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More about the Virial Equations. . .
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The Midterm Exam Stats

2



The Virial Theorem
• In a system of N particles, grav-

itational forces tend to pull the

system together and the stel-

lar velocities tend to make it fly

apart. It is possible to relate ki-

netic and potential energy of a

system through the change of its

moment of intertia

• In a steady-state system, these

tendencies are balanced, which is

expressed quantitatively through

the the Virial Theorem.

• A system that is not in balance

will tend to move towards its viri-

alized state. (see fig. 4.19 in the

textbook)
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The Virial Theorem(s)

• The Scalar Virial Theorem tells us that the average kinetic
and potential energy must be in balance.

• The tensor Virial Theorem tells us that the kinetic and po-
tential energy must be in balance in each separate direction.

• The scalar virial theorem is useful for estimating global av-
erage properties, such as total mass, escape velocity and
relaxation time, while the tensor virial theorem is useful for
relating shapes of systems to their kinematics, e.g. the flat-
ness of elliptical galaxies to their rotational speed (for a wide
range of applications, see Chandrasekhar (1987, Ellipsodial
Figures of Equilibrium, New York: Dover).

• Remember that the virial theorem is a good intuitive tool but
one that can be dangerous to put to quantitative use (King,
unpublished).
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The Virial Theorem

Zwicki’s derivation: (Ap. J. 1937, 86, 217)

mi
d2~xi

dt2
= ~Fi (1)

where ~Fi is the total forces on galaxy i.

Scalar multiplication with ~xi gives:

1

2

d2

dt2
(mix

2
i ) = ~xi · ~Fi + mi

(
d~xi

dt

)2

(2)

(summing over all system particles is implied). The term on the

left side represents the change of the momentum of inertia, the

second term on the right side is related to kinetic energy, and

the first term on the right side is called virial.
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The Virial Theorem

It can be shown (the so-called Euler theorem from classical me-

chanics) that for Φ ∝ 1/r∑
~xi · ~Fi =

∑
~xi · ∇Φ = −Φ (3)

That is, the virial is related to potential energy of the system

(true for any homogeneous function of the order k such that

Φ(λx) = λkΦ(x) – the virial is equal to kΦ).

In a steady state,

1

2

d2

dt2
(mix

2
i ) = 0, (4)

and, for a self-gravitating system in steady state

2K + Φ = 0 (5)

where K = M < v2 > /2 is the kinetic energy. Thus,

E = K + Φ = −K =
1

2
Φ (6)
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The Scalar Virial Theorem: Applications

• If a system collapses from infinity, half of the potential en-

ergy will end up in kinetic energy, and the other half will be

disposed of! From the measurement of the circular veloc-

ity and the mass of Milky Way (which constrain the kinetic

energy), we conclude that during their formation, galaxies

radiate away about 3× 10−7 of their rest-mass energy.

• For a virialized spherical system, M = 2Rσ2/G. We can

estimate total mass from the size and velocity dispersion.

E.g. for a cluster with σ=12 km/s, and R=3 pc, we get

M = 2× 105 M� (note that G = 233 in these units)
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The Tensor Virial Theorem

Just as we took velocity moments of the collisionless Boltzmann

equation (CBE) to obtain the Jeans equations, we can now take

spatial moments of the CBE. If we multiply the CBE by xk and

integrate over space we obtain∫
xk

∂(νvj)

dt
d3x = −

∫
xk

∂(νvivj)

∂xi
d3x−

∫
νxk

∂Φ

∂xj
d3x. (7)

The second term on the right hand side can be identified with the

Chandrasekhar potential energy tensor, W. The first term

on the right hand side can be rewritten using the divergence

theorem: ∫
xk

∂(νvivj)

∂xi
d3x = −

∫
δkiνvivjd

3x = −2Kkj, (8)

where we have defined the kinetic energy tensor K by

Kjk ≡
1

2

∫
νvivjd

3x. (9)
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As with the velocity moments we can split up K into ordered
and random parts:

Kjk = Tjk +
1

2
Πjk, (10)

where

Tjk ≡
1

2

∫
νvjvkd

3x ; Πjk ≡
∫

νσjkd
3x. (11)

If we now symmetrize equation (7) about the indices k and j,
we have

1

2

d

dt

∫
ν(xkvj + xjvk)d

3x = 2Tjk + Πjk + Wjk, (12)

where we have used the symmetry of T, Π and W in their indices.

If we now introduce the moment of inertia tensor I

Ijk ≡
∫

νxjxkd
3x. (13)

The derivative of this with respect to time is

dIjk

dt
=
∫

∂ν

∂t
xjxkd

3x. (14)



We can use continuum equation to change the right side of the

equation to

−
∫

∂(νvi)

∂xi
xjxkd

3x =
∫

νvi(xkδji + xjδki)d
3x, (15)

where the second term is obtained using the divergence theorem.

This is now recognizable in the left hand side of (12), so we now

have the tensor virial theorem

1

2

d2

dt2
Ijk = 2Tjk + Πjk + Wjk. (16)

Note that we can get the scalar virial theorem by taking trace of

the tensor virial theorem.



The Tensor Virial Theorem: Applications

Example: relating the shapes of elliptical galaxies to their rota-

tional velocity.

From Section 4.3(b)

v2
0

σ2
0

= 2(1− δ)
Wxx

Wzz
− 2 ≈

ε

1− ε
(17)

where ε is the galaxy’s ellipticity, v0 is the mass-weighted mean

rotation speed, σ0 is the mass-weighted mean random speed

along the light of sight, and δ measures the anisotropy of velocity

dispersion tensor.

The bottom line is that the measured v0 are much smaller than

the values implied by the measured ε and the above equation –

therefore, elliptical galaxies are NOT flattened by rotation!
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