ddot{R}=-\frac{\partial \Phi_{\mathrm{eff}}}{\partial R} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{z}=-\frac{\partial \Phi_{\mathrm{eff}}}{\partial z} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{\mathrm{eff}} \equiv \Phi+\frac{L_{z}^{2}}{2 R^{2}} \tag{3}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(R^{2} \dot{\phi}\right)=0 \quad \Rightarrow \quad R^{2} \dot{\phi}=L_{z} \tag{4}
\end{equation*}
$$

Axisymmetric Potentials

Hence, if solve the first two equations, the solution for ϕ can be obtained from the third equation as

$$
\begin{equation*}
\phi(t)=\phi\left(t_{o}\right)+\dot{\phi}\left(t_{o}\right) R^{2}\left(t_{o}\right) \int_{t_{o}}^{t} d t^{\prime} / R^{2}\left(t^{\prime}\right) \tag{5}
\end{equation*}
$$

Meridional plane: non-uniformly rotating plane. The three-dimensional motion in the cylindrical (R, z, ϕ) space is reduced to a twodimensional problem in Cartesian coordinates R and z.

Example from the textbook (see figs. 3-2, 3-3 and 3-4).

$$
\begin{equation*}
\Phi=\frac{1}{2} v_{0}^{2} \ln \left(R^{2}+\frac{z^{2}}{q^{2}}\right) \tag{6}
\end{equation*}
$$

Surfaces of Section

In the spherical or nearly spherical case, the third integral can be found analytically (in addition to E and L_{z})

In the general 2-D case, we can use a graphical device: Poincaré's surface of section.

1. Choose an energy condition
2. Choose a coordinate condition (e.g. $x=0$ or $z=0$)
3. Integrate the orbit for given initial conditions and potential
4. Plot the other coordinate vs. its conjugate momentum (the consequent) whenever the coordinate condition is satisfied, e.g. \dot{y} vs. y, or v_{R} vs. R

Surfaces of Section

- If the orbit is not restricted by another integral, the consequents will fill an area.
- If the orbit is restricted by another integral, the consequents will lie on a curve.

$$
x=\cos (t), y=2 \cos (1.1 t+2)
$$

$$
\mathrm{A}=0.5, \mathrm{~B}=0.605, \mathrm{dx} / \mathrm{dt}(\mathrm{t}=0)=0
$$

Example: non-axisymmetric harmonic oscillator

- $\Phi(x, y)=A x^{2}+B y^{2}$
- For $A=B$ a single ellipse centered on the origin. Here a finite number of orbits because $A / B=n / m=10 / 11$. In general, an infinite number of box orbits which fill the whole box
- Surface of section: bottom panel, \dot{y} vs y for $x=0$

Loop Orbit

Box Orbit

Banana Orbit

Fish Orbit

Box Orbit Scattered by a Point Mass

Axisymmetric Potentials

For a modern approach, see Thomas et al. 2004, MNRAS 353, 391: orbit libraries, a Voronoi tessellation of the surface of section, the reconstruction of phase-space distribution function

For a more classic orbital analysis (and if you are interested in finding out what is an "antipretzel"), see Miralda-Escudé \& Schwarzschild 1989 (ApJ 339, 752):

Another classic paper is de Zeeuw 1985 (MNRAS 216, 272) (interested in "unstable butterflies"?)

ORBIT STRUCTURE OF LOGARITHMIC POTENTIAL

21

$3 \cdot 2$

4.3

Epicycle Approximation

Assume an axisymmetric potential $\Phi_{\text {eff }}$ and nearly circular orbits; expand $\Phi_{\text {eff }}$ in a Taylor series about its minimum:

$$
\begin{equation*}
\Phi_{\mathrm{eff}}=\mathrm{const}+\frac{1}{2} \kappa^{2} x^{2}+\frac{1}{2} \nu^{2} z^{2}+\cdots \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
x \equiv R-R_{g},\left.\quad \kappa^{2} \equiv \frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial R^{2}}\right|_{\left(R_{g}, 0\right)},\left.\quad \nu^{2} \equiv \frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial z^{2}}\right|_{\left(R_{g}, 0\right)} \tag{8}
\end{equation*}
$$

The equations of motion decouple and we have two integrals:

$$
\begin{aligned}
x=X \cos \left(\kappa t+\phi_{0}\right) & z=Z \cos (\nu t+\zeta) \\
E_{R} \equiv \frac{1}{2}\left[v_{R}^{2}+\kappa^{2}\left(R-R_{g}\right)^{2}\right] & E_{z} \equiv \frac{1}{2}\left[v_{z}^{2}+\nu^{2} z^{2}\right]
\end{aligned}
$$

Epicycle Approximation

Now compare the epicycle frequency, κ, with the angular frequency, Ω.

$$
\begin{gather*}
\Omega^{2} \equiv \frac{v_{c}^{2}}{R^{2}}=\frac{1}{R} \frac{\partial \Phi}{\partial R}=\frac{1}{R} \frac{\partial \Phi_{\mathrm{eff}}}{\partial R}+\frac{L_{z}^{2}}{R^{4}} \tag{9}\\
\kappa^{2}=\frac{\partial\left(R^{2} \Omega^{2}\right)}{\partial R}+\frac{3 L_{z}^{2}}{R^{4}}=R \frac{\partial \Omega^{2}}{\partial R}+4 \Omega^{2} \tag{10}
\end{gather*}
$$

Since Ω always decreases, but never faster than Keplerian,

$$
\begin{equation*}
\Omega \leq \kappa \leq 2 \Omega \tag{11}
\end{equation*}
$$

Epicycle Approximation

The epicycle approximation also makes a prediction for the ϕ motion since $L_{z}=R^{2} \dot{\phi}$ is conserved. Let

$$
\begin{equation*}
y \equiv R_{g}\left[\phi-\left(\phi_{0}+\Omega t\right)\right] \tag{12}
\end{equation*}
$$

be the displacement in the ϕ direction from the "guiding center". If we expand L_{z} to first order in displacements from the guiding center, we obtain

$$
\begin{equation*}
\phi=\phi_{0}+\Omega t-\frac{2 \Omega X}{\kappa R_{g}} \sin \left(\kappa t+\phi_{0}\right) . \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
y=-Y \sin \left(\kappa t+\phi_{0}\right) \quad \text { where } \quad \frac{Y}{X}=\frac{2 \Omega}{\kappa} \equiv \gamma \geq 1 \tag{14}
\end{equation*}
$$

\Rightarrow The epicycles are elongated tangentially (for Keplerian motion $\gamma=2$ - epicycles are not circles as assumed by Hipparchus and Ptolomey!)

The epicycle frequency (κ) is related to Oort's constants:

$$
\begin{gather*}
A \equiv \frac{1}{2}\left(\frac{v_{c}}{R}-\frac{d v_{c}}{d R}\right)_{R_{\odot}}=-\frac{1}{2}\left(R \frac{d \Omega}{d R}\right)_{R_{\odot}} \tag{15}\\
B \equiv-\frac{1}{2}\left(\frac{v_{c}}{R}+\frac{d v_{c}}{d R}\right)_{R_{\odot}}=-\left(\frac{1}{2} R \frac{d \Omega}{d R}+\Omega\right)_{R_{\odot}}=A-\Omega_{\odot} \tag{16}
\end{gather*}
$$

Then

$$
\begin{equation*}
\kappa_{\odot}^{2}=-4 B(A-B)=-4 B \Omega_{\odot} \tag{17}
\end{equation*}
$$

In the solar neighborhood,

$$
\begin{equation*}
A=14.5 \pm 1.5 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}, \quad B=-12 \pm 3 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}, \tag{18}
\end{equation*}
$$

and so

$$
\begin{equation*}
\kappa_{\odot}=36 \pm 10 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\kappa_{\odot}}{\Omega_{\odot}}=1.3 \pm 0.2 \quad(>1 \text { and }<2!) \tag{20}
\end{equation*}
$$

For improvements to epicycle approximation see Dehnen 1999 (AJ 118, 1190)

MISSED from Chapter 3:

- Non-Axysymmetric Potentials (box orbits, loop orbits, etc)
- Rotating Potentials, Lagrange Points
- Bar Potentials, Lindblad Resonances
- Phase-space structure, Stäckel potentials, Delaunay variables

Integrals

We define an integral to be a function $I(\mathrm{x}, \mathrm{v})$ of the phase-space coordinates such that

$$
\left.\frac{\mathrm{d} I}{\mathrm{~d} t}\right|_{\text {orbit }}=0
$$

We do not allow I to depend explicitely on time. In the spherical case, L_{x}, L_{y}, L_{z}, and E are integrals, and any function of integrals is also an integral (for example $|\mathbf{L}|^{2}$). When we start to count integrals, we are actually looking for the largest number of mutually independent integrals.

We expect each independent integral to impose a constraint, $I=$ constant on the phase space coordinates of the orbit. We start out with a 6-D phase space, and each integral will lower the dimensionality of the orbit by one.

For the Kepler problem we know of four integrals, but the Kepler orbit is a 1-D curve. If we look at it in velocity space, it is still
a 1-D curve, so there must be a fifth integral. To find the fifth, consider

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \left(\psi-\psi_{0}\right)}
$$

where

$$
a \equiv \frac{L^{2}}{G M\left(1-e^{2}\right)}=-\frac{G M}{2 E}
$$

is the semi-major axis. Note that $a(E)$ and $e(E, L)$ are integrals. Solving for ψ_{0}, we find that it is also an integral:

$$
\psi_{0}(\mathbf{x}, \mathrm{v})=\psi-\arccos \left\{\frac{1}{e}\left[\frac{a}{r}\left(1-e^{2}\right)-1\right]\right\} .
$$

So we've found that the number of integrals is (6 - the dimensionality of the orbit). However the number of integrals can exceed this. Consider

$$
\Phi=-G M\left(\frac{1}{r}+\frac{r_{0}}{r^{2}}\right) .
$$

An orbit in this potential creates a rosette, which fills a 2-D area of real space, (and also fills a 2-D area in phase space) yet the
potential still has a fifth integral, ψ_{0}. The equation of motion is now

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \psi^{2}}+\left(1-\frac{2 G M r_{0}}{L^{2}}\right) u=\frac{G M}{L^{2}} .
$$

This is, as in the Kepler case, the equation for a harmonic oscillator, but the frequency is no longer 2π. The solution of which is

$$
u=\frac{G M}{L^{2}}\left[K^{2}+e \cos \left(\frac{\psi-\psi_{0}}{K}\right)\right]
$$

where

$$
K \equiv 1 / \sqrt{1-\frac{2 G M r_{0}}{L^{2}}}
$$

So ψ_{0} is an integral. To see why it is not isolating, look at the solution for ψ :

$$
\psi=\psi_{0}+K \arccos \left\{\frac{1}{e}\left[\frac{a}{r}\left(1-e^{2}\right)-K^{2}\right]\right\} .
$$

But we can always add $2 m \pi$ to the value of the arccos, adding $2 m K \pi$ to ψ. But K will always be irrational so we can approach any value of ψ. Therefore, ψ_{0} imposes no useful constraint on the particle's motion.

