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Lecture 14: Collisions I

Tidal Tails, Dynamical Friction
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Collisions, Encounters, Tidal tails, etc.

• Andromeda is coming overhere at 100 km/s – expect fire-
works 1010 years from now!

• Two regimes for galaxy encounters: fast, v∞ > vf (elastic
behavior, galaxies affect each other but do not merge, e.g.
tidal tails) and slow v∞ < vf (inelastic behavior – galaxies
merge), where v∞ is the relative velocity, and vf is some
critical velocity that depends on detailed structure of inter-
acting galaxies.

• In the fastest encounters (v∞ >> vf), stars do not signifi-
cantly change their positions – impulse approximation

• During the not-so-fast encounters, the orbital (kinetic) en-
ergy can be transferred to the internal energy (galaxies are
not point masses – better described as viscous fluid that
absorbs energy when deformed)
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Fast Galaxy Encounters

• Impulse approximation: the potential energy doesn’t change
during the encounter, but the internal kinetic energy changes
by, say, ∆K. This change of the kinetic (and total) energy
takes the system out of virial equilibrium! What is the final
equilibrium state? (before the encounter: E = Eo and K =
Ko, with Eo = −Ko)

• After the encounter, and before returning to the equilibrium:
K1 = Ko + ∆K (= −Eo + ∆K) and E1 = Eo + ∆K (note
that it is NOT true that E1 = −K1).

• After returning to the equilibrium: E2 = E1, and it must
be true that K2 = −E2 because of virial theorem. Hence,
K2 = −E1 = −Eo − ∆K = K1 − 2∆K! During the return
to virial equilibrium, the system loses 2∆K of kinetic en-
ergy (which becomes potential energy because energy is con-
served). Therefore, the (self-gravitating) system expands!
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Slow Galaxy Encounters

• Need N-body numerical simulations for the full treatment

• In a special case when galaxies are very different in size,

analytic treatment is possible to some extent

• Dynamical friction: a compact body of mass M (small galaxy)

passes through a population of stars with mass m (large

galaxy). The net effect is a steady deceleration parallel to

the velocity vector (just like ordinary friction).
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Model from Toomre, A. & Toomre, J. 1972, Galactic Bridges
and Tails, ApJ, 178, 623
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Another example: Antennae Galaxy
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Dynamical Friction

A compact body of mass M passes through a see of objects with

mass m.

First solve for the effect of one body, and then add the effects

of successive encounters.

If the radius vector between the two bodies is r = xm− xM , and

V = ṙ, then [
mM

m + M

]
r̈ = −

GMm

r2
er (1)

Looks like a potential of a body with mass (m + M) – reduced

mass

Since

∆vm −∆vM = ∆V (2)
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and (the center of mass is unaffected by the encounter)

m∆vm + M∆vM = 0 (3)

we get

∆vM = −
[

m

m + M

]
∆V. (4)

Once we find ∆V, we can compute ∆vM .

How do we get ∆V? We need to solve the equations of motions,

but we already know the solution (this is a two-body problem,

BT eq. 3-21)

u(Ψ) = C cos(Ψ−Ψo) +
GM

L2
(5)

where u = 1/r and L is the angular momentum.

Here, L = bVo, and C and Ψo are determined by the initial

conditions.



Dynamical Friction

We get

tan(Ψo) = −
bV 2

o

G(M + m)
, (6)

which also determines the deflection angle

θd = 2Ψo − π. (7)

The change of each velocity component are

|∆Vperp| = Vo sin(thetad) =
2bV 3

o

G(M + m)

[
1 +

b2V 4
o

G2(M + m)2

]−1

(8)

|∆Vpara| = Vo(1− cos(thetad)) = 2Vo

[
1 +

b2V 4
o

G2(M + m)2

]−1

(9)

and, finally, for the parallel component of vM

∆vM =
[

2mVo

m + M

] [
1 +

b2V 4
o

G2(M + m)2

]−1

(10)
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Dynamical Friction

When M moves through many m, the perpendicular component

of ∆vM will sum to zero. How do we sum the parallel compo-

nents?

The overall change of ∆vM per unit time is equal to the change

due to one m star times the number of encounters per unit time,

dN/dt.

dN/dt = f(vm)dV/dt, where dV = 2πb db Vo dt (11)

Hence,

dvM

dt
= f(vm)Vo d3vm

∫ bmax

0
∆vM(b)2πb db (12)

Here bmax is “the largest relevant” impact parameter – in practice

it is determined by the behavior of f(vm).

The intergral over b can be (easily!) performed to get
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dvM

dt
= 2π ln(1 + Λ2)G2m(M + m)f(vm)d3vm

(vm − vM)

|vm − vM |3
(13)

Here

ln(Λ) =
bmaxV 2

0

G(M + m)
(14)

is the so-called Coulomb logarithm (n.b. typically Λ >> 1).

For an isotropic distribution of stellar velocities (note the inte-

gration limit!)

dvM

dt
= −16π2 ln(Λ)G2m(M + m)

∫ vM
0 f(vm)v2

mdvm

v3
M

vM (15)

which is the famous Chandrasekhar dynamical friction for-

mula.



Dynamical Friction

For small vM (compared to typical velocities of m particles, i.e.

their velocity dispersion),

dvM

dt
∝ −vM (16)

For large vM ,

dvM

dt
∝ −

vM

v3
M

(17)

Applications: e.g. decay of globular cluster orbits – what a

beautiful problem for the final exam!
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