Astr 509: Astrophysics III: Stellar Dynamics
Winter Quarter 2005, University of Washington, Zeljko Ivezic¢

Lecture 5: The Orbits of Stars

Static Spherical Potentials



Orbits in Static Spherical Potentials

The problem: given the initial conditions x(¢t,) and x(¢,), and
the potential ®(r), find x(t).

Orbits in spherical potentials are easy to consider and lead
to some important concepts.

e Some general considerations
e Example 1: Spherical harmonic oscillator: ®(r) = A + Br?

e Example 2: Point mass potential: ®(r) = = TM

—GM

b+ b2 +r?

e Example 3: Isochrone potential: ®(r) =




General considerations

The initial conditions are 6-dimensional and thus a general solu-
tion includes six orbital parameters. (aka constants of motion)

The equation of motion in a spherical potential is:
r= F(r)e,, (1)

i.e. the force is always radiall

Crossing through by r, we show that the angular momentum
vector, L=r x r is conserved:
dr d?r

d dr
— XT) = — X — X — = F X e =20 2
g XD =X g trxge = o xe (2)

Therefore, the motion is constrained to the plane perpendicular
to L, and can be fully described in cylindrical coordinate system,

rand ¢ (v =78 + r)&,)



General considerations

The equations of motion in the plane are
E(r)
2r) +rp = 0.
The second equation comes from r2y) = L = const. (note that
this is the second Kepler's law!)
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) can be eliminated using ¢ = L/r2, leading to a one-dimensional
equation of motion:

i — L?/r3 = F(r). (3)

This equation motivates a definition of an effective potential

— Vderr = F(r) + L7273, (4)
and thus

2
Detr(r) = (r) + QL—TQ (5)



General considerations

The energy per unit mass is
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B = 0%+ ®(r) = 2 (% +120%) + &(r) = _ (7 + Do (1) . (6)
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For bound orbits r oscillates between an inner radius, or pericen-
ter (rmin), and an outer radius, or apocenter (rmax). The radial
period is

T, =2 [ " (/20E — derr(r)D) T dr (7)

T'min

The pericenter and apocenter are the solutions of ®.(r) = F.



General considerations

The azimuthal period is

2T
Ty = T (8)
where
Ay =2L [ " (r?\[2[E - derr(r)]) L dr (9)

The orbit is closed only for Ay = k(2w) — in general case, the
orbit forms a rosette.

The orbital precession rate:

Q, = (10)



General considerations

If we eliminate t rather than ¢, then we have an equation for the
orbit's shape. In terms of the variable u = 1/r

d? F d?
ﬁ u——LQ(Z; — ﬁzg‘(u) (11)

This is a second order differential equation for u(vy), where ((u)
and the initial conditions are presumably specified.

Let's now look at specific examples.



The harmonic potential

b = Py + —Q%r°, (12)
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Generated by homogeneous density distribution.

The motion decouples in cartesian co-ordinates to x = — Q2
and y = —Q2y, and the solution is:

r = Xcos(Q2t + ¢z), y=Ysin(Q2t+ ¢y), (13)

where X, Y, ¢, and ¢y are arbitrary constants (determined from
initial conditions).

This is the equation for an ellipse centered on the origin.

Orbits are closed since the periods for x and y oscillations are
identical.



Point mass (Keplerian) potential

d? GM GM
d—JQL u = ? — U = —[1 + GCOS(w ZpO)] (14)

This is the equation for an ellipse with one focus at the origin
and eccentricity e (the first Kepler's law). The semi-major axis
is a = L%2/GM(1 — €2).

The motion is periodic in ¥ with period 27. This gives a closed
orbit with

3
T, =Ty = 27‘(‘\/5—M = 2nGM(2|E|)~3/2 (15)
Note that T2 x a3 — the third Kepler's law!



Isochrone Potential

—GM
(16)
b+ \/b% 4 r?
More extended than point mass, less extended than harmonic

d(r) =

potential.

T, same as for the Keplerian case (T, = 2rGM (2|E|)~3/2).

However,

L (17)
/L2 44aMb)

l.e. m < Ay < 2w, and hence the orbits are not closed.

A =7 |1+
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