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Lecture 13: Disk Dynamics:

Spiral Arms and Bars as

Instabilities
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To remember:

• Spiral arms are not static structure (winding problem)

• Not all spirals are alike: more than one pattern

• Not clear if transient or quasy-steady phenomenon

• The appearance dominated by young luminous blue stars,

but the overall density of all stars is elevated by 10-02% in

spiral arms
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Theory of differentially rotating disks

• It is convenient to use a rotating coordinate system which

revolves at some speed, say Ωp

• For an axisymmetric disk with a flat rotation curve (a good

first order approximation to the disk of a spiral galaxy), this

rotation speed will match up with the rotation speed at some

radius R – corotation radius. Particles inside this radius will

appear to revolve in the direction of the frame rotation (pro-

grade) while outside this corotation radius, they will be ret-

rograde.

• Given Ωp, at some radii open orbits become closed: for a

star which completes two radial oscillations while performing

one complete azimuthal trip in the rotating frame, we get

elliptical orbits with the center at the center of the potential
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(so called 2/1 orbits). Similarly, a ratio of 3/2 gives a three-

armed cloverleaf pattern, etc. If a number of 2/1 orbits

is aligned concentrically and populated with stars, a bar is

formed.

• When the majority of the stars are arranged in these spiral

or bar patterns, the mass asymmetry will begin to affect the

overall potential.



a) a bar can be produced by aligning a series of concentric ellip-

tical orbits

b) if each ellipse is given an azimuthal offset proportional to
√

R,

the effect is a two-armed spiral

c) a set of 3/2 orbits produces a three armed spiral

d) a set of 4/1 orbits produces a four armed pattern
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Perturbations

If we perturb the axisymmetric potential of the rotating disk with

a small non-axisymmetric component as above, it makes sense

to define the rotation speed of that perturbation as the frame

speed.

This potential is m-fold symmetric and may arise from a central

bar pattern (m=2), an triaxial dark halo (m=2), some external

perturbing agent such as a companion galaxy (m=1), or from

large local mass concentrations within the disk of the galaxy

(m=many).

At the corotation radius circularly orbiting particles feel a time-

steady potential. In the case of an m=2 bar potential, a cores-

onant particle would perform small epicyclic orbits around a gy-

ration point having constant phase and radial relationship with

the bar.
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Particles at this radius feel an enhanced potential over their entire

orbits. Since gravitational potentials are always attractive, this

represents a barrier in the effective potential and is known as the

corotation resonance (CR).

Two other resonances, discovered by and named after Lindblad,

lie interior and exterior to the CR (LR are roughly equivalent to

Kirkwood resonances seen in the asteroid belt due to Jupiter’s

perturbing force on the symmetric solar field).

The dispersion relations that follow from instability analysis re-

late the wavenumber k to the frequency ω (ω = mΩp). For CR,

Ω = Ωp, and for Lindblad resonances

Ω = Ωp ±
κ

m
(1)



Lindblad resonances
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• A a particle at the Inner Lindblad Resonance (ILR) it is at
the top of its epicycle when the end of the bar swings by
below it, and will be at the top of its next epicycle when the
opposite end of the bar swings by. The particle is oscillating
radially at an integral multiple of the driving frequency and
at a constant phase, which represents a condition of forced
oscillation – this is another barrier in the effective potential.

• The Outer Lindblad Resonance (OLR) is similar except that
particles are moving relatively retrograde from the rotating
bar. Both resonances present barriers to the radial potential
profile in the disk.

• Waves are trapped in the annular regions between Lindblad
resonances.

• Not all galaxies have inner Lindblad radii. The necessary
condition for the formation of an ILR is a relatively rapid
transition from a region of solid-body rotation to one of dif-
ferential rotation (e.g. a flat rotation curve).



Stability of Differentially Rotating Disks

The dispersion relation for a gaseous disk in tight-winding limit

(mΩ− ω)2 = κ2 − 2πGΣ|k|+ k2v2
s , (2)

where “tight-winding limit” implies that radial separation be-

tween two successive arms ∆R << R.

An analogous relation for stellar disks is

(mΩ− ω)2 = κ2 − 2πGΣ|k|F [(mΩ− ω)/κ, kσR/κ] (3)

where function F is defined in BT (eq.6-45).

E.g. for an axially symmetric perturbation in a gaseous disk

(m = 0), and uniform rotation with κ = 2Ω,

ω2 = 4Ω2 − 2πGΣ|k|+ k2v2
s , (4)
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Unstable if ω < 0. If also Ω = 0 (non-rotating potential), then

disk is unstable if

|k| < kJ ≡
2πGΣ

v2
s

(5)

Note how rotation helps to keep disk stable.

Toomre’s local stability criterion for stellar disks:

Q ≡
σRκ

3.36GΣ
(6)

MW disk is marginally stable.



Stability of Differentially Rotating Disks

What is tight-winding limit is not applicable?

There are no analytic methods - must perform numerical exper-

iments.

Ostriker-Peebles criterion: more than 2/3 of kinetic energy must

be in random motions for a disk to be stable to barlike modes.

It implies that the MW disk is locally unstable.
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Swing Amplifier and Feedback loops

A phrase coined by Alar Toomre (1981) to describe an effect

discovered much earlier by Goldreich and Lynden-Bell (1965)

Swing works on leading waves and turns them into trailing waves

giving strong amplification in the process. The mechanisms are

shear and self-gravity.

In a rotating coordinate system:

r̈ = ∇Φeff − 2 (Ωb x ṙ) (7)

Self-gravity tends to compress the spiral arm, and shear (Coriolis

force) then acts differently on the two edges because of differ-

ential rotation.
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