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ABSTRACT

We present robust constraints from the Sloan Digital Sky Survey (SDSS) on the shape and distribution of the
dark matter halo within the Milky Way (MW). Using the number density distribution and kinematics of SDSS
halo stars, we probe the dark matter distribution to heliocentric distances exceeding ∼10 kpc and galactocentric
distances exceeding ∼20 kpc. Our analysis utilizes Jeans equations to generate two-dimensional acceleration maps
throughout the volume; this approach is thoroughly tested on a cosmologically derived N-body+SPH simulation of a
MW-like galaxy. We show that the known accelerations (gradients of the gravitational potential) can be successfully
recovered in such a realistic system. Leveraging the baryonic gravitational potential derived by Bovy & Rix, we
show that the gravitational potential implied by the SDSS observations cannot be explained, assuming Newtonian
gravity, by visible matter alone: the gravitational force experienced by stars at galactocentric distances of ∼20 kpc
is as much as three times stronger than what can be attributed to purely visible matter. We also show that the SDSS
data provide a strong constraint on the shape of the dark matter halo potential. Within galactocentric distances
of ∼20 kpc, the dark matter halo potential is well described as an oblate halo with axis ratio qΦ

DM = 0.7 ± 0.1;
this corresponds to an axis ratio q

ρ

DM ∼ 0.4 ± 0.1 for the dark matter density distribution. Because of our precise
two-dimensional measurements of the acceleration of the halo stars, we can reject several MOND models as an
explanation of the observed behavior.

Key words: Galaxy: general – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure –
stars: kinematics and dynamics – stars: statistics
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1. INTRODUCTION

This paper is the last in a series of papers utilizing Sloan
Digital Sky Survey (SDSS) observations of stars to map their
spatial distribution (Jurić et al. 2008), metallicity distribution
(Ivezić et al. 2008a), kinematics (Bond et al. 2010) and the
distribution of interstellar dust (Berry et al. 2012). Here we
focus on observations of distant halo stars and use them to map
the distribution of dark matter in the Milky Way (MW) halo.

The nature of dark matter is one of the most fundamental
questions in the physical sciences today: determining the make-
up of dark matter and its spatial distribution has important
implications for fields ranging from theories of galaxy formation
and evolution to particle physics and cosmology. While the
gravitational arguments for the existence of dark matter are well
established (Rubin et al. 1980; Spergel et al. 2003; Markevitch
et al. 2004), its most basic properties are still disturbingly
ambiguous (Read 2014). We can address fundamental questions
about dark matter’s properties by examining the distribution and
shape of dark matter structure within and around our Galaxy
(Tremaine & Gunn 1979; Hogan & Dalcanton 2000).

A myriad of techniques—from tidal streams (e.g., Johnston
et al. 1999; Ibata et al. 2001; Law & Majewski 2010; Koposov
et al. 2010) to Jeans equations (e.g., Loebman et al. 2012; Bovy
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et al. 2012a)—have been used to explore the MW’s dark matter
distribution. In particular, applying Jeans equations to MW stars
to infer the underlying mass distribution has a long and solid
theoretical foundation (Jeans 1915; Oort 1932).

1.1. Jeans Equations as a Tool for Estimating
Stellar Acceleration

While it is hard to measure stellar acceleration for individual
stars, which would directly constrain the gravitational potential,
it is possible to estimate it statistically from stellar kinematics
using Jeans equations. Jeans equations follow from the collision-
less Boltzmann (or Vlasov) equation; for a detailed derivation
see Binney & Tremaine (1987). Using cylindrical coordinates
and assuming an axisymmetric (motivated by SDSS results,
discussed in detail in Section 2.2) and steady-state system, the
gradient of the potential in the radial (R) and vertical (Z) di-
rections can be expressed in terms of observable quantities: the
stellar number density distribution, ν, the mean azimuthal (rota-
tional) velocity vφ , and four velocity dispersions, σφφ , σRR, σZZ ,
and σRZ (all six quantities as functions of R and Z), as
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Given accelerations aR(R,Z) and aZ(R,Z), i.e., the gradient
of the gravitational potential, dark matter contributions to the
potential can be estimated after accounting for contributions
from visible matter. For notational simplicity, we call the
term −∂Φ/∂R the “acceleration” aR; however, it is only one
component of the true R acceleration (that is, the time derivative
of the velocity component in the R direction): dvR/dt =
−∂Φ/∂R+(σ 2

φφ +vφ
2)/R. Of course, in case the of Z component,

dvZ/dt = −∂Φ/∂Z.
Traditionally, Galactic studies utilizing Jeans equations were

limited by data to the solar neighborhood (within ∼150 pc; e.g.,
Kapteyn 1922; Oort 1960; Bahcall 1984). The main conclusion
drawn from local studies is that dark matter contributes a
small (of the order 10%) fraction of gravitational mass in the
solar neighborhood (corresponding to about 0.01 M� pc−3, or
0.38 GeV cm−3; Kuijken & Gilmore 1989; Creze et al. 1998;
Holmberg & Flynn 2000). None of the local studies produced a
statistically significant detection of dark matter.

Several groups have extended these studies to a few kilo-
parsecs from the plane of the disk (Kuijken & Gilmore 1991;
Siebert et al. 2003; Holmberg & Flynn 2004; Smith et al. 2012;
Bovy et al. 2012b). Recently, Garbari et al. (2012) used a sam-
ple of 2000 K dwarf stars that extend to 1 kpc above the plane
of the disk and estimated the local dark matter density dis-
tribution ρDM = (0.022 ± 0.015) M� pc−3, and Zhang et al.
(2013) used a sample of 9000 K dwarfs with spectra from
SDSS/SEGUE that extends to ∼2 kpc from the plane to es-
timate ρDM = (0.0065 ± 0.0023) M� pc−3. Using kinematic
data for ∼400 thick disk stars at distances of a few kiloparsecs
from the Galactic plane from Moni Bidin et al. (2012), Bovy
& Tremaine (2012) estimated ρDM = (0.008 ± 0.003) M� pc−3

(0.3 ± 0.1 GeV cm−3). Note that the remarkably small quoted
errors by Bovy & Tremaine (2012) and Zhang et al. (2013) im-
ply a statistically significant dynamical detection of dark matter
in the solar neighborhood.

It has been difficult to extend these measurements to distances
beyond a few kiloparsecs from the solar neighborhood. Loeb-
man et al. (2012) presented a brief research note which applied
the Jeans equations technique to SDSS observations of Galactic
halo stars; here we present a more detailed analysis and discus-
sion of this technique and motivate its future application in the
era of Gaia and LSST.

This paper consists of two logical parts: we first test the
performance of Jeans equations when applied to a realistic stellar
system, and then we apply Jeans equations to SDSS data. In
Section 2 we describe the N-body+SPH simulation employed in
this work to test the Jeans equations approach, as well as a code
for generating mock samples of Galactic populations trained on
SDSS data. The main purpose of this analysis is to estimate the
errors in our acceleration estimates when using Jeans equations.
These errors include contributions from both the unsatisfied
assumptions of steady-state and smoothness, and from the shot
noise that results from analyzing finite-sized stellar samples. The
simulation-based tests, presented in Section 3, demonstrate that
the known accelerations (gradients of the gravitational potential)
can be successfully recovered in such a realistic system. Then,

in Section 4, we leverage the baryonic gravitational potential
recently derived from disk stars by Bovy & Rix (2013), and
show that the accelerations of SDSS halo stars provide strong
evidence for the existence of an extended dark matter halo. We
also test whether modified Newtonian dynamics (MOND) can
provide an alternative explanation for the observed acceleration
in Section 5. We summarize and discuss the validity of our
results in Section 6.

2. BACKGROUND

Here we utilize a novel application of Jeans equations made
possible by the Sloan Digital Sky Survey10 data (York et al.
2000, hereafter SDSS). Recently, a series of studies (Jurić
et al. 2008; Ivezić et al. 2008a; Bond et al. 2010, hereafter,
J08, I08, and B10, respectively) leveraged SDSS’s substantial
sky coverage and accurate multi-color photometry to map
the Galactic stellar number density distribution and stellar
kinematics out to galactocentric distances of ∼20 kpc. Using
numerous main sequence stars, these distributions are extremely
well sampled and span a sufficiently large physical space to
investigate stellar acceleration via Jeans equations. The key
issue in applying this form of Jeans equations is determining the
spatial derivatives of the velocity dispersions (see Equations (1)
and (2)); they are hard, if not impossible, to reliably constrain
using only the local Solar neighborhood data. However, these
spatial derivatives can be directly measured using SDSS data.

We address here the following main questions.

1. Given that both observations of the MW and modern N-
body simulations do not support a simple steady-state
picture (e.g., due to mergers), nor a perfect cylindrical sym-
metry, is it indeed possible to recover the known gravita-
tional potential in a N-body simulation by simply applying
Jeans equations to simulated stellar number density distri-
bution and kinematic data?

2. If so, are the stellar acceleration maps derived from SDSS
data consistent with expectations based only on visible
matter?

3. If not, what are the differences in the morphology of stellar
acceleration maps due to the inclusion of a dark matter
component and what can be inferred about its distribution?

In this section we describe the background information and
tools needed to investigate these questions, and we then provide
answers in the following section.

2.1. The N-body+SPH Simulation

To test the Jeans equations approach, we apply our analysis
tools to a simulation with known stellar accelerations, velocities
and stellar spatial (number density) distribution. This simulation
has been previously studied in Zolotov et al. (2012) and Munshi
et al. (2013). It is a cosmologically derived (WMAP3; Spergel
et al. 2003) MW–mass galaxy evolved for 13.7 Gyr using
the parallel N-body+SPH11 code GASOLINE (Wadsley et al.
2004), which contains realistic gas, cooling and stellar feedback
(Stinson et al. 2006; Shen et al. 2010; Christensen et al.
2012). We track the galaxy’s formation and evolution using

10 www.sdss.org
11 For notational simplicity, hereafter, we refer to this galaxy as “the N-body
simulation”; however, it is truly a N-body+SPH simulation.
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Figure 1. Left: top down view of the stellar particle distribution (shown on a logarithmic scale) at Z = 0 of the adopted simulated MW-like galaxy. Top right: edge-on
view of the same stellar particle distribution. The yellow lines indicate the region selected in our analysis to mimic the SDSS volume. Bottom right: the number of
stellar particles within the selected SDSS volume when binned in 1.0 kpc × 1.0 kpc R − Z bins; this high resolution simulation has enough stellar particles (at least
100 bin−1) to conduct a statistical analysis in the volume probed by SDSS.

(A color version of this figure is available in the online journal.)

the zoomed-in volume renormalization technique12 (Katz &
White 1993; Brooks et al. 2011; Pontzen et al. 2008; Governato
et al. 2012). Our simulated galaxy includes a stellar halo, which
is built up primarily during the merging process in a ΛCDM
cosmology (e.g., Bullock & Johnston 2005; Zolotov et al. 2009).

GASOLINE simultaneously calculates the potential and the
acceleration that particles feel; force calculations are consistent
with other state-of-the-art cosmological gas-dynamical codes
(Power et al. 2003; Scannapieco et al. 2012). The typical rms
acceleration error is ∼0.2% (Wadsley et al. 2004). Full six-
dimensional (6D) phase space (x, y, z, vx , vy , vz) and mass
information is also tracked.

At the end of the simulation, the average star particle mass is
∼5800 M� and the dark matter particle mass is 1.3 × 105 M�,
with the minimum dark matter spline softening length of 173 pc.
At redshift of zero, the simulated galaxy has a virial radius of
227 kpc and a virial mass of 6.8×1011 M�,13 of this final mass,
7% is in gas, 6% is in stars, and 87% is in dark matter. The dark
matter to baryon mass ratio in a region corresponding to the solar
neighborhood (7 � R/kpc � 9, (0 � |Z|/kpc � 1) is 36%.
A total of 4.6 × 106 dark matter, 2.1 × 106 gas and 7.4 × 106

star particles are within the virial radius at redshift of zero.
The simulated galaxy is approximately rotationally symmetric
(a total enclosed matter axis ratio b : a > 0.9 within 100 kpc,
and a stellar matter axis ratio b : a > 0.95 at R = 10 kpc; see
Section 2.1.2 for details), has a Johnson system R-band disk
scale length of ∼3.1 kpc and corresponding bulge to disk ratio
of 0.33 (Brooks et al. 2011), and maximum circular velocity of
∼235 km s−1. These structural parameters are within 10% of
those measured for the MW (for example, Xue et al. 2008, find
that the virial mass of the MW’s dark matter halo is in the range
8–13 × 1011 M�, see Table 1 for details).

For reference, Figure 1 gives a visual perspective of the
N-body simulation used throughout this paper. Figure 1 shows

12 The simulation in this paper was initially selected from a uniform
resolution, DM-only, 50 comoving Mpc box. The galaxy was then resimulated
at higher resolution (and with gas particles). The volume renormalization
technique simulates only the region within a few virial radii of the primary halo
at the highest resolution, while still maintaining the large 50 Mpc volume at
low resolution. This accounts for the large scale tidal field that builds angular
momentum in tidal torque theory (Peebles 1969; Barnes & Efstathiou 1987).
13 The virial mass and virial radius is measured at 100*ρcritical.

Table 1
A Comparison of Various Structural Parameters between the Milky

Way and the Adopted N-body Simulation

Milky Way N-body Simulation
Virial radius (kpc) 200a 227

Virial mass (M�) 1.0 × 1012 b,c 6.8 × 1011

Johnson R-band disk scale length (kpc) 3.6d 3.1

Maximum circular velocity (km s−1) 220b 235

References. a Boylan-Kolchin et al. 2011; bXue et al. 2008; cKlypin et al. 2002;
dJurić et al. 2008.

a top down and edge-on view of the stellar particle distribution
at Z = 0 when visualized on a logarithmic scale. The edge-on
view has yellow lines overplotted to indicate the region selected
in our analysis to mimic the SDSS volume. Also plotted is the
number of stellar particles within the selected SDSS volume
when binned in 1.0 kpc × 1.0 kpc R − Z bins. This panel
illustrates that our high resolution simulation has enough stellar
particles (at least 100 bin−1) to conduct a statistical analysis in
a synthetic SDSS volume.

2.1.1. The Spatial Distribution of Mass in the Simulated Galaxy

Many of the plots throughout this paper show a total or mean
quantity mapped into rectilinear bins in R − Z space within 0 �
R/kpc � 20 and 0 � Z/kpc � 10. This perspective gives a sense
of the two dimensional distribution of a quantity throughout
the SDSS volume. Figure 2 provides an example of this for
four relevant quantities within the N-body simulation: total,
dark matter, visible, and stellar halo mass density. The SDSS
footprint within the simulation (shown here in red) is always
overplotted for reference. The top left panel of Figure 2 shows
the total mass density, including gas, dark matter, and stars.
To the right of this panel is the dark matter density distribution.
The significance of dark matter relative to the gas and stars is
not constant, yet the majority of the total mass density within
the SDSS footprint is clearly from dark matter. The bottom two
panels illustrate the distribution of visible matter. The bottom
panel on the left of Figure 2 shows the mass density of all gas
and stars within the N-body simulation. Two striking structural
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Stellar Halo Mass Density
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Figure 2. Azimuthally averaged mass density maps of four relevant quantities within the N-body simulation: total, dark matter, visible, and stellar halo mass. The
displayed dynamic range is the same in all panels for easy comparison. Overplotted are logarithmically spaced isodensity contours; contour tick marks correspond to
the direction of decreasing density. Also overplotted in red is the SDSS footprint within the simulation. Top left: the total mass density (gas, dark matter, and stars)
within R � 20 kpc and Z � 10 kpc of the center of the N-body simulated galaxy. Top right: the dark matter density within the simulation. The majority of the total
mass density within the SDSS footprint is from the dark matter. Bottom left: the mass density of all visible matter (gas and stars) within the N-body simulation. The
bulge (R � 5 kpc, Z � 4 kpc) and disk (5 kpc � R � 20 kpc, Z � 2 kpc) structure are evident within this distribution. Bottom right: the stellar halo mass density
within the simulation. The majority of the visible mass within the SDSS footprint is from the stellar halo.

(A color version of this figure is available in the online journal.)

features stand out within this total visible matter density map:
the bulge (R � 5 kpc, Z � 4 kpc) and disk (5 kpc � R � 20 kpc,
Z � 2 kpc). These structures are not significantly sampled by
the SDSS volume within the simulation. The bottom right-hand
panel of Figure 2 shows the stellar halo mass density within the
simulation. Note that the majority of the visible mass within the
SDSS footprint is from the stellar halo.

2.1.2. Tests of Axial Symmetry

Before we project mean quantities in the R − Z spatial grid or
use the axisymmetric form of Jeans equations, we motivate the
application of these techniques by illustrating the simulation’s
φ symmetry. The top panel of Figure 3 shows the major to semi-
major axis ratio (b/a) of dark matter and halo star particles
across the SDSS footprint within the simulation. Axis ratios of
the particle distribution are determined following the iterative
technique outlined in Section 4.2 of Roškar et al. (2010), which
identifies isodensity contours. This procedure is analogous to
that used in Katz (1991), though it uses differential shells (in
increments of 0.5 kpc) instead of cumulative shells, following
Debattista et al. (2008). For both dark matter particles and stellar
halo particles, the b/a axis ratio is always greater than or equal
to 0.8 and less than 1.0, indicating the distributions are nearly
but not completely axisymmetric in the φ direction. At the virial
radius, the b/a axis ratio for all particles is 0.91. The bottom
panel of Figure 3 is analogous to the top panel but for the major to
minor axis (c/a). The c/a axis ratio is a measure of the departure
from spherical symmetry for axisymmetric shells. A c/a axis
ratio of 1 is a perfectly spherical mass distribution; c/a <
1 indicates that the distribution is flattened (oblate) in the same
sense as the stellar disk. At the virial radius, the c/a axis ratio

for all particles is 0.74. As the bottom panel of Figure 3 shows,
in this N-body simulation, both the dark matter and stellar
distributions are oblate, and the dark matter c/a axis ratio does
not vary significantly over the entire SDSS volume.

2.1.3. The Acceleration Maps for a Simulated Galaxy

One final thing to consider before we apply Jeans equations
to the simulation: what do the true accelerations look like for
the simulation? The top panel of Figure 4 shows the mean
component of the acceleration in the Z direction projected
into the R − Z grid; here, the acceleration of each particle
was calculated using the force from all the particles in the
entire simulation. For comparison, the middle panel shows an
analogous map, but here, the acceleration of each star and
gas particle was calculated using only the contributions from
other star and gas particles (that is, the contribution from the
dark matter was not included). As evident, there are substantial
differences in the morphology of the two maps; the bottom
panel shows the ratio of the top and middle panel. This panel
demonstrates that the effect of dark matter on the acceleration in
the Z direction increases quickly away from the plane of the disk
and toward the outer parts of the galaxy; for example, the ratio
of accelerations is doubled by R = 8 kpc and Z = 6 kpc. These
distances are probed by SDSS—hence these results suggest
that the effect of dark matter on stellar acceleration may be
uncovered in SDSS data, and that stellar populations in the halo
are more sensitive to the existence of dark matter than disk stars.

Along the same lines, the top panel of Figure 5 illustrates the
mean component of the acceleration in the R direction when
the force of all the particles (gas, dark matter, and stars) in
the simulation is considered, while the middle panel shows the
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Figure 3. Top: the semi-minor to semi-major axis ratio in the equatorial plane
(b/a) of dark matter and halo star particles across the SDSS volume within the
simulation. In both cases, the b/a axis ratio is always greater than or equal to
0.8 and less than 1.0, indicating the distributions are nearly but not completely
axisymmetric in the φ direction. Bottom: an analogous figure to the top panel
but for the ratio of the semi-minor axis perpendicular to the equatorial plane
and the semi-major axis (c/a). Both the dark matter and stellar distributions are
oblate, and the dark matter c/a axis ratio does not vary significantly within the
SDSS volume.

(A color version of this figure is available in the online journal.)

mean component when the force of just gas and star particles are
considered. The bottom panel shows a ratio of the top panel to
the middle panel; the effects of dark matter are easily discernible;
for example, the ratio of accelerations is doubled by R = 8 kpc
and Z = 4 kpc.

2.2. SDSS-based Mock Catalogs: galfast

When constraining the Galactic potential via Jeans equations
with SDSS (or any other survey) data, several preliminary
analysis steps are required.

1. In order to quantify the stellar number density distribution
as a function of coordinates R and Z (ν in Equations (1)
and (2)), the appropriate stellar population needs to be se-
lected (e.g., halo stars), the distances to the stars need to
be estimated, and the observational selection function ac-
counted for. In addition, the assumption of cylindrical sym-
metry must be tested, and the impact of local substructure
(e.g., stellar streams) quantified.

2. In order to quantify the four velocity dispersions and
the mean azimuthal velocity as functions of coordinates
R and Z, complex kinematics (proper motion and radial
velocity measurements) are needed and require substantial
analysis. For example, the error dependence for the radial
velocity components and the error dependence for the
tangential velocity components are fundamentally different
as a function of distance. Notably, the tangential velocity
components are computed as the product of distance and
proper motion measurements, and these errors carry their
own hidden dependence on distance. Proper motion errors
increase for faint stars, and more distant stars are generally
fainter than closer ones.

These tasks are far from trivial, but fortunately they have already
been undertaken and published.

2.2.1. The Stellar Number Density Distribution for Halo Stars

J08 accomplished the first task of quantifying the stellar num-
ber density distribution for both disk and halo components. They
showed that the stellar number density distribution, ν(R,Z, φ),
can be well described (apart from local overdensities) as a sum
of two cylindrically symmetric components

ν(R,Z, φ) = νD(R,Z) + νH (R,Z). (3)

The disk component can be modeled as a sum of two
exponential disks (see their Equations (22) and (23)), while
the halo component requires an oblate bi-axial (cylindrically
symmetric) power-law model

νH (R,Z) = νD(R�, 0) εH

(
R2

�
R2 + (Z/qH )2

)nH /2

. (4)

Here νD(R�, 0) is the local solar neighborhood density of
tracer stars, and εH measures the local fractional contribution
of halo stars. The number count normalization, νD(R�, 0),
reflects how tracer stars are selected, and is related to the local
luminosity function. Since the overall normalization of ν(R,Z)
in Equations (1) and (2) cancels out, νD(R�, 0) is not of further
interest in this context.

J08 obtained best-fit MW parameters using SDSS data, after
accounting for selection effects and masking regions with
prominent substructure; their results are listed for both the
stellar disk and stellar halo components in their Table 10 (second
column). For completeness, they obtained εH = 0.0051, qH =
0.64, and nH = 2.77, with estimated uncertainties of 25%, �0.1,
and �0.2, respectively. We note that the best-fit values for qH
and nH are covariant—the more symmetric halos correspond to
larger nH , see their Figure 22. They also tested for cylindrical
symmetry (see their Figure 11) and could not reject their best-fit
axisymmetric number counts model.

I08 studied the metallicity distribution of disk and halo stars
and, of direct relevance to this work, demonstrated that the
multi-component (i.e., disk and halo) decomposition of ν(R,Z)
from Equation (3) is not a case of over-fitting; instead, a fairly
simple selection, [Fe/H] = −1, clearly separates disk and
halo components (see their Figures 5 and 9) and justifies the
decomposition model from Equation (3).

2.2.2. The Kinematic Behavior of Halo Stars

B10 performed a detailed analysis of available kinematic data
for the SDSS stellar sample: radial velocities were derived from
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2.9 × 10−13 km s−2. The ratio of the two maps is shown in the bottom panel. The importance of the dark matter increases with the distance from the origin; at the
edge of the volume probed by SDSS (R ∼ 20 kpc, Z ∼ 10 kpc), the total acceleration in the analyzed simulation is about three times larger than contribution from
the visible matter.

(A color version of this figure is available in the online journal.)

the SDSS spectroscopic survey and proper motions were ob-
tained by comparing SDSS astrometry and Palomar Observatory
Sky Survey astrometry (Munn et al. 2004) from ∼50 yr earlier.
Their main result of interest to this work is a clear demonstra-
tion (see their Figures 12 and 13) that the velocity ellipsoid for
halo stars is invariant in spherical coordinates within the volume
probed by SDSS data (galactocentric distances of �20 kpc). The
very complex behavior of measured proper motions (see their

Figure 14) and radial velocities (see their Figure 15) on the sky
can be explained with a simple triaxial velocity ellipsoid that
is invariant in spherical coordinates, σrr = 141 km s−1, σφφ =
85 km s−1, and σθθ = 75 km s−1, with uncertainties of about
5 km s−1. Their leading sources of uncertainty are distance
scale errors, local standard of rest errors, and systematic errors
in radial-velocity and proper-motion measurements; see their
Section 5.3 for details. Given the velocity ellipsoid in spherical
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Figure 5. Analogous figure to Figure 4, except that the component of the acceleration in the R direction is shown. The acceleration is expressed in units of
2.3 × 10−13 km s−2. Similar to the acceleration map in the Z direction shown in Figure 4, the importance of the dark matter increases with increased galactocentric
distance.

(A color version of this figure is available in the online journal.)

coordinates, it can be transformed to cylindrical coordinates as

σ 2
RR = σ 2

rr cos(α)2 + σ 2
θθ sin(α)2, (5)

σ 2
ZZ = σ 2

rr sin(α)2 + σ 2
θθ cos(α)2, (6)

and
σ 2

RZ = (
σ 2

rr − σ 2
θθ

)
sin(α) cos(α), (7)

where α = tan−1(Z/R).

Together with the spatial distribution of halo stars given
by Equation (4), these equations are sufficient to evaluate all
terms listed in Equations (1) and (2). These “direct” analytic
acceleration maps are discussed in detail in Section 4.

2.3. The galfast Code

The best-fit νH (R,Z) from J08 and the best-fit velocity
ellipsoid for halo stars from B10 can be inserted analytically into
Equations (1) and (2) to compute aR and aZ . Such analytic results
properly account for the SDSS selection function and Galactic
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substructure. However, this approach does not include the effects
of finite stellar counts, counting noise, and volume edges. Such
sampling effects play an important role in the analysis of the
N-body simulation, where we utilize numerical derivatives of
the “observed” velocity ellipsoid and impose strict stellar count
criteria.

To leverage the computational methods developed and tested
in the N-body framework, we instead generate a mock catalog
of SDSS stars generated by the code galfast Jurić et al.
(2010). This public14 Monte Carlo code is based on the best-
fit parameterizations of the distributions of stellar number
density, metallicity and kinematics constrained by the SDSS
data mentioned above. It produces catalogs with the same
behavior of observables (such as counts, magnitudes, colors,
proper motions, radial velocity) as seen in SDSS data, except
that there are no effects of substructure, and selection effects
are easily accounted for (e.g., one can generate a mock catalog
for the whole Galaxy, and then apply exactly the same selection
criteria to this mock catalog and to the N-body simulation).
The code also generates appropriate error distributions of all
measured quantities.

We note that there are no hidden inputs, such as star-formation
history, age–metallicity relation, etc., included in galfast—it
is simply a sophisticated Monte Carlo generator designed to
produce a snapshot of the current sky with the stellar content
consistent with SDSS observations.

Using galfast, we generate a flux-limited catalog with 14 <
r < 21 and mimic the SDSS sky footprint by only considering
high Galactic latitudes (|b| > 30◦). The catalog lists true
positions, absolute magnitudes, velocities and metallicity, as
well as corresponding simulated SDSS observations convolved
with measurement errors.

We treat this mock catalog as we would treat any catalog
downloaded from the SDSS Data Release site. We correct the
magnitudes in each filter for interstellar dust extinction and
select a halo-like sample using a color cut 0.25 < g − r < 0.35.
The only instance where we use the “truth” provided in the
mock catalog is when rejecting stars with Mr < 4 to minimize
contamination by giants (in a real sample, one could envision
obtaining a spectrum for each star to accomplish the same
step). The resulting sample of 0.61 million stars is dominated
by low-metallicity main sequence F stars, with kinematics
commensurate with a halo-dominated sample.

2.4. Numerical Procedures

We process our mock catalog from galfast and our mock
catalog from our adopted N-body simulation in exactly the same
way, using the same code: for a set of stars with given three-
dimensional positions and three-dimensional velocities, we first
determine the density, ν(R,Z), and the five kinematic quantities
utilized in Equations (1) and (2), and then compute aR and aZ .

The computation of the number density, mean azimuthal
velocity and velocity dispersions is done for each bin in the
R − Z plane.15 We set the bin width to be 1 kpc, and we require
at least 100 stellar particles bin−1 to minimize the shot noise.
All quantities are computed using weights proportional to the
mass of each stellar particle (assumed constant in the galfast
catalogs).

14 See https://github.com/mjuric/galfast
15 In the case of the N-body simulation, we also calculated these quantities in
45◦ slices in φ, rotated in increments of 90◦ from 0 to 360; we found that our
results varied no more that 10%.

To estimate the gradients required in Equations (1) and (2)
(i.e., the spatial gradients of the velocity dispersions and the
stellar number density) we use a parametric technique: we fit
a second-order polynomial in R and Z to values from the bin
being processed and its eight adjacent neighbors (using IDL
fitting routine MPFIT2DFUN), and determine R and Z gradients
by taking the analytic derivative of the best fit. This method
filters numerical noise (due to counting noise and polynomial
fitting) to some extent and produces smoother maps (with values
closer to the truth in the galfast catalogs, where we know
that velocity dispersion gradients in spherical coordinates are
vanishing by construction). We exclude edge pixels (bins) from
further analysis because the parametric results are not as robust
due to the smaller number of adjacent pixels.

2.4.1. Tests of Numerical Procedures

The galfast catalogs provide a strong test of our algorithms;
we have verified that we can recover the number density and
kinematics used as input to galfast. Furthermore, we can test
the resulting acceleration maps by directly taking appropriate
spatial derivatives of the analytic expressions for the spatial
distribution from J08 and kinematics from B10 (that is, we
can bypass the galfast step). Since these derivatives (“analytic”
maps) can be evaluated with negligible numerical noise, unlike
derivatives based on a mock sample (“numerical” maps), we can
measure the bias and scatter due to a finite-size sample (to the
extent that analytic expressions from J08 and B10 are correct,
these analytic maps represent ground truth; for their illustration
and further discussion see Section 4).

A comparison of the analytic and numerical maps reveals that
they are morphologically very similar; we find that the latter are
biased low by 3% for the aR maps and by 14% for the aZ map,
with a rms scatter of 25% (over all the pixels) for both maps. This
performance is satisfactory for testing the applicability of Jeans
equations to a realistic N-body simulated galaxy. However, at
the smallest Z (∼2.5 kpc), the aZ map is biased low by as much
as a factor of 1.5 at R = 8.5 kpc. This biasing is probably due
to edge effects when fitting polynomials, or due to insufficient
curvature in the fitting functions. When comparing our results to
related published work (see Section 4) we use the analytic maps,
and when comparing mock stellar samples from the N-body and
galfast simulations we use the numerical maps.

In the case of the N-body simulation, we have an additional
test: if all algorithms are correctly implemented, and if all
assumptions that go into the derivation of Jeans equations are
not too incorrect, then we ought to be able to reproduce the true
aR and aZ that are known from direct force calculations. This
analysis is described in the following section.

3. VALIDATION OF THE JEANS EQUATIONS METHOD

In this section we first test the Jeans equations approach
using a realistic MW-like simulated galaxy with known stellar
accelerations from force computations. The simulated galaxy is
not perfectly cylindrically symmetric, nor is it in a steady-state.
The comparison of known accelerations and those computed
by Jeans equations provides a quantitative assessment of both
systematic and random errors inherent in this method. After
quantifying these errors, we apply the same methodology to the
galfast catalog and demonstrate the signature of dark matter in
the MW halo.
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Figure 6. Number counts of stellar particles from the N-body simulation restricted to the volume probed by SDSS. Stellar particles have been binned in 1 kpc × 1 kpc
R − Z bins and only bins with at least 100 particles are shown and used in our analysis. In addition, edge pixels are subsequently excluded from the Jeans equations
analysis due to less reliable count gradient estimation.

(A color version of this figure is available in the online journal.)

3.1. Tests of the Jeans Equations Method Using Simulations

To quantify acceleration errors in the Jeans equations method,
we use an N-body simulation, with positions, velocities, and
accelerations for 7.3 million stellar particles within the virial
radius. To maintain identical selection effects as with the SDSS
data, we only use simulation data within the SDSS footprint;
this region contains 220,000 stellar particles; their distribution
is shown in Figure 6. We include all the star particles from this
region in our analysis (that is, there is no specific selection of
“halo stars”); however, we exclude results within 1 kpc of the
plane of the disk to minimize the influence of disk stars and their
strong gradients in all relevant quantities.

Our data is binned in 1 kpc square R − Z pixels; we also
investigated smaller bin sizes, down to twice the force softening
length (346 pc). Because the star particle number density
decreases quickly with increased galactocentric radius, the
adopted size of 1 kpc is a “sweet spot” that allowed us to spatially
resolve gradients in the acceleration map, while simultaneously
having enough stellar particles per bin for counting errors to
remain small (∼10%).

The top panel of Figure 7 shows the aZ acceleration map
generated by applying Jeans equations to the particles from
the N-body simulation in the region that mimics the SDSS
volume. An overall gradient is easy to see; the magnitude of
the acceleration decreases with increased radius (R). The true
acceleration map (shown in the top panel of Figure 4) displays
similar behavior; the bottom panel of Figure 7 shows a ratio
of the top panel of Figure 7 and the mean true accelerations from
the top panel of Figure 4. We find that Jeans equations reproduce
the true aZ map quite well: for the entire SDSS volume, the mean
value of aJeans

Z /aTrue
Z is 1.05 with a dispersion16 of σG = 0.18.

When we consider a column of data that is unaffected by the
bulge in the simulation (7 � R/kpc � 9), we find that σG drops
to 0.15, with a mean of 1.08.

Figure 8 shows an analogous set of maps for acceleration in
the R direction, aR. The mean value of the ratio aJeans

R /aTrue
R for

the entire SDSS volume is 1.02 with σG of 0.13. When the map
is subselected to include data within 7 � R/kpc � 9, the mean

16 Instead of using the classically defined standard deviation, which is
sensitive to non-Gaussian outliers, we use the interquartile range of the
distribution to estimate the dispersion. The interquartile range is normalized to
obtain a standard deviation in case of Gaussian distribution,
σG = 0.7413 (q75 − q25), where q25 and q75 are the 25% and 75% quartiles.
For more details see Ivezić et al. (2013).

value drops to 0.99 with σG = 0.12. We note that we tested
for the effects of non-axisymmetry on these results by making
eight slices in φ of 90◦ offset by 45◦. We found that the mean
acceleration within these slices varied by around 10%.

We conclude from this analysis of the N-body simulation that
even in a non-steady state system with deviations from axial
symmetry, Jeans equations can still recover meaningful average
accelerations; within a given bin, an individual acceleration
value has expected random error below 20%, with a bias below
10%. As we show next, this performance is sufficient to enable
tests for the existence of dark matter in the MW halo.

3.2. Application of the Jeans Equations Method to SDSS Data

In this section we apply Jeans equations to a catalog of stars
from the SDSS volume generated using galfast. We first assess
the relative significance of each term in Jeans equations as a
function of R and Z to understand the global distribution of aSDSS

Z

and aSDSS
R , the components of the acceleration in the Z and R

directions implied by the SDSS data. We compare the resulting
aSDSS

Z and aSDSS
R maps to the maps generated using the N-body

simulation; we inspect the morphology of the acceleration maps
to draw conclusions about the presence of dark matter within
the SDSS Galactic volume.

3.2.1. The Construction of the Acceleration Maps

We first examine the spatial distribution of stars with Mr � 4
and 0.25 < g − r < 0.35 (top left panel in Figure 9). A
selection function correction has been applied to compensate for
the varying range of the axial (φ) angle sampled by the SDSS
Galactic data; the computed distribution is a good match to the
analytic model used by galfast and verifies that the binning
algorithm and the selection function correction are correctly
implemented.

Figure 9 also shows velocity distribution moments σ 2
RZ , σ 2

RR,
〈Vφ〉2, σ 2

φφ , and σ 2
ZZ . The strong variation with R and Z seen for

σ 2
RZ , σ 2

RR, and σ 2
ZZ is due to the use of the cylindrical coordinate

system. We have verified that analogous estimates performed in
the spherical coordinate system reproduce the spatially invariant
velocity ellipsoid used by galfast to within numerical noise.

The spatial derivatives of these terms are used in Equations (1)
and (2) to compute aSDSS

Z and aSDSS
R ; they are illustrated in

Figures 10 and 11, together with the main result of our analysis,
aSDSS

Z and aSDSS
R maps shown in the top left panel in each

9
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Figure 7. Top: the acceleration in the Z direction for stellar particles from N-body simulation, derived using Equation (2) and expressed in units of 2.9×10−13 km s−2.
Bottom: the ratio of the top panel and the true acceleration map known from force computations (top panel of Figure 4). The Jeans equations approach successfully
reproduces the true acceleration map with a bias below ∼10%. The maps are spatially limited to the volume explored by SDSS data.

(A color version of this figure is available in the online journal.)

figure. In each figure, the other panels show all the additive
terms from Equations (1) and (2). Note that different terms have
varying contributions toward the final acceleration maps. All
terms contributing to acceleration maps show smooth global
behavior, with only a small number of pixels deviating from the
overall trends.

3.2.2. The Initial Interpretation of the Acceleration Maps

Now that we have maps for aSDSS
Z and aSDSS

R , we consider what
these maps tell us about the underlying distribution of matter
within the SDSS volume. To assess this, we again draw upon our
N-body simulation to predict what behavior we would expect
when the dark matter contribution is and is not included (in
Section 4, we continue this discussion using a baryon potential
derived from SDSS measurements for disk stars).

Recall the top panels of Figures 4 and 5, which shows the
map of aFull

Z and aFull
R from N-body simulation. In this case,

the acceleration of each particle was calculated using the force
from all the particles in the entire simulation. For comparison,
the middle panels of these two figures show analogous maps,
but there the acceleration was calculated without including the
dark matter contribution.

Similarly, the middle and bottom panels of Figures 12 and 13
show the ratio of the aSDSS

Z and aSDSS
R map to the simulation’s

aFull
Z and a

Baryon
Z and aFull

R and a
Baryon
R maps respectively. Clearly,

the acceleration maps derived from the SDSS data are closer to

the model-based acceleration maps that include contributions
from both baryons and dark matter. At large galactocentric
distances, the SDSS accelerations are as much as three to four
times stronger than those predicted by a non-dark matter model!

Therefore, by generating acceleration maps using the SDSS
data and comparing these maps to expectations from an N-body
simulation, we have demonstrated that a model containing dark
matter is a much better fit to observations than the model that
contains baryonic matter alone. While it is encouraging to see yet
another aspect of N-body simulation that at least qualitatively
agrees with data, this far-reaching conclusion can be derived
without a reference to simulation, as we show next.

4. CONSTRAINTS ON THE DARK MATTER
GRAVITATIONAL POTENTIAL

The analysis in the previous section shows that our Jeans
equations approach can successfully recover stellar acceler-
ations in a non-steady-state and non-cylindrically symmetric
N-body simulation. A comparison between the N-body sim-
ulation and the SDSS-based acceleration maps strongly sug-
gests that a dark matter component is needed to account for the
observed accelerations. However, the strength of this conclusion
depends on how well the N-body simulation matches the
observed MW. To supplement our earlier argument, in this
section we perform an analysis of the observed acceleration
maps that does not require the use of the N-body simulation.
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Figure 8. Analogous to Figure 7, except that the acceleration in the R direction, derived using Equation (1), is shown and expressed in units of 2.3 × 10−13 km s−2.

(A color version of this figure is available in the online journal.)

Instead, we utilize a new observationally constrained description
of the MW gravitational potential; we quantitatively compare
this potential to our SDSS-based acceleration maps to draw con-
clusions about the dark matter potential. Because our galfast-
based acceleration maps suffer from numerical noise (recall
Section 2.4), here we use the “analytic” acceleration maps com-
puted directly using Equation (4) from J08 and the velocity
ellipsoid for halo stars from B10 (see Equations (5)–(7)).

4.1. Analytic SDSS Acceleration Maps for Halo Stars

Our analytic acceleration maps are shown in Figure 14. As
already implied in Section 2.4.1, they are morphologically very
similar to numerical maps shown in the top panels in Figures 12
and 13 (for ease of comparison we used the same R − Z grid
although the analytic maps can be evaluated on an arbitrary
grid). Although these analytic maps are formally noise-free,
as we demonstrated in the preceding section, we anticipate
that the random errors due to deviations from cylindrical
symmetry and steady state can be up to about 20% (with a bias
below 10%).

We find that these maps cannot be described by a spherically
symmetric potential. Case in point, there is a large class of
potentials of the functional form

x =
(

R2 + (Z/q)2 + R2
core

R2�

)1/2

. (8)

For this class, the isopotential surface axis ratio q can be
estimated as

q =
(

Z aR(R,Z)

R aZ(R,Z)

)1/2

. (9)

When we apply the maps shown in Figure 14 to this equation,
we find that the median value of q is 0.80, with (inter-quartile
based) scatter of σG = 0.04. This evidence for oblateness comes
directly from the fact that the spatial distribution of halo stars
is oblate (qH = 0.64; see Equation (4)). Nevertheless, it does
not follow immediately that the dark matter potential must be
oblate because the contribution of disk baryons to the potential
is non-negligible. We now turn our attention to a recent model
where the disk baryons have been carefully accounted for.

4.2. SEGUE G Dwarfs and the Bovy–Rix Potential

Recently, Bovy & Rix (2013, henceforth, BR13) studied in
detail the dynamics of ∼16,000 G dwarfs drawn from the SDSS
Sloan Extension for Galactic Understanding and Exploration
(Yanny et al. 2009, hereafter SEGUE). The SEGUE G dwarf
sample is dominated by disk stars and extends to 3 kpc from
the Galactic plane, with a similar extent in the radial direction
(Bovy et al. 2012d). As Bovy et al. (2012b) show, these disk
stars can be separated into sub-populations based upon chemical
abundance parameters ([Fe/H] and [α/Fe]). Bovy et al. (2012b)
find that the spatial distribution of each sub-population is well
fit by a single exponential profile, both as a function of height
above the midplane and galactocentric radius. Moreover, the
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Figure 9. Top left: stellar number density map for halo stars in the SDSS footprint generated using galfast. This panel is logarithmically scaled, while all other panels
are shown on a linear scale and re-normalized by 2 × 104 km2 s−2 to enable comparison of relative contributions of terms from Equations (1) and (2) to accelerations
aZ and aR. Each respective term is listed at the top of each panel.

(A color version of this figure is available in the online journal.)

kinematic behavior of each sub-population is relatively simple
(Bovy et al. 2012c), making it possible to fit a three-integral
action-based distribution function and parameterize the MW
potential to the SEGUE data (Ting et al. 2013, BR13).

BR13’s parameterization of the MW potential includes a two-
component gravitational potential, corresponding to the baryon
and dark matter content. The former is likely the most robust
and precise determination of the MW baryonic potential to
date. Additionally, the local normalization for the dark matter
component is consistent with a more direct measurement from
Bovy & Tremaine (2012) and has a similar precision. However,
due to the relatively local nature of their sample, BR13 cannot
strongly constrain deviations from spherical symmetry for the
dark matter model, and thus for this component they adopt a
spherically symmetric potential. We note that BR13’s potential
model is publicly available via the galactic and MW dynamics
python package galpy.17

In Figure 15 we explore the accelerations predicted by the
BR13 potential model. The top left and right panels of Figure 15
show the aR and aZ acceleration maps generated from the BR13

17 See http://galpy.readthedocs.org/en/latest/

baryon potential. We also consider the relative significance of the
baryon potential to the dark matter+baryon model; the bottom
left and right panels of Figure 15 show the fractional contribution
of the baryons to the dark matter+baryon accelerations. These
panels include contours of constant fraction. In the case of aZ
(bottom right), at R ∼ 8 kpc the contours are roughly horizontal
(parallel to the R axis), and in the case of aR (bottom left),
at R ∼ 8 kpc the contours are relatively more perpendicular.
Encouragingly, these trends are in qualitative agreement with
the predictions from the N-body simulation (see bottom panels
in Figures 4 and 5).

We next compare the accelerations predicted by the BR13
two-component potential model to our SDSS-based analytic
acceleration maps. Our goal is to understand how well the
two-component model, containing a spherically symmetric
dark matter halo, fits our SDSS-based results. We begin by
considering the data/model ratio: for the model to be a good
match to our data, the median value of the ratio should be
roughly 1.0 with a small rms (�10%–20% on a linear scale). In
both the cases (aR and aZ), to achieve a median data/model ratio
of 1.0, we must rescale the model by multiplying by 0.66 and
0.57 respectively. After these renormalizations, the rms scatter is
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Figure 10. galfast aSDSS
Z map, expressed in units of 2.9 × 10−13 km s−2, and its constituent terms from Equation (2). Note that the scale is the same in all panels for

easy comparison. Terms are ordered clockwise from top right to middle left and add to equal aSDSS
Z , shown in the top left panel. Each panel is labeled with the term it

corresponds to.

(A color version of this figure is available in the online journal.)

fairly small (23% on a linear scale). However, because the model
derived aR and aZ require different renormalizations, and there
are systematic deviations as functions of R and Z, we conclude
that the data versus model discrepancy cannot be resolved by a
simple rescaling alone.

To re-emphasize this point, we draw upon an illustrative ex-
ample. At R = 18 kpc, Z = 8 kpc, the extrapolated BR13 model
predicts aR = −0.61 and aZ = −0.30 (in units of 10−13 km s−2)
resulting from the dark matter component, and aR = −0.18 and
aZ = −0.10 from baryon component. However, at this location
the measured SDSS-based accelerations are aR = −0.35 and
aZ = −0.29. That is, the model dark matter component by itself
exceeds the total measured acceleration.

In contrast to this, we consider aZ in the solar neighborhood
at small Z (R = 8 kpc, Z = 3 kpc). Here our SDSS-based
acceleration is aZ = −0.56 × 10−13 km s−2. Converting this
to an equivalent surface density yields 65 M� pc−2, with an
uncertainty of ∼10%. This value agrees within errors to the
constraints on the equivalent surface density presented in Bovy
& Tremaine (2012): using Figure 1 from Bovy & Tremaine
(2012), the surface density correction factor is 0.9 at Z = 3 kpc,

yielding a predicted surface density of 77 ± 9 M� pc−2. Hence,
the SDSS-based aZ derived from our halo sample is ∼16%
smaller than the acceleration based on disk sample at R = 8 kpc,
Z = 3 kpc, but the two values are consistent within quoted
statistical errors.

In summary, our acceleration maps are statistically consis-
tent with Bovy & Tremaine (2012) at Z as small as 3 kpc;
additionally, we explore much larger galactocentric distances,
which allows us to draw new constraints on the dark matter
potential. However, we note that the extrapolation of our accel-
eration maps for halo stars to Z < 3 kpc predicts weaker aZ
acceleration than experienced by disk stars (as summarized by
the BR13 model); we return to this discussion in Section 6.1.

We now generate model maps in better agreement with the
data by including two modifications to the original BR13 model:
(1) we allow for a renormalization of the baryonic component
(which is much better constrained than dark matter component,
in both shape and amplitude, and thus we expect a renormal-
ization factor close to unity), and (2) we allow departures from
spherical symmetry for the dark matter component (as motivated
by disagreements at large galactocentric radii).

13



The Astrophysical Journal, 794:151 (26pp), 2014 October 20 Loebman et al.

aSDSS
R     

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-1 ×  <vφ>
2 / R

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-1 × σ2
φφ / R

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

σ2
RR / R

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

σ2
RR × 1/ν × ∂ ν/∂ R

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

∂ σ2
RR /∂ R

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

σ2
RZ × 1/ν × ∂ ν/∂ Z

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

∂ σ2
RZ /∂ Z

0 5 10 15 20
R  [kpc]

0

2

4

6

8

10

Z
  [

kp
c]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

Figure 11. Analogous to Figure 10 but for aSDSS
R and the constituent terms in Equation (1). Each panel is expressed in units of 2.3 × 10−13 km s−2. The constituent

terms are labeled and ordered clockwise from top right to upper middle left and add to form aSDSS
R , shown in the top left panel.

(A color version of this figure is available in the online journal.)

4.3. Modified BR13 Potential

Henceforth, we adopt the following description for the
gravitational potential used to generate the model acceleration
maps

Φ(R,Z) = fBR Φbar(R,Z) + ΦDM(R,Z), (10)

where Φbar(R,Z) is the component due to baryons (stars and
interstellar medium), fBR is a renormalization factor (discussed
in more detail below) and ΦDM(R,Z) is the component due to

dark matter (e.g., see Equation (2-54a) in Binney & Tremaine
1987),

ΦDM(R,Z) = 1

2
v2

o ln

(
R2 + (Z/qDM)2 + R2

core

R2�

)
. (11)

The free model parameters are fBR, the dark matter poten-
tial scale (vo), the spatial scale (Rcore), and the dark matter
axis ratio (qDM). Given Φ(R,Z), we compute aR(R,Z) =
−∂Φ(R,Z)/∂R and aZ(R,Z) = −∂Φ(R,Z)/∂Z.
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Figure 12. Results of applying Jeans equations to the SDSS observations simulated using galfast. The top panel shows a map of acceleration in the Z direction
expressed in units of 2.9 × 10−13 km s−2 (same as the top left panel in Figure 10, except for different scaling). The middle and bottom panels show the ratio of the
map from the top panel and the two model-based maps shown in the top two panels in Figure 4.

(A color version of this figure is available in the online journal.)

The chosen logarithmic potential is convenient because its
corresponding matter density can be expressed analytically (see
Equation (12)). We discuss the uniqueness of this potential in
more detail in Section 4.5.

4.4. The Best-fit Dark Matter Potential

Next we discuss our procedure for identifying the best-fit
parameters in Equations (10) and (11). We first fix fBR = 1,
and exhaustively explore the two-dimensional Rcore—qDM pa-
rameter space. For a given trial pair of Rcore, qDM, we determine

the best-fit value for vo. To do this, we directly compute the
aR data/model ratio for a list of vo values. The vo that corre-
sponds to a median data/model ratio of 1.0 is selected as the
best fit value of vo for that particular Rcore, qDM pair. There is
no a priori guarantee that the corresponding az data/model ratio
will equal 1.0 as well; however, deviations are minor in practice
(∼1%; this agreement implies that the chosen model form is
satisfactory).

Adopting the best vo for each Rcore, qDM pair, we then track the
goodness of the Rcore, qDM fits by measuring the robust “residual
metric.” This metric is defined as the sum of the two (aR and
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Figure 13. Analogous to Figure 12, but for the component of the acceleration in the R direction, expressed in units of 2.3 × 10−13 km s−2.

(A color version of this figure is available in the online journal.)

aZ) median absolute deviations; smaller values correspond to
better fits (that is, we do not assume the model−data differences
follow a Gaussian distribution).18 We define the deviation as δ =
log10(data/model) for both maps.

The variation of δ(Rcore, qDM) is shown in the left panel in
Figure 16. The plausible (i.e., not strongly excluded) range
for the spatial scale, Rcore, is 22 < Rcore/kpc < 42; outside
this range the residual metric rapidly increases to statistically

18 For completeness, we tried a residual metric that only includes aZ or aR, to
constrain the dark matter potential, but we find that these constraints are much
weaker than when both data sets (maps) are considered together.

implausible values (given its minimum attained value). The
formal (but very shallow) local minimum is found at Rcore =
27.4 and qDM = 0.68, corresponding to vo = 195 km s−1. We
find that the best-fit values of Rcore and vo are strongly covariant
and related via vo = (55 + 5.1 × Rcore/kpc) km s−1. The axis
ratio for the dark matter potential is strongly constrained to the
range 0.65 < qDM < 0.75, and is essentially independent of the
choice of Rcore.

Now that we have determined our best-fit Rcore and qDM
parameters, we examine the (data/model)best-fit residuals. In
Figure 17, we show the residual (data/model)best−fit maps for
aR and aZ . Allowing for a non-spherical dark matter potential
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Figure 14. Acceleration maps computed using Jeans equations (Equations (1) and (2)), with the spatial distribution of halo stars described by Equation (4) and the
velocity ellipsoid described by Equations (5)–(7), as inputs (expressed in units of 10−13 km s−2). These maps are morphologically very similar to the maps shown in
the top panels in Figures 12 and 13 (note that the stretch for color palette is different in this figure to emphasize spatial variation).

(A color version of this figure is available in the online journal.)

greatly improves the agreement between the data and the model
in both cases: the rms scatter is 5% for aR and 3% for aZ , whereas
there was a 23% scatter and need for differing renormalization
factors for the original model. As can be seen in the right panel
of Figure 17, the largest discrepancy between the aZ data and the
best-fit aZ model (shown in dark blue) is found at small Z, where
we know that our map is biased by 16% relative to the BR13
results. In the left panel of Figure 17, the largest discrepancy
between the aR data and the best-fit aR model (shown in red) is
found at the smallest R and large Z, with measured acceleration
1.8 times larger than the best-fit model value. We conclude that
either one of the two adopted SDSS results from J08 or B10 is
problematic in this region, or that the adopted model potential
is incapable of fully explaining observations. We continue this
discussion in Section 6.1.

4.4.1. The Impact of Uncertainty in Rcore on Other Quantities

As noted above, our constraints on Rcore are weak (e.g., Rcore
is plausibly within 22 < Rcore/kpc < 42). Here, we investigate
if relevant local measurements can strengthen our constraints on
Rcore and provide a check for our best-fit dark matter potential.

Before we can utilize any local mass measurements, we must
convert our analytic gravitational potential to a mass density
distribution. Fortunately, Binney & Tremaine (1987) provides
the following expression for converting to matter density (see
their Equation (2-54b)) from a gravitational potential of the

functional form described by Equation (11),

ρDM(R,Z) =
(

v2
o

4πGq2
DM

)

×
(
2q2

DM + 1
)
R2

core + R2 + 2
(
1 − q−2

DM/2
)
Z2

(
R2

core + R2 + Z2q−2
DM

)2 .

(12)

Using this expression with our best-fit values of Rcore = 27.4,
qDM = 0.67, and vo = 195 km s−1, we obtain ρDM(R = 8, Z =
0) = 0.004 M� pc−3, with an estimated uncertainty of only
about 10% due in large part to our uncertainty in Rcore. This
ρDM(R = 8, Z = 0) estimate is within statistical agreement
with the result of ρDM(R = 8, Z = 0) = 0.008±0.003 M� pc−3

from Bovy & Tremaine (2012).
As discussed in Binney & Tremaine (1987), when qDM = 0.7,

the density distribution predicted by Equation (12) is negative
near the Z axis for |Z| > 7 Rcore. However, this unphysical
behavior is of no concern here because 7 Rcore > 100 kpc even
for the smallest allowed Rcore, which is clearly far beyond the
probed volume.

For the small Z relevant here, the isodensity contours are
elliptical with the axis ratio given by

q
ρ

DM = 1 + 4 q2
DM

2 + 3/q2
DM

, (13)
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Figure 15. Top: acceleration maps predicted by the baryonic component of the Bovy–Rix potential (left: aR, right: aZ ; expressed in units of 10−13 km s−2). Bottom:
predicted fractional contribution of the accelerations from the baryonic component relative to the total potential model. Note that the contours of constant fraction at
R = 8 kpc are roughly horizontal for aZ and relatively more perpendicular for aR, in qualitative agreement with predictions from the N-body simulation (see bottom
panels in Figures 4 and 5).

(A color version of this figure is available in the online journal.)

yielding q
ρ

DM = 0.36. This result is in good agreement with the
estimate q

ρ

DM = 0.47 ± 0.14 from Loebman et al. (2012), but
we note that the baryon contribution to the potential was not
accounted for in their study and thus it is superseded by the
above result.

We also consider the dark matter contribution to the local cir-
cular speed, which can be computed from (see Equation (2-54c)
in Binney & Tremaine 1987)

vDM
c (R�, Z = 0) = vo

R�√
R2� + R2

core

. (14)

Considering the plausible range of Rcore (22 < Rcore/kpc < 42),
we estimate vDM

c to be vDM
c = (63.8–0.33 × Rcore/kpc) km s−1

via a linear fit. Our best-fit value, vDM
c = 55 km s−1, is uncertain

to within ∼3 km s−1 (again, due to the weak constraints on Rcore).
Thus, we find that considering the local circular speed does not
provide a strong constraint on Rcore.

The best-fit contribution of dark matter halo to the local
circular speed, vDM

c = 55 km s−1, is a factor of two smaller than
that estimated by BR13. This discrepancy probably implies that
the adopted logarithmic potential given by Equation (11) close
to the Galactic plane does not have sufficient curvature in the
Z direction to produce larger vc (the normalization vo cannot
be responsible because it’s value is set by distant halo stars).
A similar “curvature problem” close to the plane (and close to
the symmetry axis) with J08 and B10 results is discussed in
Section 6.1.

4.5. The Uniqueness of Adopted Dark Matter Potential

At large galactocentric radii the dark matter contribution to the
force felt by halo stars dominates over the baryon contribution.

Measurements are precise enough to test whether functional
forms other than the adopted logarithmic potential given by
Equation (11) would fit the data.

We first test whether a single value of qDM is sufficient: using
Equation (9), but this time with the BR13 baryon contribution
subtracted from the measured maps, we find that the median
value (per bin) of qDM is 0.67, with (inter-quartile based) scatter
of σG = 0.05. The small width of the qDM distribution indicates
that the spatial variation of the acceleration maps is well captured
by the x variable given by Equation (8).

It is straightforward to show that for a generalized potential

ΦDM(R,Z) = 1

2
v2

o f (x), (15)

where x is given by Equation (8),

q2
DM

aZ

Z
= aR

R
= v2

o

R�

df

dx
. (16)

For the logarithmic potential, f (x) = ln(x), deviations from
a logarithmic potential will be seen as deviations of the first
two terms from the expected 1/x behavior. For the region with
Z > 5 kpc and R > 8 kpc, we find no evidence of the departures
from a logarithmic potential.

Nevertheless, the dynamic range of x is fairly small, from 3.5
to 4.5 for Rcore = 27.4 kpc, and for a power-law potential, xα ,
can provide a very good description of the best-fit logarithmic
potential, especially if Rcore is re-fit. With Rcore = 27.4 kpc,
α = 0.73 provides almost the same potential (with per bin
scatter of 0.2%) as the best-fit logarithmic potential (that is,
2 ln(x) is very close to 1.007 x0.73 for 3.5 < x < 4.5). When Rcore
is changed to 22 kpc, the agreement is even better with a best-fit
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Figure 16. Variation of the robust residual metric for the parameters Rcore and qDM from Equation (11). Lower values (shown in blue) correspond to better model
fits to the SDSS-based acceleration maps. Top panel: the metric with baryon renormalization factor from Equation (10) set to fBR = 1. Bottom panel: the metric as a
function of fBR and qDM, with spatial scale set to Rcore = 27.4 kpc.

(A color version of this figure is available in the online journal.)

α = 0.53. Forcing Rcore = 0 does not provide a satisfactory
fit for any α. Therefore, while a logarithmic potential is fully
consistent with the data, it is not a unique solution. The main
reason for this ambiguity is the small dynamic range of x due
to the finite sampled volume. We reiterate that qDM = 0.7 is
robustly determined irrespective of the detailed form for f (x).

4.6. Test of the BR13 Baryon Potential

In our analysis above, we assumed that the baryon component
in the BR13 potential is perfect (fBR = 1). We now relax this

assumption and allow fBR and qDM to be free fitting parameters,
with a fixed Rcore = 27.4 kpc.

Our resulting variation in δ(fBR, qDM) is shown in the right
panel in Figure 16; we find the best-fit values (shown in dark
blue) to be fBR = 0.94, qDM = 0.70. Although the formal
best fit is found at fBR = 0.94, the data are fully consistent with
fBR = 1. Based on the variations of best-fit qDM with other fitting
parameters, we conclude that its formal uncertainty is much
smaller than 0.1. However, due to plausible deviations between
the adopted analytic potential and reality, and departures from
steady state and cylindrical symmetry, we cannot exclude the
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Figure 17. Top two panels show the ratio of the SDSS-based acceleration maps (left: aR, right: aZ ; see Figure 14) and the best-fit two-component model based on
baryon potential from Bovy & Rix (2013) and dark matter potential described by Equation (11) (with qDM = 0.7). The bottom two panels show the ratio of the
SDSS-based acceleration maps and the predictions based on baryon potential from Bovy & Rix (2013).

(A color version of this figure is available in the online journal.)

possibility that its systematic uncertainty could be as large as 0.1.
Hence, we adopt as our best-fit model fBR = 1 and a logarithmic
dark matter potential with qDM = 0.70 ± 0.1, Rcore = 27.4 kpc
and vo = 194 km s−1.

4.7. The Impact of Uncertainty from the J08 Best-fit Parameters

The upper limits on the uncertainty of the best-fit halo
parameters quoted by J08 are 0.2 for nH and 0.1 for qH (see
their Table 10 and discussion in Section 4.2.4). The formal
uncertainties in fitting (based on a χ2 analysis) are several
times smaller. These two parameters are highly covariant (see
Figure 22 in J08); values of nH that are larger than the best-
fit value (i.e., a steeper halo stellar number density profile)
correspond to larger values of qH , and vice versa.

When the parameter values for the stellar halo are varied from
(nH = 2.57, qH = 0.54) to (nH = 2.97, qH = 0.74) along the
direction of covariance, the resulting qDM (potential) varies from
0.55 to 0.82, with the implied q

ρ

DM varying from 0.19 to 0.57.
Because the adopted variation in nH and qH represents an upper
limit, we conclude that our final errors of ∼0.1 for qDM and q

ρ

DM
are not dominated by uncertainties in the best-fit values for nH
and qH .

4.8. Comparison with Other Results

This is the first study where distant halo stars have been
used to constrain the shape of dark matter potential in situ
at galactocentric distances of up to 20 kpc. However, related
constraints on qDM have been obtained in studies of stellar
streams, most notably using the Sagittarius dwarf tidal stream
(e.g., Law & Majewski 2010) and the GD-1 stream (see below).
The former provides constraints at much larger galactocentric
radii (20–50 kpc) than considered here and thus we focus below
on the analysis of GD-1. We note that Vera-Ciro & Helmi (2013)
used the Sagittarius dwarf tidal stream to constrain the dark

halo potential and found that within 10 kpc from the Galactic
center it is axisymmetric and flattened toward the disk plane
with q = 0.9.

4.8.1. Tidal Stream GD-1

GD-1 is a long, thin stellar stream discovered in SDSS DR 4
photometry in 2006 (Grillmair & Dionatos 2006). GD-1 spans
80◦ across the northern sky, passes within 30◦ of the Galactic
pole, and is at its midpoint about 8 kpc away from the midplane
of the disk (Carlberg & Grillmair 2013). Based upon the SDSS
photometry, USNO-B astrometry, and SEGUE spectroscopy,
Koposov et al. (2010, hereafter K10) were able to construct an
empirical 6D phase-space map of the stream.

From their analysis, K10 conclude that GD-1 is on an ec-
centric orbit that is consistent with a single flattened isothermal
potential. That is, K10 fit GD-1 using a model of the same func-
tional form as Equation (11), but they suppose it accounts for
both baryons and dark matter. In this limit, K10 adopt Rcore = 0
and conclude that the total axis ratio, q, is equal to q = 0.87+0.07

−0.04.
To emulate K10’s results, we have repeated our fitting

procedure with a fixed fBR = 0 (that is, supposing no separate
baryon component to the potential). We find that in this case,
Rcore = 0 is indeed strongly preferred, and we obtain q = 0.80,
which is consistent with the K10 results.

K10 go on to estimate qDM by including a simple baryon
bulge+disk model in their analysis; from this, they find a lower
limit on qDM (qDM > 0.89 at the 90% confidence level). This
lower limit appears to exclude our best-fit value; however, the
differing results are not surprising given the fact that their baryon
model is significantly different than ours. It is likely that the
baryon component determined by BR13 is much more robust
than the model used by K10. We reiterate that when using the
same functional form for the potential, we get the same best-
fit model parameters as K10. Thus, in an indirect sense, the
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accelerations measured by halo stars are consistent with the
potential needed to explain observations of the GD-1 stream.

It is certainly surprising that a single-component potential can
provide a good description of acceleration maps for halo stars,
especially given the complex morphology of the BR13 baryon
component (see the top panels in Figure 15). We consider this in
further detail by comparing our best-fit two-component model
with a single-component model. The ratios predicted for the aR
and aZ maps are shown in the left and right panels of Figure 18
respectively.

As can be seen in both panels of Figure 18, above Z ∼
3–4 kpc, the two models agree quite well (shown in green and
matching to within 10%). This, in fact, is the region where
most of constraints from both the K10 analysis and our analysis
come from. However, given the Z < 4 kpc constraints from
BR13, it is clear that a single-component model does not have
the flexibility to explain simultaneously both the BR13 SEGUE
G dwarfs data and our SDSS halo stars data. For example, at
R = 8 kpc and Z = 0, the single-component model predicts
acceleration that is too small by a factor of six compared to
the best-fit two-component model and constraints from BR13.
We conclude from this that the potential from K10 cannot be
extrapolated close to the Galactic plane.

The best-fit model adopted here does not suffer from this
problem because close to the plane it is dominated by the baryon
component. Nevertheless, recall that the contribution of the dark
matter halo to the local circular speed is a factor of two smaller
than estimated by BR13.

5. TESTING MOND

MOND is a proposed alternative to dark matter, which posits
a breakdown of Newtonian dynamics in the limit of small
accelerations (Milgrom 2014 and references therein). When the
Newtonian acceleration, aN , is much larger than a characteristic
acceleration scale, ao, the acceleration felt by a test particle is
Newtonian, a = aN . However, when aN � ao, the acceleration
felt by a test particle is much larger than the Newtonian
prediction, a = aN

√
ao/aN . The characteristic acceleration

scale is about 10−13 km s−2, that is, very similar to the range
of accelerations felt by halo stars in the volume probed by the
SDSS. In the acceleration range between these two extremes,
the acceleration is given by an interpolating function

a μ(x) = aN, (17)

where x = a/ao. The interpolating function μ(x) satisfies
μ(x) ≈ 1 for x � 1, and μ(x) ≈ x when x � 1. For
example, Famaey & Binney (2005) investigated functions such
as μ1(x) = x/

√
1 + x2 and μ2(x) = x/(1 + x). The physical

basis of MOND theories is discussed in Sanders & McGaugh
(2002) and Bekenstein (2004).

In addition to sampling the relevant range of acceleration,
the SDSS data for halo stars simultaneously constrains two
components of acceleration and enables a very powerful test
of the MOND model. The left panel in Figure 19 shows the
ratio of acceleration due to baryons from the BR13 model
and the measured acceleration for halo stars as a function of
the measured acceleration. MOND models predict that the two
should be correlated, and indeed data for each component (aR
and aZ) show remarkably small scatter about a mean trend.
However, the two trends are significantly offset from each other
and it is impossible to fit them both with a single interpolating
function. In other words, both the magnitude of the measured

acceleration is different than predicted by the baryons, and the
direction of the acceleration vector is different. Since MOND
modifies only the former,19 it cannot explain the latter.

For further illustration, Figure 20 shows the variation of
the angle between the measured acceleration vector and the
acceleration vector predicted by the BR13 model for baryons
within the probed volume; this angle is in the range 0◦–10◦,
with a median value of 4.◦7. The largest values are found for the
largest R and Z; significantly detected differences between the
direction of the measured acceleration vector and the direction
of the baryon-based prediction are found for R > 10 kpc and
Z > 5 kpc. For example, at the bin with R = 18.5 kpc and
Z = 9.5 kpc, the angle between the measured acceleration
vector and the direction toward the Galactic center is 12.◦5,
and the angle between the acceleration predicted by the baryon
model and the direction toward the Galactic center is 3.◦2—this
is a difference of 9.◦3 (see vectors marked in the figure)! This
mismatch angle cannot be explained by MOND; MOND only
modifies the length of the baryon prediction but not its direction.
For the same reason, a spherical dark matter halo does not work
either—its prediction always points directly toward the GC. The
vector sum of the dark matter contribution for an oblate halo
and the baryon contribution produces a satisfactory model.

To quantitatively estimate the disagreement between our data
and MOND models, we have tried three different interpolating
functions, μ(x) = x/

√
1 + x2, x/(1+x), and x/(1+x0.7), where

the index 0.7 in the last one was determined as a free parameter.
The corresponding best-fit values of the characteristic acceler-
ation are ao = 0.53, 0.22, and 0.31, respectively (in units of
10−13 km s−2). The scatter of data around the model predic-
tion is smallest for the third MOND model, 17%. This scatter
is still more than three times larger than for the best-fit model
with dark matter from the preceding section, which produces a
scatter of 4.8%. The data/model ratio distributions are shown
in the right panel in Figure 19. If data for aR and aZ are treated
separately, then the scatter for each can be decreased to about
10%, but the ratio of best-fit values of ao (using the third model)
is significantly different from 1 (0.39 for aR and 0.27 for aZ).
Because it is impossible to construct a single MOND model that
outperforms the model with dark matter, the latter is statistically
preferred.

Therefore, thanks to precise two-dimensional measurements
of acceleration for halo stars, we can reject the MOND model
as an explanation of the observed behavior. The model that
incorporates a dark matter halo is in much better agreement with
the data. Nevertheless, we emphasize that these conclusions are
critically dependent on the accuracy of the baryon potential.

6. DISCUSSION AND CONCLUSIONS

We have demonstrated that the SDSS observations of the
MW stellar halo combined with the gravitational potential due
to baryons derived by BR13, imply the existence of an invisible
component that contributes to the overall gravitational potential.
At large galactocentric distances (∼20 kpc), the detection of
this component is highly significant and robust because the
gravitational force experienced by halo stars is as much as three
times stronger than what can be attributed to purely visible
matter.

19 Strictly speaking, this is true only for Milgrom’s MOND; it might be
possible to avoid this problem via the addition of a solenoidal vector field to
Newtonian acceleration; see Equation (19) in Famaey & McGaugh (2012).
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(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

Our results are derived using Jeans equations, which estimate
the gradient of the gravitational potential statistically from the
observed spatial variation of stellar counts and stellar kinematics
(Equations (1) and (2)). The derivation of these equations
assumes a cylindrically symmetric steady-state system. Both
available MW data and N-body simulations indicate that these

assumptions cannot be fully satisfied and thus the performance
of the Jeans equations method must be critically examined
before drawing conclusions.

Using a modern cosmologically derived N-body simulation,
designed to mimic the formation and evolution of a MW-
like galaxy, we showed that the Jeans equations method can
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(A color version of this figure is available in the online journal.)

uncover true accelerations despite deviations from a steady-state
system with cylindrical symmetry: we recovered true mean per-
bin accelerations with random errors below 20% and a bias
below 10%. Such a precision is more than sufficient to robustly
detect deviations between the measured acceleration and the
acceleration that can be attributed to baryonic material.

When applied to SDSS data, this method produced two-
dimensional acceleration maps to heliocentric distances exceed-
ing ∼10 kpc and galactocentric distances exceeding ∼20 kpc.
It was possible to probe this large distance range thanks to sub-
stantial SDSS sky coverage and accurate multi-color photometry
to faint limits. Leveraging the baryonic gravitational potential
from BR13, we showed that the gravitational force experienced
by halo stars at galactocentric distances of ∼20 kpc cannot be
explained, in a Newtonian framework, by only baryon matter
contributions. At these large galactocentric distances, the dis-
crepancy is much larger than in the Solar neighborhood because
the baryonic material is concentrated in the Galactic disk, while
the presumed dark matter is much more extended.

We attempted to construct a MOND model in agreement with
the data, but found that our best-fit MOND model is significantly
outperformed by a model with dark matter. MOND’s inability
to explain the data is related to the evidence for a non-
spherical dark matter distribution (which comes from the oblate
spatial distribution of halo stars). Specifically, the magnitude
of the measured acceleration is different than predicted by
baryons, and the direction of the measured acceleration vector
is different, too. Since MOND modifies only the former, it
cannot explain the latter. Therefore, because of precise two-
dimensional measurements of the acceleration of halo stars,
MOND models can be rejected irrespective of the details
assumed in the interpolating function and the value of the
characteristic acceleration. Of course, these conclusions are
critically dependent on the accuracy of the baryon potential.

The large volume probed by SDSS halo stars also provides a
strong constraint on the shape of the dark matter halo potential.
Within galactocentric distances of ∼20 kpc, the dark matter
halo potential is well described by an oblate halo with axis
ratio qΦ

DM = 0.7 ± 0.1; this corresponds to an axis ratio

q
ρ

DM ∼ 0.4 ± 0.1 for the dark matter density distribution.
The quoted uncertainties attempt to account for systematic
errors but Gaussian behavior cannot be guaranteed. The formal
random errors for qΦ

DM and q
ρ

DM do not exceed ∼0.05. The
Rcore parameter in the logarithmic dark matter model, and the
preference for logarithmic over power-law model, are not as
well constrained as qΦ

DM.
The resulting best-fit two-component gravitational potential,

based on the baryonic component from BR13, and the dark
matter component described by Equation (11), is simultaneously
consistent with relatively local (within ∼3 kpc) measurements of
disk stars, and with measurements of halo stars to galactocentric
distances of ∼20 kpc. The best-fit potential derived here is also
consistent with the gravitational potential required to explain
the spatial and kinematic behavior of the GD-1 tidal stream.
Given vastly different selection criteria, spatial distributions,
and kinematics of these three populations, this consistency is
indeed remarkable!

Nevertheless, it is almost certain that the functional form
given by Equation (11) cannot be valid throughout the entire
MW halo, as we discuss next.

6.1. The Range of Validity of Our Results

Our analysis is based on both stellar count and kinematics
data from the SDSS Galactic catalog, which extends to no more
than ∼20 kpc from the Galactic center. This data set excludes the
vicinity immediately surrounding the Galactic center, as well as
the region very close to the Galactic plane (closer than ∼3 kpc).
Therefore, our results should not be extrapolated beyond this
limit.

There are already strong indications that the stellar halo
model from J08, given by Equation (4), cannot be extrapo-
lated beyond a galactocentric distance of about 30 kpc. Sesar
et al. (2011) found, using main sequence stars detected by
the Canada–France–Hawaii Telescope Legacy Survey in about
170 deg2 of sky, that the halo stellar number-density profile be-
comes steeper at Galactocentric distances greater than ∼28 kpc,
with the power-law index changing from n = 2.62 ± 0.04 to
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Figure 21. Comparisons of the data and the models for aZ . In all panels, the black line is data for halo stars, derived from the J08 and B10 results. The green line
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spherical dark matter model (not shown). The blue line is the sum of the baryon contribution and modified oblate dark matter model. The middle panel shows aZ(Z)
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the plane, the acceleration of halo stars in the Z direction implied by J08 and B10 results is weaker than that experienced by disk stars (left panel).

(A color version of this figure is available in the online journal.)

n = 3.8 ± 0.1. They measured the oblateness of the stellar halo
to be qH = 0.70±0.01 (statistical error only), and they detected
no evidence of the oblateness changing across the range of dis-
tances probed. Deason et al. (2011) explored similar issues,
using a sample of ∼20,000 blue horizontal branch (BHB) and
blue straggler stars detected by SDSS over 14,000 deg2 of sky,
and obtained almost identical results to those from Sesar et al.
(2011). Their best-fitting model has an inner power-law index
of n = 2.3 and an outer index of n = 4.6, with the transition
occurring at ∼27 kpc, and a constant stellar halo flattening of
qH = 0.6. In addition, the distributions of RR Lyrae stars from
the SEKBO survey (Keller et al. 2008), and of RR Lyrae stars
from SDSS Stripe 82 data (Watkins et al. 2009; Sesar et al.
2010), indicate a steeper density profile beyond 30 kpc. These
results are in general agreement with the dual halo hypothesis
advocated in Beers et al. (2012) and references therein (and also
including opposing views).

Similarly, the finding by B10 that the velocity ellipsoid for
halo stars is invariant in spherical coordinates cannot be valid
beyond about 30 kpc from the Galactic center. Brown et al.
(2010) used the Hypervelocity Star survey data to measure the
halo radial-velocity dispersion out to 75 kpc. They obtained
results in statistical agreement with similar studies by Battaglia
et al. (2005) and Xue et al. (2008), which they summarized as:
“the MW radial-velocity dispersion drops from σ = 110 km s−1

at Rgc = 15 kpc to σ = 85 km s−1 at Rgc = 80 kpc” (here Rgc is
the Galactocentric spherical radius rsph in this paper). It is hard to
quantitatively and robustly estimate what this gradient implies
for the underlying potential because the velocity dispersion in
two orthogonal directions at distances beyond 30 kpc has not
been measured yet; these measurements will likely have to wait
for Gaia and LSST surveys (Ivezić et al. 2012, also see below).
We note that (Vera-Ciro & Helmi 2013) constrained the dark
halo potential using the Sagittarius dwarf tidal stream at a large
range of galactocentric radii. They found that the potential is
axisymmetric and flattened toward the disk plane within 10 kpc
from the Galactic center, with q = 0.9. At larger radii, they
argue for a triaxial shape in the outer halo, consistent with the
Law & Majewski (2010) model, with deviations from oblate
halo starting at galactocentric distances of about 10 kpc.

The acceleration of the halo stars in the Z direction and close
to the Galactic plane is weaker than that experienced by disk
stars. Figure 21 shows data and models for aZ(Z) at R = 8 kpc
and R = 15 kpc. While at R = 15 kpc, the agreement between
halo and disk star accelerations is satisfactory, at R = 8 kpc and
within a few kiloparsecs from the plane, the implied acceleration
of halo stars is weaker than that experienced by disk stars, with
discrepancy increasing from about a factor of two at Z ∼ 1 kpc
to larger values at smaller Z (note that all values vanish at
Z = 0 because of symmetry). It appears that either the spatial
distribution of halo stars from J08, or kinematics from B10
(or both) has to break down close to the plane. In order to
increase the implied acceleration, more curvature, that is, larger
derivatives of the spatial distribution and kinematics, are needed
close to the plane. With existing data it is hard to quantify what
is the problem because the fraction of halo stars is very small
close to the plane and it is easy to get sample contamination
(this is why B10 only analyzed halo stars that are more than
∼3 kpc from the plane). Furthermore, turn-off halo stars closer
than about 1 kpc are saturated in SDSS imaging.

We can postulate a minor modification of the qH parameter
from Equation (4), from its best-fit value qH = 0.64 obtained
by J08, that brings aZ acceleration component of halo stars in
agreement with acceleration of disk stars at Z ∼ 1 kpc. The
third term on the right-hand side of Equation (2) is proportional
to q−2

H for small Z. If qH decreases from 0.64 at Z > 4 kpc to
qH ∼ 0.45 at Z ∼ 1 kpc, the resulting aZ for halo stars becomes
similar to aZ for disk stars. At the same time, the stellar number
density given by Equation (4) is insensitive to qH for R = R�
and Z = 1 kpc, and thus remains consistent with J08 and B10
analysis. The implication is that the halo is more oblate closer
to the disk midplane than far away from it, an idea that was
already advocated in the literature (e.g., Preston et al. 1991).

It is likely that Gaia will provide a definitive resolution
of this puzzle. Gaia will also likely resolve the origin of the
divergence of aR on the symmetry axis (R = 0). Because values
for σφφ and σθθ obtained by B10 are different, aR computed
using Equation (1) diverges for R = 0 (for R = 0, σRR = σθθ ).
Proper motion accuracy below 1 mas yr−1 is required to map the
behavior of σφφ and σθθ close to the Galaxy’s symmetry axis.
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Figure 21 also illustrates that the dark matter component
from the original BR13 model produces too much force at large
Z. This discrepancy is resolved by replacing their spherical
dark matter model by the new oblate dark matter model
introduced here. While this modification results in a satisfactory
explanation for the measured halo star acceleration maps, it fails
to produce a sufficiently large dark matter halo contribution
to the local circular speed by about a factor of two. This
failure suggests that the adopted logarithmic potential given
by Equation (11) close to the Galactic plane does not have
sufficient curvature in the Z direction. In other words, the dark
matter should be more concentrated toward the plane of the disk
the our adopted model predicts.

In summary, these discrepancies indicate that both the dark
matter distribution, and the spatial distribution and kinematics
of halo stars, should be sensitive to the existence of a stellar
disk, but the current models do not capture this behavior.

In addition to the data limitations, simulations have their own
caveats. We have demonstrated using an N-body simulation that
the Jeans equations method can recover the true stellar acceler-
ation with a bias below 10%. However, the general validity of
this conclusion is crucially dependent on the similarity between
the simulated galaxy and the MW. We showed that the simulated
galaxy is similar to the MW in many important ways, such as
the overall distribution of halo stars and their kinematics. Never-
theless, there are other untested aspects that might be important
and perhaps are biasing our measurements of the dark matter
halo properties. For example, Schlaufman et al. (2009, 2011)
have shown, using data from the SDSS SEGUE spectroscopic
survey, that about 10% of the halo stars within ∼20 kpc from the
Sun cluster kinematically on very small spatial scales (typical
radial-velocity dispersion is ∼20 km s−1). It remains to be seen
whether simulated galaxies also include this effect, and how it
affects the performance of the Jeans equations method.

Last but not least, in deriving our conclusions we assumed
that the BR13 baryon potential, derived using a sample of disk G
dwarfs, is perfect. They directly measured aZ (at Z = 1.1 kpc and
4.5 < R/kpc < 9) from the vertical dynamics and combined
it with [aR(R) − aR(R�)] from the tangent-point rotation curve
measurements. Their model produces aR(R�) equivalent to local
circular speed of vcirc(R�) = 220 km s−1. Since at this time
vcirc(R�) is uncertain by possibly as much as 10%, a similar
level of uncertainty is implied for their baryon potential.

6.2. Future Work

It is possible to go beyond Jeans equations to use stellar
kinematics to probe the full phase space distribution of stars
(e.g., Binney 2013). For example, as Valluri et al. (2012) recently
demonstrated, stellar orbits can be used to determine not only
the shape of the inner halo, but the global shape of the Galactic
halo. The Valluri et al. orbital spectral analysis method provides
a strong complementary tool to the technique presented here
for constraining the potential of the MW halo and its stellar
distribution function. In addition, outcomes of methods such as
“made-to-measure models” (Syer & Tremaine 1996; Dehnen
2009), direct modeling of the distribution function (Piffl et al.
2014), and modeling of stellar tidal streams (K10; Bonaca
et al. 2014) can be compared to constrain systematic errors
of each method and improve understanding of the MW mass
distribution.

The full potential of these methods will be reached by up-
coming next-generation surveys, such as Gaia (Perryman 2002)
and LSST (Ivezić et al. 2008b). First, Gaia will provide mea-

surements of distances and kinematics with a similar faint flux
limit as SDSS, but with much smaller errors (for a comparison
of SDSS, Gaia and LSST astrometric and photometric errors,
see Figure 21 in Ivezić et al. 2012). In particular, Gaia data will
be superior to currently available data for quantifying the spatial
distribution and kinematics of halo stars close to the plane.

LSST will obtain photometric and kinematic measurements
of comparable accuracy to those of Gaia at Gaia’s faint limit,
and extend them deeper by about 5 mag. With LSST, it will be
possible to extend this study to about 10 times larger distance
limit than possible today with SDSS data (Ivezić et al. 2012).
Most notably, it will be possible to investigate whether the
dark matter halo shows any trace of changes in the spatial and
kinematic behavior around ∼30 kpc from the Galactic center
that are revealed by halo stars. Furthermore, by extending the
limiting distance, the impact of baryons will be diminished and
the conclusions about dark matter behavior will be more robust.
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Beers, T. C., Carollo, D., Ivezić, Ž., et al. 2012, ApJ, 746, 34
Bekenstein, J. D. 2004, PhRvD, 70, 083509
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Roškar, R., Debattista, V. P., Brooks, A. M., et al. 2010, MNRAS, 408, 783
Rubin, V. C., Ford, W. K. J., & Thonnard, N. 1980, ApJ, 238, 471
Sanders, R. H., & McGaugh, S. S. 2002, ARA&A, 40, 263
Scannapieco, C., Wadepuhl, M., Parry, O. H., et al. 2012, MNRAS, 423, 1726
Schlaufman, K. C., Rockosi, C. M., Allende Prieto, C., et al. 2009, ApJ,

703, 2177
Schlaufman, K. C., Rockosi, C. M., Lee, Y. S., Beers, T. C., & Allende Prieto,

C. 2011, ApJ, 734, 49
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