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& REFERENCES

ORIGINAL PREFACE

These notes are based on a series of lectures given at the Radiation Laboratory in the summer of 1958. | wish to make clear my
lack of familiarity with the mathematical literature and the corresponding lack of mathematical rigor in this presentation. The
primary source for the basic material and approach presented here was Enrico Fermi. My first introduction to much of the
material here was in a series of discussions with Enrico Fermi, Frank Solmitz, and George Backus at the University of Chicago
in the autumn of 1953. | am grateful to Dr. Frank Solmitz for many helpful discussions and | have drawn heavily from his report
"Notes on the Least Squares and Maximum Likelihood Methods." [1] The genera presentation will be to study the Gausssian
distribution, binomial distribution, Poisson distribution, and least-squares method in that order as applications of the
maximum-likelihood method.

August 13, 1958

PREFACE TO REVISED EDITION

Lawrence Radiation Laboratory has granted permission to reproduce the original UCRL-8417. This revised version consists of
the original version with corrections and clarifications including some new topics. Three completely new appendices have been
added.

Jay Orear
July 1982

1. DIRECT PROBABILITY

Books have been written on the "definition" of probability. We shall merely note two properties: (a) statistical independence
(events must be completely unrelated), and (b) the law of large numbers. This says that if p, is the probability of getting an event

in Class 1 and we observe that N, out of N events arein Class 1, then we have
N

lim | —f = p.

N—oo |

A common example of direct probability in physics is that in which one has exact knowledge of a final-state wave function (or
probability density). One such case is that in which we know in advance the angular distribution f (x), where x = cod of a certain
scattering experiment, In this example one can predict with certainty that the number of particles that leave at an angle x; in an

interval Ax, is Nf (x;)Ax;, where N, the total number of scattered particles, isa very large number. Note that the function f(x) i<
normalized to unity:

!
f flr)de = 1.
1

As physicists, we call such a function a distribution function. Mathematicians call it a probability density function. Note that an
element of probability, dp, is

dp= fla)dx

2. INVERSE PROBABILITY

The more common problem facing a physicist is that he wishes to determine the final-state wave function from experimental
measurements. For example, consider the decay of a spin-%2 particle, the muon, which does not conserve parity. Because of
angular-momentum conservation, we have the a priori knowledge that
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However, the numerical value of « is some universal physical constant yet to be determined. We shall always use the subscript
zero to denote the true physical value of the parameter under question. It is the job of the physicist to determine . Usually the

physicist does an experiment and quotes aresult o« = a* + Aa. The major portion of this report is devoted to the questions
What do we mean by a* and A« ? and What is the "best" way to calculate o* and A« ? These are questions of extrer
importance to all physicists.

Crudely speaking, A« isthe standard deviation, [2] and what the physicist usually means is that the "probability” of finding
(o — Aa) < o < (o + Aee) 15 68.3%

(the area under a Gaussian curve out to one standard deviation). The use of the word "probability”" in the previous sentence
would shock a mathematician. He would say the probability of having

(o — A} < g < (" + Ay} s either 0 or 1.

The kind of probability the physicist is talking about here we shall call inverse probability, in contrast to the direct probability
used by the mathematician. Most physicists use the same word, probability, for the two completely different concepts: direct
probability and inverse probability. In the remainder of this report we will conform to this sloppy physicist-usage of the word
"probability."

3. LIKELIHOOD RATIOS

Suppose it is known that either Hypothesis A or Hypothesis B must be true. And it is also known that if A is true the
experimental distribution of the variable x must be f,(x), and if B is true the distribution is f5(x). For example, if Hypothesis A is

that the K meson has spin zero, and hypothesis B that it has spin 1, then it is "known" that f, (x) = 1 and f5(x) = 2x, where x is
the kinetic energy of the decay - divided by its maximum value for the decay mode K* -> ~ + 2n*.

If A istrue, then the joint probability for getting a particular result of N events of values x;, X,,..., X iS

A
dpy H Faleg)de;.
1=1

Thelikelihood ratio is

N o e
-'I.'lll.'rl.lI

=1 .II.I'i I._-rl_nl

R = D)

Thisis the probability, that the particular experimental result of N events turns out the way it did, assuming A istrue, divided by
the probability that the experiment turns out the way it did, assuming B is true. The foregoing lengthy sentence is a correct
statement using direct probability. Physicists have a shorter way of saying it by using inverse probability. They say Eq. (1) isthe
betting odds of A against B. The formalism of inverse probability assigns inverse probabilities whose ratio is the likelihood ratio
in the case in which there exist no prior probabilities favoring A or B. [3] All the remaining material in this report is based on
this basic principle alone. The maodifications applied when prior knowledge exists are discussed in Sec. 10.

An important job of a physicist planning new experiments is to estimate beforehand how many events he will need to "prove" a
hypothesis. Suppose that for the K* -> 1~ + 21n* one wishes to establish betting odds of 10* to 1 against spin 1. How many events
will be needed for this? The problem and the general procedure involved are discussed in Appendix |: Prediction of Likelihood
Ratios.

4. MAXIMUM-LIKELIHOOD METHOD

The preceding section was devoted to the case in which one had a discrete set of hypotheses among which to choose. It is more
common in physics to have an infinite set of hypotheses; i.e., a parameter that is a continuous variable. For example, in the p-e
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decay distribution

1+ e
flogx) e

the possible values for «  belong to a continuous rather than a discrete set. In this case, as before, we invoke the same basic

principle which says the relative probability of any two different values of « is the ratio of the probabilities of getting out
particular experimental results, x;, assuming first one and then the other, value of « is true. This probability function of « it

called the likelihood function, L (x).

A
L) H Flovzay) 2
=1

The likelihood function, L (), is the joint probability density of getting a particular
experimental result, x;, ..., X, assuming f (a;X) is the true normalized distribution

function:
f flee w)de = 1.

The relative probabilities of « can be displayed as a plot of L (ex) vs. «. The most probable value of « is caled t
maximum-likelihood solution «*. The rms (root-mean-sgquare) spread of o about «* is a conventional measure of the accuracy
of the determination o = o* . We shall call this Aw.

[ [{er — o) 2L | T

A .
“ [ Ladoy

©)

In general, the likelihood function will be close to Gaussian (it can be shown to approach a Gaussian distribution as N -> an) and
will look similar to Fig. 1b.

Fig. larepresents what is called a case of poor statistics. In such a case, it is better to present a plot of L () rather than merely
quoting &«* and Awv. Straightforward procedures for obtaining A are presented in Sections 6 and 7.

tay (9 ) B)

,D ——3
a* a " a* a

Figure 1. Two examples of likelihood functions L ().

A confirmation of thisinverse probability approach is the Maximum-Likelihood Theorem, which is proved in Cramer [4] by use
of direct probability. The theorem states that in the limit of large N, a* -> a ; and furthermore, there is no other method of

estimation that is more accurate.

In the genera case in which there are M parameters, « 4, ..., «),, to be determined, the procedure for obtaining the maximurr
likelihood solution is to solve the M simultaneous equations,
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'!:_j“. ! “ |: = |. .I'I_-“I )
i where w = In Lo, ooy ),
.r':fn,.“ o ol 4

N
: 1

5. GAUSSIAN DISTRIBUTIONS

As afirst application of the maximum-likelihood method, we consider the example of the measurement of a physical parameter
o o, Where x is the result of a particular type of measurement that is known to have a measuring error . Then if x i

Gaussian-distributed, the distribution function is

i . ‘II - i Y2 10 27
Flexg; ) e exp[—(x — ay)” /257,
Vit a

For a set of N measurements X, each with its own measurement error o, the likelihood function is

oy 1
Llex)
(@) =11 V27 oy

o
exp|—(x; — a)” [2a7]:

then
Ly
ur= —= ——— + coustant;
b o oy
u ay —
s e el 5
ey Z a ®)
r"__'J_ “_J = {J;
FI- FI-
The maximum-likelihood solution is
1
s —+
ar

T The weighted mean. (6)
o

Note that the measurements must be weighted according to the inverse squares of their errors. When all the measuring errors are
the same we have

ik e

Next we consider the accuracy of this determination.
6. MAXIMUM-LIKELIHOOD ERROR, ONE PARAMETER

It can be shown that for large N, L (n:) approaches a Gaussian distribution. To this approximation (actually the above example
isaways Gaussian in ), we have

Lia) o exp—(h/2) {0 — a*)],

I

where 1/%histhe rms spread of « about «*,
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i, s
w = —lke—d |7+ constant.,

o
i
Fan

= Rfx—a'),

_lrr

Since Aa as defined in Eq. (3) is 1/ v'h , we have

ST

dee? |

Mgy

Maximum — likelihood Error (7)

It isalso proven in Cramer [4] that no method of estimation can give an error smaller than that of Eq. 7 (or its alternate form Eq.
8). Eq. 7 isindeed very powerful and important. It should be at the fingertips of all physicists. Let us now apply this formulato
determine the error associated with a* in Eq. 6. We differentiate Eq. 5 with respect to «.. The answer is

i -1

Using thisin Eq. 7 gives
A b L]
ik —_
a; |

This formula is commonly known as the law of combination of errors and refers to repeated measurements of the same quantity
which are Gaussian-distributed with "errors’ ;.

In many actual problems, neither a* nor A« may be found analytically. In such cases the curve L () can be found numerically
by trying several values of « and using Eqg. (2) to get the corresponding values of L (). The complete function is then obtained
by drawing a smooth curve through the points. If L () is Gaussian-like, 32w / 8a:2 is the same everywhere. If not, it is best tc

use the average
[ fOa®) Ldao
iho® [ Codry

A plausibility argument for using the above average goes as follows: If the tails of L (r¢) drop off more dowly than Gaussiar
tails, 9% issmaller than
ihoe*
P :

et | L
1

Thus, use of the average second derivative gives the required larger error.
Note that use of Eq. 7 for An depends on having a particular experimental result before the error can be determined. However,

it is often important in the design of experiments to be able to estimate in advance how many data will be needed in order to
obtain a given accuracy. We shall now develop an aternate formula for the maximum-likelihood error, which depends only on
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knowledge of f («; x). Under these circumstances we wish to determine Fuw averaged over many repeated experiment
b
consisting of N events each. For one event we have

Py ff'F In f

o oe?

[ dr;
for N events

Hur x[d‘zlu_ﬂ"r;

ih? - hey?

This can be put in the form of afirst derivative asfollows:
Flnf & (1 af ] ary: X 1 f
da? da e da) P \da I a?
Fin f s }' if f
IWJ :i".r - — I(E] “r + _} anrr

The last integral vanishesif one integrates before the differentiation because

Thus
P oyl faryt
—_— = —.‘\-Ir— — | dur,
ot ,"(f']'nj -
and Eq. (7) leads to

1
My = —

VN

1 1aF\? -+
[JI—_(:}T{) nf.r.'] maximmun — likelihood ervor - (8)

e oy

Example 1

Assume in the pi-e decay distribution function, f (a; X) = (1 + « x) / 2, that & = - /3. How many L-e decays are needed tc
establish ato a 1% accuracy (i.e., o / Ao = 100)?

af i
da D
1 u | .

LA [ in? H (l+n) .
T . B
_-/I f (flu] i AT +ax) i 2“;1[[“ S %]

2
At 1__ [ ] L
VN Iy Fa__ -
1—q
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Note that
lim [Ac 3
“L[E%I[ ¥| 'l..' v
For
1 28
— = jﬂ' |I gl
ik .! k II.I \,,
For this problem
1 . _ 5
N 252 = 107 events .

7. MAXIMUM-LIKELIHOOD ERRORS, M-PARAMETERS CORRELATED ERRORS

When M parameters are to be determined from a single experiment containing N events, the error formulas of the preceding

section are applicable only in the rare case in which the errors are uncorrelated.. Errors are uncorrelated only for
(o, —af){o;—af) = = 0for al caseswithi == . For the general case we Taylor-expand w(a) about (x*):

L

wr dx '+Z (Ij“ | j"'_ ')ZZH”""‘ B +

i "
{1
it L\ D |,

where
8 =0y — o)
and
|
Hi=—-——" .
d dogdor | . ©)

The second term of the expansion vanishes because dw / 8~ = 0 are the equations for «

In Lfex) = wia*) — —z Z”nh Ba Gy +

_ [}

Neglecting the higher-order terms, we have

-I"_-‘|:“;| C 1\_[JI——ZZI!”,IJ-” 1:':,

_ el

(an M-dimensional Gaussian surface). As before, our error formulas depend on the approximation that L () is Gaussian-like in
theregion o, = . *. Asmentioned in Section 4, if the statistics are so poor that thisis a poor approximation, then one shoulc

merely present a plot of L (). (see Appendix 1V).
According to Eq. (9), H isasymmetric matrix. Let U be the unitary matrix that diagonalizes H

09/24/2001 2:57 PM
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(10)

= 4.1/ . The element of probability in the #-spaceis

1 ¥
@ p=c expl-3(y - L) H- (1 L)"]d" 8

Since [U] = 1 is the Jacobian relating the volume elements dM 3 and d'v, we have

1 e R
d¥p=c exp[— % z h,,':-j_inf""“,-.

Now that the general M-dimensional Gaussian surface has been put in the form of the product of independent one-dimensional

Gaussians we have

—_— - -1
TaTh = dm‘:'rj-” E

Then

o)

[y = ZZ T Uil
Z f.']'rl|||']”'|i|"'”-:

(U b U

According to Eq. (10), H = U1 h- U, so that the final result is

l:'nl _”‘;.:”:.“J_'“:,.:I - Ini I:II

Averaged over repeated experitnents
H, = _"..'/ & ﬂ j}—"r i
: J \day ) \ g

(A rule for calculating the inverse matrix H1 is

(H') = (~1)" x

where H,

i

dlor, o

Maximum
Likelihood

Errors,

M parameters (11)

ijth minor of

determinant of

If we use the alternate notation V for the error matrix H™1, then whenever H appears, it must be replaced with V1; i.e, the

likelihood function is

Lier) x exp|— éi v f] (11a)
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Example 2
Assume that the ranges of monoenergetic particles are Gaussian-distributed with mean range « ; and straggling coefficient « .

(the standard deviation). N particles having ranges x,,..., X are observed. Find «,*, a,*, and their errors.. Then

N
i | S i
Lleeg o) = H —— exp[—(a; — e ) 206
i—1 V2T iy
1 (zi— oy )* . .
i ——Z 1—_1}— Nlnow — N Inf27)
4 £k
f.}-!J' Z f,'.r', = -I'I]':l
ey . o
chu 1 ; - N
—= =) (=) - —
doy o T

The maximum-likelihood solution is obtained by setting the above two equations equal to zero.

o] = l—z b

¢ flllEl:-rl — 1y )?
o (=
| N

The reader may remember a standard-deviation formulain which N isreplaced by (N - 1):

e 2l —af)?
o ) (ry
V — w1

This is because in this case the most probable value, «,*, and the mean, ﬁz , do not occur at the same place. Mean values ol
such quantities are studied in Section 16. The matrix H is obtained by evaluating the following quantities at a:,* and cx,*:

4 aN

P N 3 3 2, | :
T T e W it Loy — )™ — = ——— WHlel k] =y,
iy o’ dal o : fr oy? ! :
i 2
- - ——.lef.r, — ¢y ) = (l when o, = af,
ey i
I "I. %

- {1 H_J_ {l
H=| % G and H '= | A e
= 2N T s

i m {1 = J

g L TN

L

According to Eg. (11), the errors on &, and «,, are the square roots of the diagonal elements of the error matrix, HL:

Aoy — P2 and Aay — %2 (thisis sometimes called the
vN " /2N error of the error).

We note that the error of the mean is 1/sqrt[N] o where o = «, isthe standard deviation. The error on the determination of o is

o/sgrt[2N].
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Correlated Errors

The matrix Vij =, —a)a, —at) is defined as the error matrix (also called the covariance matrix of «). In Eq. 11 we have
1 Y J It

shown that V = H'1 where Hij =-&w/ (Bey; 6r1rj). The diagonal elements of V are the variances of the a's. If @l the off-diagonal
elements are zero, the errorsin o are uncorrelated as in Example 2. In this case contours of constant w plotted in (e, «x,) space
would be ellipses as shown in Fig. 2a. The errorsin «; and ., would be the semi-mgjor axes of the contour ellipse where w has
dropped by ¥z unit from its maximum-likelihood value. Only in the case of uncorrelated errorsisthe rms error A j = (H j J-)‘1/2 and
then there is no need to perform a matrix inversion.

a, fa) - (B

woare)

Figure 2. Contours of constant w as a function of a; and . Maximum
likelihood solution isat w = w*. Errorsin o, and «, are obtained from
ellipse where w = (wW* - 15).

(a) Uncorrelated errors.

(b) Correlated errors. In either case ﬂml =V, =H )ll and ﬂ.az =
V,, = (H )22. Note that it would be a serious mistake to use the ellipse
"halfwidth" rather than the extremum for Auw.

In the more common situation there will be one or more off-diagonal elements to H and the errors are correlated (V has
off-diagonal elements). In this case (Fig. 2b) the contour ellipses are inclined to the a4, o, axes. The rms spread of rrl isdtill A

=sort[Vy4], but it isthe extreme limit of the ellipse projected on the «;-axis. (The ellipse "halfwidth” axisis (Hll) 2whichis
smaller.) In cases where Eq. 11 cannot be evaluated analytically, the a*'s can be found numerically and the errorsin « can be
found by Plotting the ellipsoid where w is 1/2 unit less than w * . The extremums of this ellipsoid are the rms error in the a's.
One should allow all the a; to change freely and search for the maximum change in «, which makes w = (w " - 1), Thi
maximum change in «;, isthe error in o; and issgrt[V,].

8. PROPAGATION OF ERRORS: THE ERROR MATRIX

Consider the case in which asingle physical quantity, y, is some function of the a's: y = y(ay, ..., a);). The "best” value for y is
then y* = y(«+,*). For example y could be the path radius of an electron circling in a uniform magnetic field where the measured
quantities are «; = 7, the period of revolution, and «, = v, the electron velocity. Our goal is to find the error in'y given the
errorsin o To first order in (a; - a;*) we have

Z oy
uy—y = — (i, — =
Z £k, :

—_— dy iy -
(g —y*)? vy — oed ey — o) ],
Z Z v, g Sy ¢

(12)

(4

v, Pexy

|:__~'t'!-' Jemy = JZ Z % !"”Jr r||'.l
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A well-known specia case of Eq. (12), which holds only when the variables are completely uncorrelated, is

| [y
£ A Ly )2
I., —\'L!I-r,.ll s q ; (‘:‘}“” ) II. —\."“"1 .II b

In the example of orbit radius in terms of + and v this becomes

AN AR\
S \“;—) (ar+ () @ sy + ol

in the case of uncorrelated errors. However, if A7 Au isnon-zero as one might expect, then Eq. (12) gives

|' ]

AR= l‘ HAT 4+ .;a-;.'!+z(,:—'_) {;—_) ArAT

It isa common problem to be interested in M physical parameters, Yy, ..., ¥,, which are known functions of the «x;. In fact the y,
can be thought of as anew set of «; or achange of basisfrom «; to . If the error matrix of the «; is known, then we have

_ ey
( — i My —u3) Z Z —H,'. (13

:}n :J'n

In some such cases the 8y, / 8a:, cannot be obtained directly, but the d; / dy,, are easily obtainable. Then

oy, ey,

(J '), where Jis

ey, Ay

Example 3

Suppose one wishes to use radius and acceleration to specify the circular orbit of an electron in a uniform magnetic field; i.e., y;
=randy, = a. Suppose the original measured quantities are v, = v = (10 + 1)pusand e, = v = (100 £ 2) km/s. Also since the
velocity measurement depended on the time measurement, there was a correlated error 2780 = 1.5 x 103 m. Find r,Ar, a,
Aa

Sincer =vr /2n=0159manda=2mnv/ r = 6.28 x 1019 /s we havey, = oo,/ 2nandy, = 2n e, / ax;. Then dy, / 8o, =
vyl 21, Oy, [ Brxy = cxq | 2, BY, [ Brry = -2Max,, / rrl , 0y, | Bevy, = 21/ arq . The measurement errors specify the error matrix as

1 & 1.5 =107 m

1.5 x 107 m 4 x 10° m2/s

Eq. 13 gives

(A 1 r;—i Hy i LJ r;__'J s r:—_'J\

JL 2k

'.l o

g e

_.ll ; 2

- = 330 = W m

Thusr =(0.159 £ 0.184) m
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Fory,, Eq. 13 gives

. e, |7 ..  Droe, | 277 e . I
{Aya)® {— — Vi +2 {— {—J Vis + {—J Vi = 2,92 x 10" —

A
i i 0K 0K 54

Thusa = (6.28 + 0.54) x 1010 m/s2.

9. SYSTEMATIC ERRORS

"Systematic effects’ is a general category which includes effects such as background, selection bias, scanning efficiency, energy
resolution, angle resolution, variation of counter efficiency with beam position and energy, dead time, etc. The uncertainty in the
estimation of such a systematic effect is called a " systematic error”. Often such systematic effects and their errors are estimated
by separate experiments designed for that specific purpose. In general, the maximum-likelihood method can be used in such an
experiment to determine the systematic effect and its error. Then the systematic effect and its error are folded into the
distribution function of the main experiment. Ideally, the two experiments can be treated as one joint experiment with an added
parameter «, ,, to account for the systematic effect.

In some cases a systematic effect cannot be estimated apart from the main experiment. Example 2 can be made into such a case.
Let us assume that among the beam of mono-energetic particles there is an unknown background of particles uniformly
distributed in range. In this case the distribution function would be

1 1 D e
[Ckq, O, CE37.0) — ——exp|—(r — oy )P0l + o
Slevy, vy, g3 1) {F'L’FEF“! [[ | 1) Ay d

4

where

i
{’-I':'”I-“';'-“-i;' / ,ll e

The solution a;* issimply related to the percentage of background. The systematic error is obtained using Eqg. 11.

10. UNIQUENESS OF MAXIMUM-LIKELIHOOD SOLUTION

Usually it is a matter of taste what physical quantity is chosen as «:. For example, in alifetime experiment some workers would
solve for the lifetime, +*, while others would solve for A*, where A = 1/+. Some workers prefer to use momentum, and others
energy, etc. Consider the case of two related physical parameters A and . The maximum-likelihood solution for « is obtainec
from the equation 8w / 8x = 0. The maximum-likelihood solution for A is obtained from 8w / 8a = 0. But then we have

the dhe O 0. and h 0

Thus the condition for the maximum-likelihood solution is unique and independent of the arbitrariness involved in choice of
physical parameter. A lifetime result +* would be related to the solution A* by +* = 1/ A*

The basic shortcoming of the maximum-likelihood method is what to do about the prior probability of «. If the prior probability
of & is G() and the likelihood function obtained for the experiment aoneis H («), then the joint likelihood function is

13 of 32 09/24/2001 2:57 PM



Notes on Statistics for Physicists, Revised - J. Orear http://nedwww.ipac.catech.edu/level 5/Sept01/Orear/Orear.html

Ll = Gl Hin):

ur = Ind7 + In'H.

il i i)
— = —|niy + —InH.
e iy 5 i it

el i X
e A o rl %
{_-}“l[LH_H ] ”“lu( (e )

give the maximum-likelihood solution. In the absence of any prior knowledge the term on the right-hand side is zero. In other
words, the standard procedure in the absence of any prior information is to use a prior distribution in which all values of « are
equally probable. Strictly speaking, it is impossible to know a "true" G(«), because it in turn must depend on its own priot
probability. However, the above equation is useful when G(«) isthe combined likelihood function of all previous experiments
and H (a) isthe likelihood function of the experiment under consideration.

There isaclass of problems in which one wishes to determine an unknown distribution in «, G(«), rather than a single value .
For example, one may wish to determine the momentum distribution of cosmic ray muons. Here one observes

L(G) f{Fr'l:n}'H{n:.r'}dn

where H (a; x) is known from the nature of the experiment and G(«) is the function to be determined. This type of problem is
discussed in Reference 5.

11. CONFIDENCE INTERVALS AND THEIR ARBITRARINESS

So far we have worked only in terms of relative probabilities and rms values to give an idea of the accuracy of the determination
o = a*, One can also ask the question, What is the probability that « lies between two certain values such as o' and «"? Thisis
called a confidence interval,

I'l‘l‘l =
[} . - [ i
Plo' <o <o) frﬂﬂn; [ Ly
i =

Unfortunately such a probability depends on the arbitrary choice of what quantity is chosen for oe. To show this consider the area
under the tail of £ (a).

ilu]

[s) a'

Figure 3. Shaded areais P(xx > a'). (Sometimes called the confidence limit of
a'.)

If A= A(e) had been chosen as the physical parameter instead, the same confidence interval is
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Thus, in general, the numerical value of a confidence interval depends on the choice of the physical parameter. Thisis aso true
to some extent in evaluating A:. Only the maximum likelihood solution and the relative probabilities are unaffected by the
choice of ~. For Gaussian distributions, confidence intervals can be evaluated by using tables of the probability integral. Tables
of cumulative binomial distributions and cumulative Poisson distributions are also available. Appendix V contains a plot of the
cumulative Gaussian distribution.

12. BINOMIAL DISTRIBUTION

Here we are concerned with the case in which an event must be one of two classes, such as up or down, forward or back,
positive or negative, etc. Let p be the probability for an event of Class 1. Then (1 - p) isthe probability for Class 2, and the joint
probability for observing N; eventsin Class 1 out of N total eventsis

V! \¥-w:  Thebinomial

PINGN) = griv—wyr? P (14

! " distribution

Note that Ej:lN p(, N) = [p+ (1 - p)]N = 1. The factorials correct for the fact that we are not interested in the order in which the

events occurred. For a given experimental result of N; out of N eventsin Class 1, the likelihood function L (p) isthen

Al
\ L Nif] _ o N—N
Lip = m Pl — )
F Ny lnp+ (N =Ny} In{1 — p) + const  (15)
eh N N-=-N
ip 1] l—p
Far N N-N
iy (1= p? (16)
From Eq. (15) we have
+ '\.-I
P = N 17)
From (16) and (17):
" 5 |I-_l J
le—2F = F—F—w>

lllln'j.fl:] —j.l‘*:'

A
¥ N

Theresults, Egs. (17) and (18), also happen to be the same as those using direct probability. Then

Ny = pN

http://nedwww.ipac.catech.edu/level 5/Sept01/Orear/Orear.html
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and
(N =N PP =Np(l —p)

Example 4
In Example 1 on the p-e decay angular distribution we found that

Moy =2 |l.||'I i

is the error on the asymmetry parameter «. Suppose that the individual cosine, x;, of each event is not known. In this problem all
we know is the number up vs. the number down. What then is A« ? Let p be the probability of a decay in the up hemisphere;

then we have
e’
F 1 + e 1+ a
P ] dx =
4 iy
il
By Eq. (18),
||'I Pll—p)
_~'l..l - J.llill T.
[4 ot
_I"l.-!'l - Il.ln _Tl:l e T:I

For small « thisis Aa = sgrt[4 / N] as compared to sgrt[3 / N] when the full information is used.

13. POISSON DISTRIBUTION

A common type of problem which fallsinto this category is the determination of a cross section or a mean free path. For a mean
free path A, the probability of getting an event in an interval dxisdx/ A. Let P(0, x) be the probability of getting no eventsin &
length x. Then we have

il
dP0,e) = =P, x) = T

o P, x) —%+ Const, (19)
Pl x) = %4 fat ¢ =1). P(0,2)=1).

Let P(N, x) be the probability of finding N eventsin alength x. An element of this probability isthe joint probability of N events
at dxy, ..., dxy, times the probability of no eventsin the remaining length:

o (de ]
“r."u f-"l:__\l.-__['jl H \‘% o O A (20)

The entire probability is obtained by integrating over the N-dimensional space. Note that the integral
NoF FaR
/%= 5

i=1
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does the job except that the particular probability element in Eq. (20) is swept through N! times. Dividing by N! gives

o My
{—J the Poisson

o disribution 2D

As acheck, note

¥l ¥E
I T N1
WL z \._I.r'f'-':'-.':" A r_i II] afA = L
=M M= N1 \

Likewise it can be shown that [V — NP =&/ . Equation (21) is often expressed in terms of i

PIN. T i 7 thePoisson

~T¢ ¢ disribution (%2

Thisform isuseful in analyzing counting experiments. Then the "true" counting rate is N

We now consider the case in which, in a certain experiment, N events were observed. The problem is to determine the
maximum-likelihood solution for «« = & and its error:

¥ N “ﬂl — i
Liex) N
u NIno—oa—InNL
th N i
iy i
i N
o? i
Thus we have
ot =N

and by Eq. (7),

Then

In conclusion we note that « == X :
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.r]:'.nﬁ'lujﬂ’n r.!".n"‘ He o do (N + 1)

- 2 N+ 1,
I Ll )edo N! =

=
oY ooy
0

14. GENERALIZED MAXIMUM-LIKELIHOOD METHOD

So far we have always worked with the standard maximum-likelihood formalism, whereby the distribution functions are always
normalized to unity. Fermi has pointed out that the normalization requirement is not necessary so long as the basic principle is
observed: namely, that if one correctly writes down the probability of getting his experimental result, then this likelihood
function gives the relative probabilities of the parameters in question. The only requirement is that the probability of getting a
particular result be correctly written. We shall now consider the general case in which the probability of getting an event in dx is

F(x)dx, and
f Fdr = N{a)

is the average number of events one would get if the same experiment were repeated many times. According to Eq. (19), the
probability of getting no eventsin asmall finiteinterval Axis

r4ar

expl — [ Fdx).

The probability of getting no eventsin the entire interval x ., < X < X isthe product of such exponentials or

x| — ff-'nf.r':l e

The element of probability for a particular experimental result of N eventsat X = xy, ... , X isthen

N
d'p=e" H Fiugjdr;.

Thus we have
M
Llo) =e i H Flocag)
=1
and

n Tagpx
) ZIHI- (o) — f Floeade.
=1 Tanan

The solutions «; = &;* are still given by the M simultaneous equations:

o

ey,

1.
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The errors are still given by

T T . 1y
iy — ) (H )

7
by — iy )10k i g

where

i

oy ex

H

1]

The only changeisthat N no longer appears explicitly in the formula

http://nedwww.ipac.catech.edu/level 5/Sept01/Orear/Orear.html

_ Fuw fl ar | ;‘:rf-"m_
o e I -r'lr_t,_ -r'lr_t,_ o

A derivation similar to that used for Eq. (8) showsthat N is already taken care of i

n the integration over F(x).

In a private communication, George Backus has proven, using direct probability, that the Maximum-Likelihood Theorem also
holds for this generalized maximum-likelihood method and that in the limit of large N there is no method of estimation that is

more accurate. Also see Sect. 9.8 of Ref. 6.

In the absence of the generalized maximum-likelihood method our procedure would have been to normalize F(«x; X) to unity by

using

Flew: )
(ks

[

i . L
Tl a)

For example, consider the sample containing just two radioactive species, of lifetimes a; and . Let o5 and « , be the twi

initial decay rates. Then we have
Flog; o) = age ™™ 4 ay o™
where x is the time. The standard method would then be to use

[ Ty + ;e Xy

k) + (k500

o ey
floar)

s leva

which is normalized to one. Note that the four original parameters have been reduced to three by using e = o / 5. Then o,

and «, would be found by using the auxiliary equation

f Fdr= N,
il

the total number of counts. In this standard procedure the equation

N{g) = N,

must always hold. However, in the generalized maximum-likelihood method these two quantities are not necessarily equal. Thus
the generalized maximum-likelihood method will give a different solution for the «;, which should, in principle, be better.
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Another example is that the best value for a cross section @ is not obtained by the usual procedure of setting p oL = N (th

number of events in a path length L). The fact that one has additional prior information such as the shape of the angular
distribution enables one to do a somewhat better job of calculating the cross section.

15. THE LEAST-SQUARESMETHOD

Until now we have been discussing the situation in which the experimental result is N events giving precise values Xy, ... , Xy
where the x; may or may not, as the case may be, be all different.

From now on we shall confine our attention to the case of p measurements (not p events) at the points x,, ... , Xp- The
experimental results are (y,; * @), ... ,(yp + cp). One such type of experiment is where each measurement consists of N, events.
Theny, = N, and is Poisson-distributed with g; = sgrt[N]. In this case the likelihood function is

. [mr' IRE )
* ik R | 1 I'":.I'll
i H Tq !
=1 i

and

I .lr
ut Z Nilugag) — Z T+ const.
=1

We use the notation ¥ («;; X) for the curve that is to be fitted to the experimental points. The best-fit curve corresponds to «; =
a*. In this case of Poisson-distributed points, the solutions are obtained from the M simultaneous equations

»

Z-r'}m:_r-”:. i N, ay)(xa)
—

= O =) Oy

If al the N; >> 1, then it is a good approximation to assume each y; is Gaussian-distributed with standard deviation ;. (It is

better to use & ; rather than N, for ciz where ; can be obtained by integrating ¥ () over theith interval.) Then one can use the
famous |east squares method.

The remainder of this section is devoted to the case in which y; are Gaussian-distributed with standard deviations ;. See Fig. 4.

We shall now see that the least-squares method is mathematically equivalent to the maximum likelihood method. In this
Gaussian case the likelihood function is

»

1 ” y
L expl{—[ya — T )] 20
rll:[I E”’rl [ { |Ir = i lllll I-
1 o s (23)
i) = —;.‘?I:n] - Z ln o 27 o,
T a=1
where
2 [y, — 7w,
.cjdlr.{tl'l = Ha hsad]
(o) =), — (@

=l
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l. llﬂ' l' l‘ :'l l- l'  §

Figure 4. ¥ (x) is a function of known shape to be fitted to the 7
experimental points.

The solutions «; = «;* are given by minimizing §(ex) (maximizing w):

5]

ey,

0. (25

This minimum value of Sis called S*, the least squares sum. The values of «; which minimize are called the |east-squares
solutions. Thus the maximum-likelihood and least-sgquares solutions are identical. According to Eq. (11), the least-squares errors

are
1 5
(g —af){o;—af) = (H Y9 where Hjj ;.}{ e
2 OO
Let us consider the special case inwhich ¥ («;; X) islinear in the oy;:
M
o) Zn”_."”{.r'}.
ia=1
(Do not confuse this f (x) with the f (X) on page 2.)
Then
rl:.}.<'- i) "l"ﬂ E ".'J.Ilhl:,
— = —2 | 1 '.ul"
iy, N Z | 03 fitza) (26)

Differentiating with respect to a; gives

.”IU Z.Ill'._ru,'.llJ._ru, (27)

a=1 |'J

Define
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Then

)S u
lr_ -2 {-I —ZH,I_.I!,I_"

ey, —1 ]
In matrix notation the M simultaneous eguations giving the least-squares solution are
u—a - H,
(29)
isthe solution for the «*'s. The errorsin «: are obtained using Eq. 11. To summarize;
M
If o) = Zu,,_.",,r_.r'fl
a=1
Mo {5
-I'E: Z Z :l—”‘l‘lr” jl,.rll'l]ll:.i. I:I.'un (30)

a=1 =] “n'-l

B fil= o
(o —of )l — af) = H 'owhere M= z M

—x] 2
Ty

a=l

Equation (30) is the complete procedure for calculating the least squares solutions and their errors. Note that even though this
procedure is called curve-fitting it is never necessary to plot any curves. Quite often the complete experiment may be a
combination of several experiments in which several different curves (all functions of the «;) may be jointly fitted. Then the

S-vaue is the sum over all the points on all the curves. Note that since w(«:*) decreases by %2 unit when one of the « j has the
value (a;* + ﬂmrj), the Svalue must increase by one unit. That is,

Sloj..ooojt Ay o) =5 + 1

Example 5 Linear regression with equal errors

;,(x) is known to be of the form y (x) = o, + a,X. There are p experimental measurements (yj + ).Using Eq. (30) we have

_||-| =3 _||-g = L,
I P ¥
5 P
1 i E.r:j
L al g2

ot | er': S -J
piies — (Exg)* t ~3 D J
o Lfa oty — X Eltay)
! PELES — Ly, )?
o PTalp) — X Ta X Y
L prat — (X x,)?

H =

These are the linear regression formulas which are programmed into many pocket calculators. They should not be used in those
cases where theg; are not al the same. If theg; are al equal, the errors

i v i 1+
[ Ay ) (H 7
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or

L
Mok 1 ”Jj? Err;: = l:z By J'j
/ by
|

[ pLay — (L aa)®
\

My -,l,-"fl: HYy=a

Example 6 Quadratic regression with unequal errors

The curve to be fitted is known to be a parabola. There are four experimental points at x = - 0.6, - 0.2, 0.2, and 0.6. The
experimental resultsare5+ 2,3+ 1,5+ 1, and 8 + 2. Find the best-fit curve.

o) = + iwr + n_-.;.r'2

I| 1 _|r-g = aliy _||._-; = .r'!.

1 22 #
Hy=Y o Ha=} -2 Hua=) 4
) 2 A
Ha=Y 25, Hy=Y22zH, Hs=) L
25 0 026 0.661 0 —2.54
H=|0 02 0 H () 3.847 0 =V
| 026 0 0068 | —254 0 24418
L

u = (1125 (.85 1449

3680, Ay (1.515, ks = )
oy =327, Aos = 196, ety = —2.54

ay = 1808, Ang = 494

;(x) = (3.685 + 0.815) + (3.27 + 1.96)x + (7.808 + 4.94)x? is the best fit curve. This is shown with the experimental points in

Fig. 5.
Yy
10
a4
=l -8 0 5 [

Figure 5. This parabola is the least squares fit to the 4
experimental pointsin Example 6.
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Example 7

In example 6 what is the best estimate of y at x = 1? What isthe error of this estimate?

Solution: Putting x = 1 into the above equation gives

y = 3685 + 3.27 4 T.808 = 14,763,

Ay isobtained using Eq. 12.

Ay '.l.-"ffﬂ nHfiVe 4+ Vi + 20 Vi + 20 Vi + 22 3V

V0664 + 22(3.847) + 27(24.418) + 0 + 202(—2.54) +

Setting x = 1 gives

Ay = 5137
Soatx=1,y=14.763 + 5.137.
Least Squares When the y;.are Not | ndependent
Let
Vig= s —mlly; — 1)

http://nedwww.ipac.catech.edu/level 5/Sept01/Orear/Orear.html

be the error matrix-of the y measurements. Now we shall treat the more general case where the off diagonal elements need not be

zero; i.e., the quantities y; are not independent. We see immediately from Eq. 11athat the log likelihood functionis

1 . T
w=—sly—7)- V" (y—F) +const.

The maximum likelihood solution is found by minimizing

S={y—g- V' (y-7

where Generalized least squares sum
V; (v — Ty —my)

i L ETA

Yy

16. GOODNESS OF FIT, THE ¥2DISTRIBUTION

The numerical value of the likelihood function at £ (n*) can, in principle, be used as a check on whether one is using the
correct type of function for f (a; X). If one is using the wrong f, the likelihood function will be lower in height and of greater

width. In principle, one can calculate, using direct probability, the distribution of L (a*) assuming a particular true f (v, X)

Then the probability of getting an L (*) smaller than the value observed would be a useful indication of whether the wrong
type of function for f had been used. If for a particular experiment one got the answer that there was one chance in 10* of getting

such alow value of L (x*), one would seriously question either the experiment or the function f («x;X) that was used.

In practice, the determination of the distribution of L (e *) is usually an impossibly difficult numerical integration it
N-dimensional space. However, in the specia case of the least-square problem, the integration limits turn out to be the radius

vector in p-dimensional space. In this case we use the distribution of S(«*) rather than of L (ex*). We shall first consider the
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distribution of S(xx). According to Egs. (23) and (24) the probability element is
d"P o exp[—S/2]d"y;.

Note that S= p?, wherep is the magnitude of the radius vector in p-dimensional space. The volume of a p-dimensional sphereis
U xp, The volume element in this space is then

dPy; x p" tdp x SUPEST RS,
Thus
dP(S) o Siwa1 pl=algg,

The normalization is obtained by integrating from S=0to S=oa.

]- A2 —1 S 2 .
e ¢ e (@)

F =

dP{5)

where S= §(ay).

This distribution is the well-known %2 distribution with p degrees of freedom. %2 tables of

[ dPS)

for several degrees of freedom are commonly available - see Appendix V for plots of the above integral.

From the definition of S(Eq. (24)) it is obvious that & o = P- One can show, using Eq. (29) that (So— So)* = 2p. Hence, one
should be suspicious if his experimental result gives an S-value much greater than

(p+/2p)
Usually « is not known. In such a case oneis interested in the distribution of
5= S(a").

Fortunately, this distribution is also quite simple. It is merely the X2 distribution of (p - M) degrees of freedom, where p is the
number of experimental points, and M is the number of parameters solved for. Thus we haved
dP(S*) = y* distribution for {p — M) degrees of freedom (31)
S7 = (p— M) and AS* = /(5 — F7) = /2(p— M)

|
L}

Since the derivation of Eq. (31) is somewhat lengthy, it is given in Appendix |1.
Example 8

Determine the %2 probability of the solution to Example 6.

09/24/2001 2:57 PM



Notes on Statistics for Physicists, Revised - J. Orear http://nedwww.ipac.catech.edu/level 5/Sept01/Orear/Orear.html

= [a - ﬁL—u.ﬁ_ﬁ . {:s = mj—n.zy z . {: . T{n.zy . F - Tn.m

§* = (674 compared to 5" =4 -3 = 1.

According to the ¥2 table for one degree of freedom the probability of getting S* > 0.674 is 0.41. Thus the experimental data are
quite consistent with the assumed theoretical shape of

a— i
= (k] + kol 4 ez,

Example 9 Combining Experiments

Two different laboratories have measured the lifetime of the K, © to be (1.00 + 0.01) x 1010 sec and (1.04 + 0.02) x 10%0 sec
respectively. Are these results really inconsistent?

According to Eq. (6) the weighted mean is a* = 1.008 x 10710 sec. (Thisis also the least squares solution for 7 KO"

Thus

g ll.i]i] - 1.1]1]HJ! {1.1]1 — LS

J 32 FTo9-1=1
001 0.02

According to the X2 table for one degree of freedom, the probability of getting S* > 3.2 is 0.074. Therefore, according tc
statistics, two measurements of the same quantity should be at least this far apart 7.4% of the time.

APPENDIX I: PREDICTION OF LIKELIHOOD RATIOS

An important job for a physicist who plans new experiments is to estimate beforehand just how many events will be needed to
"prove" a certain hypothesis. The usual procedure is to calculate the average logarithm of the likelihood ratio. The average
logarithm is better behaved mathematically than the average of theratio itself. We have

op K .T[ log j,'—1}'_1|:.r':mf.r'. assiming A is true(32)
B
or
= r .|I1.'| P ' .
logW =N [ log JI.—J'” (i )ele, assuming B is true
B

Consider the example (given in Section 3) of the K* meson. We believe spin zero is true, and we wish to establish betting odds
of 10% to 1 against spin 1. How many events will be needed for this? In this case Eq. (32) gives

| |
4 : 1 o f
[“H-H]' 4 ] l""!-'-':ﬁju'r'r —N ] lug{i‘r'jln’.r'.
il - il
N =20

Thus about 30 events would be needed on the average. However, if one is lucky, one might not need so many events. Consider
the extreme case of just one event with x = 0 : ' would then be infinite and this one single event would be complete proof in

itself that the K* is spin zero. The fluctuation (rms spread) of log L for agivenNis
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(log R —Tog R)* = N {fl log j:—1|" fadr — lf log j,'—1_."_1nf.r':|!
B |

i

APPENDIX I1: DISTRIBUTION OF THE LEAST-SQUARES SUM

We shall define the vector Z, =y, / @; and the matrix M= fj (%) /o;.

Note that H = ET - F by Eq. (27),

N
=

- H by Eq. (28) and (29).  (33)

Then

a=Z.F.-H, (34

So = ZE[&!’ — oy Fy) + (o — ay) Fa]®

a=l =
where the unstarred « is used for o,
S ZZ— Yu 0 filra) | I NZ—a - FOYFla* — o) + (o —a)F' - Flo* —a)b,
S il h Ty - - - - = -
5 = § +2q£-£— n*-f Ffo' —a)* +(Z-F-H'—aHH YWHH'F'ZY — H'Ha")

using Eqg. (34). The second term on the right is zero because of Eq. (33).

§* = S -2 F—al'"FH'HH Y F'ZY — F'Fa™).

5 (£Z-Z2)1-Q(Z - 20 where o - F7 = Z and

|."1.
I
(e}
]

FHF". (34)

Note that

If g; isan eigenvalue of Q, it must be equal qiz, an eigenvalue of Q2. Thus g;=0or1 Thetraceof Qis

Tr {i Z I'-uhjfn'.r'l Ir:: z II-"-'JIIJJ'I Tr I_ A

ahe he

Since the trace of a matrix isinvariant under a unitary transformation, the trace always equals the sum of the eigenvalues of the
matrix. Therefore M of the eigenvalues of Q are one, and (p - M) are zero. Let U be the unitary matrix which diagonalizes Q
(and also (1 - Q)). According to Eg. (35),
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S = g-U(1l-Q)U " o, wherep=(Z - Z)-U"",
1
5" = Z .'rrr,.r,ff where r, are the eigenvalues of (1—@Q).
a=1
—M
7t = Z i sinee the M nonzero eigenvalies of ) cancel out M of the eigenvalues of L
a=1
Thus
dP(S*) o e 72 gl Mg

where S is the square of the radius vector in (p - M)-dimensional space. By definition (see Section 16) thisis the X2 distribution
with (p - M) degrees of freedom.

APPENDIX I11. LEAST SQUARESWITH ERRORSIN BOTH VARIABLES

Experiments in physics designed to determine parameters in the functional relationship between quantities x and y involve a
series of measurements of x and the corresponding y. In many cases not only are there measurement errors Eyi for each Yj» but

also measurement errors Exj for each X. Most physicists treat the problem as if al the Exj = 0 using the standard least squares

method. Such a procedure loses accuracy in the determination of the unknown parameters contained in the function y = f (x) and
it gives estimates of errors which are smaller than the true errors.

The standard least squares method of Section 15 should be used only when all the Exj << Eyi. Otherwise one must replace the
weighting factors 1/ ;2 in Eq. (24) with (Ej)'2 where

5

2
I

ary’ . 12 @
L:’_’ [d 17 + [, (36)
Ep

Eg. (24) then becomes

.

) il y; — _||1|:.f' :I 2
5 {—d = (37)

i=1 4

A proof isgivenin Ref. 7.

We see that the standard least squares computer programs may still be used. In the case where y = a4 + a,X one may use whal

are called linear regression programs, and where y is a polynomial in X one may use multiple polynomial regression programs.
The usual procedure is to guess starting values for of / & x and then solve for the parameters rrj* using Eq. (30) with oj replaced

by o;. Then new [of / 8 X] j can be evaluated and the procedure repeated. Usually only two iterations are necessary. The effective
variance method is exact in the limit that 6f / & x is constant over the region Exj. This means it is always exact for linea
regressions.

==t I | Zonte ntsl" Previous ||

APPENDIX IV.NUMERICAL METHODS FOR MAXIMUM LIKELIHOOD AND LEAST
SQUARES SOLUTIONS

In many cases the likelihood function is not analytical or else, if analytical, the procedure for finding the rrj* and the errorsistoo
cumbersome and time consuming compared to numerical methods using modern computers.

For reasons of clarity we shall first discuss an inefficient, cumbersome method called the grid method. After such an
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introduction we shall be equipped to go on to a more efficient and practical method called the method of steepest descent.

The grid method

If there are M parameters « 4, ..., o), to be determined one could in principle map out a fine grid in M-dimensional spact

evaluating w(rx) (or S(ix)) at each point. The maximum value obtained for w is the maximum likelihood solution w*. One could
then map out contour surfaces of w = (w* - ¥), (w* - 1), etc. Thisisillustrated for M = 2 in Fig. 6.

a
. (w=-3/2)
{w®-)
(w*-172
0
a,

Figure 6. Contours of fixed w enclosing the max.
likelihood solution w*.

In the case of good statistics the contours would be small ellipsoids. Fig. 7 illustrates a case of poor statistics.

a,
t'll'-ual\
i
i
[ ]
"
[ .
ﬂt :
[]
1 l 1
: | .
ol —t——rt :
- L ] L
a,, a, a, a

Figure 7. A poor statistics case of Fig. 6.

Here it is better to present the (w* - %) contour surface (or the (S* + 1) surface) than to try to quote errors on «x. If oneistc
quote errorsit should be in the form e ;" < < “’1+ where ;" and o 1* are the extreme excursions the surface makes in «; (see

) . . o .
Fig. 7). It could be a serious mistake to quote a” or a* asthe errorsin a;.

In the case of good statistics the second derivatives 32w / Oax, Oy = - H, could be found numerically in the region near w*. The

errors in the o's are then found by inverting the H-matrix to obtain the error matrix for a; i.e., (o — o Jler; — %) = (H‘l)ij‘
The second derivatives can be found numerically by using
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[wr( g + Ay, 0 + Do) + wilen, o) — wioy + Aeg, o)

In the case of least squares use Hij =% 8S/ du 6arj .

So far we have for the sake of simplicity talked in terms of evaluating w(r) over afine grid in M-dimensional space. In most
cases this would be much too time consuming. A rather extensive methodology has been developed for finding maxima or
minima numerically. In this appendix we shall outline just one such approach called the method of steepest descent. We shall
show how to find the least squares minimum of S(«). (Thisisthe same as finding a maximum in w(x)).

Method of Steepest Descent

At first thought one might be tempted to vary o, (keeping the other 's fixed) until a minimum is found. Then vary «, (keeping

the others fixed) until a mew minimum is found, and so on. Thisisillustrated in Fig. 8 where M = 2 and the errors are strongly
correlated. But in Fig. 8 many trials are needed. This stepwise procedure does converge, but in the case of Fig. 8, much too
slowly. In the method of steepest descent one moves against the gradient in «-space:

V.5 _{}i{l, + _L}'—cj{'t! RN
ity ihrwa
e| STARTING (z)
POINT —=
()
Y
3]
(S"+1)
5.
) a,

Figure 8. Contours of constant Svs. a; and a,.
Stepwise search for the minimum.

So we change al the a's simultaneously in theratio 8S/ 8a 4 : 8S/ dr, : 8S/ Bag ... . In order to find the minimum along this

line in « -space one should use an efficient step size. An effective method is to assume S(s) varies quadratically from the
minimum position s* where sis the distance along this line. Then the step size to the minimum is

Mx l!.‘:n‘, — 15‘_! + 5‘:1
=8t ———

2 85 —28:4 54
where S|, S,, and S; are equally spaced evaluations of S(s) along s with step size As starting froms,; i.e, s, = s, + As, s; =5, +
2As. One or two iterations using the above formula will reach the minimum along s shown as point (2) in Fig. 9. The nexi

repetition of the above procedure takes us to point (3) in Fig. 9. It is clear by comparing Fig. 9 with Fig. 8 that the method of
steepest descent requires much fewer computer evaluations of S«x) than does the one variable at a time method.
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Figure 9. Same as Fig. 8, but using the method of
steepest descent.

L east Squares with Constraints

In some problems the possible values of the o are restricted by subsidiary constraint relations. For example, consider an elastic
scattering event in a bubble chamber where the measurements y; are track coordinates and the «; are track directions anc
momenta. However, the combinations of «; that are physically possible are restricted by energy-momentum conservation. The

most common way of handling this situation is to use the 4 constraint equations to eliminate 4 of the a'sin S(w). Then Si¢
minimized with respect to the remaining «'s. In this example there would be (9 - 4) = 5 independent «:'s: two for orientation of
the scattering plane, one for direction of incoming track in this plane, one for momentum of incoming track, and one for
scattering angle. There could also be constraint relations among the measurable quantities y;. In either case, if the method of

substitution is too cumbersome, one can use the method of Lagrange multipliers.

In some cases the constraining relations are inequalities rather than equations. For example, suppose it is known that «:; must be
a positive quantity. Then one could define a new set of «'s where (arl')2 =g, ay' = a,, eC. Now if S(a') is minimized n
non-physical values of awill be used in the search for the minimum.

Appendix V. Cumulative Gaussian and Chi-Squared Distributions

The X2 confidence limit is the probability of Chi-squared exceeding the observed value; i.e.,
x*

where Pp for p degrees of freedom is given by Eq. (30a).

Gaussian Confidence Limits

Let %2 =[x/ g]2 Thenfor ny = 1,

o

1 il i B FAE 1 ]
g — vy — —_ 2 vy —_—— r
il NI L_JJ 1:-.[:{ 2..":'3_{; L‘:J 2 LJFEHP( EH__J]_:FJ

L=
L

Thus CL for ny, is twice the area under a single Gaussian tail. For example the ny = 1 curve for %2 =4 hasavaueof CL =
0.046. This means that the probability of getting | x| = 2@ is 4.6% for a Gaussian distribution.
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Figure 10. X2 Confidence Level vs. X2 for ny Degrees
of Freedom (9).
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