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ABSTRACT

Using the Sloan Digital Sky Survey (SDSS) Data Release 6, we construct two independent samples of candidate
stellar wide binaries selected (1) as pairs of unresolved sources with angular separation in the range 300Y1600, and
(2) as common proper motion pairs with 500Y3000 angular separation, and make them publicly available. These samples
are dominated by disk stars, and we use them to constrain the shape of the main-sequence photometric parallax rela-
tionMr(r � i) and to study the properties of wide binary systems. We estimateMr(r � i) by searching for a relation
that minimizes the difference between distance moduli of primary and secondary components of wide binary candi-
dates. WemodelMr(r � i) by a fourth degree polynomial and determine the coefficients independently for each sam-
ple usingMarkov chainMonte Carlo fitting. Aided by the derived photometric parallax relation, we construct a series
of high-quality catalogs of candidate main-sequence binary stars. Using these catalogs, we study the distribution of
semimajor axes of wide binaries, a, in the 2000 AU < a < 47;000 AU range. We find the observations to be well
described by the Öpik distribution, f (a) / 1/a, for a < abreak, where abreak increases roughly linearly with the height
Z above the Galactic plane [abreak / 12;300 Z(kpc)0:7 AU]. The number of wide binary systems with 100 AU <
a < abreak, as a fraction of the total number of stars, decreases from 0.9% at Z ¼ 0:5 kpc to 0.5% at Z ¼ 3 kpc. The
probability for a star to be in a wide binary system is independent of its color. Given this color, the companions of red
components seem to be drawn randomly from the stellar luminosity function, while blue components have a larger
blue-to-red companion ratio than expected from the luminosity function.

Subject headinggs: binaries: visual — Hertzsprung-Russell diagram — stars: distances

Online material: color figures

1. INTRODUCTION

Binary systems can be roughly divided into close (semimajor
axes aP10AU) andwide (semimajor axes ak 100AU;Chanamé
2007) pairs. Close binary systems have long been recognized as
useful tools for studies of stellar properties. For example, stellar
parameters such as the masses and radii of individual stars are
readily determined to high confidence using eclipsing binaries
(Andersen 1991). Wide binary systems have proven to be a tool
for studies of star formation processes, as well as an exception-
ally useful tracer of local potential and tidal fields through which
they traverse. Specifically, they have been used to place con-
straints on the nature of halo dark matter (Yoo et al. 2004) and
to explore the dynamical history of the Galaxy (Allen et al. 2007).
A further comprehensive list of current applications of wide bi-
naries can be found in Chanamé (2007).

Close binaries, owing to their relatively short orbital periods
and equally short timescales of brightness or spectrum fluctua-
tions, are fairly easy to detect. Unambiguous identification of wide
binary systems, on the other hand, requires accurate astrometry
on much longer timescales, as these systems have orbital periods
k10,000 yr. However, instead of requiring unambiguous identi-
fication, large samples of candidatewide binaries can be selected
by simply assuming that pairs of stars with small angular sepa-
ration are also gravitationally bound (Bahcall & Soneira 1981;
Gould 1995) or by searching for common proper-motion pairs
(Luyten 1979; Poveda et al. 1994; Allen et al. 2000; Gould &
Salim 2003; Chanamé & Gould 2004; Lépine & Bongiorno
2007). The angular separation method is simple to apply, but it
also introduces a relatively large number of false candidates due

to chance association of nearby pairs. The contamination by ran-
dom associations can be reduced by imposing constraints, such
as the common proper motion, or by requiring that the stars be at
similar distances. The distances can be inferred through a variety
of means, one of which is the use of an appropriate photometric
parallax relation.3

The photometric parallax relation provides the absolute mag-
nitude of a star given that star’s color and metallicity. There are
a number of proposed photometric parallax relations for main-
sequence stars in the literature that differ in the methodology used
to derive them, photometric systems, and the absolute magni-
tude and metallicity range in which they are applicable. Not all
of them are mutually consistent, and most exhibit significant in-
trinsic scatter of order 0.5 mag or more (see Fig. 2 in Jurić et al.
2008, hereafter J08).
Instead of using an existing relation to select wide binaries, we

propose a novel method that simultaneously derives the photo-
metric parallax relation and selects a sample of wide binary candi-
dates. The method relies on the fact that components of a physical
binary have equal distance moduli (m1 �M1 ¼ m2 �M1) and
therefore � � �M��m � (M2 � M1)� (m2 � m1) ¼ 0. As-
suming that both stars are on the main sequence and that the
shape of the adopted photometric parallax relation is correct, the
difference in absolute magnitudes �M ¼ M2 �M1 calculated
from the parallax relation must equal the measured difference of
apparent magnitudes�m ¼ m2 � m1. The�M ¼ �m equality
for binaries must be valid irrespective of color, and therefore rep-
resents a test of the validity of the adopted photometric parallax
relation or, alternatively, a way to estimate the parallax relation.
In practice, the distribution of �will not be a delta function due

to both instrumental (finite photometric precision) and physical
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effects (true vs. apparent pairs). However, for true wide binaries,
the distribution of � is expected to be narrow and strongly peaked
at zero, and the individual � values are expected to be uncorre-
lated with color. In contrast, the distribution of � values for ran-
domly associated stellar pairs (hereafter called ‘‘random pairs’’)
should be much broader even when the correct photometric par-
allax relation is adopted, reflecting the different distances of com-
ponents of projected binary pairs. This dichotomy can be used to
assign a probability of whether each candidate is a true physical
binary or the result of chance projection on the sky.

The paper is organized as follows. In x 2, we give an overview
of the SDSS imaging data and describe the selection, complete-
ness, and population composition of two initial, independent
samples of candidate binaries. In x 3, we describe the photomet-
ric parallax estimation method, compare the best-fit photometric
parallax relations to the J08 relation, and analyze the scatter in
predicted absolute magnitudes. The properties of wide binaries,
such as the color and spatial distributions, are analyzed in x 4.
Finally, the results and their implications for future surveys are
discussed in x 5.

2. DATA

2.1. Overview of the SDSS Imaging Data

Thanks to the quality of its photometry and astrometry, as well
as its large sky coverage, the SDSS stands out among available
optical sky surveys. The SDSS provides homogeneous and deep
(r < 22:5) photometry in five bandpasses (u, g, r, i, and z; Gunn
et al. 1998, 2006; Hogg et al. 2001; Smith et al. 2002; Tucker
et al. 2006) accurate to 0.02 mag (rms scatter) for unresolved
sources not limited by photon statistics (Scranton et al. 2002;
Ivezić et al. 2003) and with a zero-point uncertainty of 0.02 mag
(Ivezić et al. 2004). The survey sky coverage of 10,000 deg2 in
the northern Galactic cap and 300 deg2 in the southern Galactic
cap results in photometric measurements for well over 100million
stars and a similar number of galaxies (Stoughton et al. 2002).
The recent Data Release 6 (Adelman-McCarthy et al. 2008) lists4

photometric data for 287 million unique objects observed in
9583 deg2 of sky, and can be accessed through the Catalog Archive
Server5 (CAS) CasJobs6 interface. Astrometric positions are ac-
curate to better than 0.100 per coordinate (rms) for sources with
r < 20:5 (Pier et al. 2003), and the morphological information
from the images allows reliable star-galaxy separation to r � 21:5
(Lupton et al. 2002).

The five-band SDSS photometry can be used for very detailed
source classification, e.g., separation of quasars and stars (Richards
et al. 2002), spectral classification of stars to within 1Y2 spectral
subtypes (Lenz et al. 1998; Finlator et al. 2000; Hawley et al.
2002; Covey et al. 2007), identification of horizontal-branch and
RR Lyrae stars (Yanny et al. 2000; Sirko et al. 2004; Ivezić et al.
2005; Sesar et al. 2007), and low-metallicity G and K giants
(Helmi et al. 2003).

Proper-motion data exist for SDSS sources matched to the
USNO-B1.0 catalog (Monet et al. 2003).We take proper-motion
measurements from the Munn et al. (2004) catalog based on as-
trometric measurements from the SDSS and PalomarObservatory
Sky Surveys (POSS-I [Minkowski & Abell 1963] and POSS-II
[Reid et al. 1991]). Despite the sizable random and systematic
astrometric errors in the Schmidt surveys, the combination of a
long baseline (50 yr for the POSS-I survey) and a recalibration of

the photographic data using positions of SDSS galaxies results
in median random errors for proper motions of only 3 mas yr�1

for r < 19:5 (per coordinate), with substantially smaller system-
atic errors (Munn et al. 2004). Following a recommendation by
Munn et al. (2004), when using their catalog we select SDSS
stars with only oneUSNO-Bmatchwithin 100 and require proper-
motion rms fit residuals to be less than 350 mas in both coordi-
nates. We note that the proper-motion measurements publicly
available as a part of SDSS Data Release 6 are known to have
significant systematic errors (Munn et al. 2008). Here we use
a revised set of proper-motion measurements, which will be-
come publicly available as a part of SDSS Data Release 7.

2.2. Initial Sample of Close-resolved Stellar Pairs

For objects in the SDSS catalog, the photometric pipeline
(Lupton et al. 2002) sets a number of flags that indicate the status
of each object, warn of possible problems with the image itself,
and warn of possible problems in the measurement of various
quantities associated with the object. These flags can be used to
remove duplicate detections (in software) of the same object and
to select samples of unresolved sources with good photometry.

According to the SDSS Catalog Archive Server ‘‘Algorithms’’
Web page,7 duplicate detections of the same object can be re-
moved by considering only those whose ‘‘status’’ flag is set
to PRIMARY. We consider only PRIMARY objects and select
those with good photometry by requiring that the BINNED1 flag
be set to 1, and that the PSF_FLUX_INTERP, DEBLEND_NOPEAK,
INTERP_CENTER,BAD_COUNTS_ERROR,NOTCHECKED,NOPROFILE,
PEAKCENTER, and EDGE image processing flags be set to 0 in the
gri bands. Moving unresolved sources, such as asteroids, are
avoided by selecting sources whose DEBLENDED_AS_MOVING flag
is set to 0.

Good photometric accuracy (with mean point-spread function
magnitude errors <0.03 mag; see Fig. 1 in Sesar et al. 2007) is
obtained by selecting sources with 14 < r 0 < 20:5, where r 0 is
the r-band point-spread function (PSF) magnitude uncorrected
for interstellar medium (ISM) extinction. The PSF magnitudes
corrected for ISM extinction (usingmaps by Schlegel et al. 1998),
which are used throughout this work, are noted as u, g, r, i, and z.

To create the initial sample of resolved stellar pairs, we query
the CAS ‘‘Neighbors’’ table (which lists all SDSS pairs within
3000) for pairs of sources that pass the above criteria and for which

(r1 � r2)½(g� i)1 � (g� i)2� > 0; ð1Þ

where the subscript 1 is hereafter assigned to the brighter com-
ponent (SQL queries are listed in Appendix A). With this con-
dition, we require that the component with bluer g� i color be
brighter in the r band. About 40% of random pairs are rejected
with this condition. We estimate that about 3% of true binary
systems might be excluded by this cut (due to uncertainties in the
g� i color caused by photometric errors), but their exclusion
does not significantly influence our results.

We select�4.2 million pairs for the initial sample of resolved
stellar pairs and plot the observed distribution of angular separa-
tion �, fobs(� ), in Figure 1 (top). For a uniform (random) distribu-
tion of stars, the number of neighboring stars within an annulus
�� increases linearly with �, and therefore the number of ran-
dom pairs also increases with �. To find the number of random
pairs as a function of �, we fit frnd(� ) ¼ C� to the fobs histogram
(in the � > 1500 region) and find C ¼ 9043 arcsec�1. For large

4 See http://www.sdss.org /dr6.
5 See http://cas.sdss.org.
6 See http://casjobs.sdss.org /CasJobs/. 7 See http://cas.sdss.org /dr6/en /help/docs/algorithm.asp?key=flags.
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separation angles (� > 1500), the two distributions closely match,
indicating that the majority of observed pairs are simply random
associations and are not physically related. At separation angles
smaller than �1500, the frequency of observed pairs shows an
excess, suggesting the presence of true, gravitationally bound
systems. However, even at small separation angles, the selected

pairs include a non-negligible fraction of random pairs and re-
quire further refinement or careful statistical accounting for ran-
dom contamination.
Throughout this work, we use samples of random pairs (here-

after called ‘‘random samples’’) to account for random contam-
ination in candidate binaries. We define the random sample as a
sample of pairs with 2000 < � < 3000 taken from the initial pool
of stellar pairs. Since pairs in the random sample pass the same
data quality selection as candidate binaries, and since virtually
all of them are chance associations (99.75%; see x 4.1 and Fig. 1),
the random sample is a fair representation of the population of
randomly associated stars in candidate binary samples.

2.3. Geometric Selection

The excess of pairs with � < 1500 in Figure 1 (top) likely indi-
cates a presence of true binaries, and the angular separation pro-
vides a simple, geometric criterion to select candidate binary
systems. This excess, shown as the ratio fobs /frnd in Figure 1
(middle), increases for � < 1500, reaches a relatively flat peak of
�1.45 for 300 < � < 400, and sharply decreases for � < 200 due to
finite seeing and inability to resolve close pairs of sources. This
excess is related to the fraction of true binaries �(� ) as

�(� ) ¼ 1� frnd(� )=fobs(� ): ð2Þ

Using Figure 1 (bottom), we choose 300 < � < 400 for our geo-
metric selection criterion, since the fraction of true binaries is
expected to reach a maximum of �35% in this range.
The interpretation of the excess of close stellar pairs as gravi-

tationally bound binary pairs implies that the components are at
similar distances. If this is true, and if it is possible to constrain
the distance via a photometric parallax relation, then their distri-
bution in the color-magnitude diagram should be different than
for a sample of randomly associated stars.
To test this hypothesis, we select 51,753 candidate binaries

with 300 < � < 400. We compare their distribution in the �r ¼
r2 � r1 versus�(g� i) ¼ (g� i)2 � (g� i)1 diagram to the dis-
tribution of pairs from the random sample, as shown in Figure 2.
The number of pairs in this random sample is restricted to 51,753.
Were the selection a random process, the selected candidates
would have the same distribution in this diagram as the random
sample, and the average candidate-to-random ratio would be�1.
However, in the region where

4:33�(g� i)��r þ 0:4 > 0 ð3Þ

and

2:31�(g� i)��r � 0:46 < 0; ð4Þ

the two distributions are different (with an average candidate-to-
random ratio of �1.7), implying that >40% of candidates are
found at similar distances. In principle, a selection cut using
equations (3) and (4) could be made to increase the fraction of
true binaries in the candidate sample. We do not make such a cut
a priori, but instead develop a method (described in x 3) that ro-
bustly ‘‘ignores’’ random pairs while estimating the photometric
parallax relation. After a best-fit photometric parallax relation is
obtained, the contamination can be minimized by selecting only
pairs where both components are at similar distances, as de-
scribed in x 4.1.
The r versus g� i distributions of the brighter and fainter

components of candidate binaries are shown in Figure 3.We find
that the brighter components in the candidate sample are mostly

Fig. 1.—Top: Comparison of observed ( fobs, solid histogram) and random
( frnd, dashed line; see text) distributions of angular separation �. Middle: Ratio
fobs /frnd as a function of angular separation �. Bottom: Fraction of true binary
systems, �, as a function of angular separation �. [See the electronic edition of
the Journal for a color version of this figure.]
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disk G to M dwarfs, while the fainter components are mostly
M dwarfs.

2.4. Kinematic Selection

As seen from Figure 1 (top), candidate binaries with � > 1500

cannot be efficiently selected using angular distance only, as
nearly all pairs in this range are most likely chance associations.
In this regime, a kinematic selection based on common proper
motion should be more efficient, as random pairs have a small
probability (�0.005, determined using Monte Carlo simulations)
of being common proper-motion pairs (using the selection cri-
teria listed below).

We therefore select a second sample of 14,148 candidate bi-
naries by searching for common proper-motion pairs with a proper-
motion difference�� ¼ �2��1j j< 5 mas yr�1 and with absolute
proper motion in the range 15 mas yr�1 < �j jmax< 400 mas yr�1,
where �j jmax ¼ max ( �1j j; �2j j). These criteria require that the
directions of two proper-motion vectors agree at a 1 � level, and
that the proper motion be detected at a 5 � level or higher. The

Fig. 2.—Distribution of counts for the geometrically selected candidate sam-
ple (top), the random sample (middle), and the ratio of two maps (bottom) in
the�r ¼ r2 � r1 vs.�(g� i) ¼ (g� i)2 � (g� i)1 diagram, binned in 0:05 ;
0:1 mag bins. The average candidate-to-random ratio in the region outlined by
the dashed lines (eqs. [3] and [4]) is�1.7, implying that >40% of candidates are
true binaries.

Fig. 3.—The r vs. g� i distribution of brighter (top) and fainter (bottom)
components from the geometrically selected sample of candidate binaries, shown
with linearly spaced contours.
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common proper-motion pairs with orbital motion k100 over
50 yr are not selected because their USNO-B and SDSS posi-
tions place them outside the 100 search radius used byMunn et al
(2004). The angular separation of common proper-motion pairs
is limited to 900 < � < 3000. Pairs of sources with � < 900 are usu-
ally blended in the USNO-B data andmay not have reliable proper-
motion measurements (see x 4.4), while the maximum angular
separation between sources in the CAS Neighbors table defines
an upper limit of � < 3000. However, for the purposes of x 4.4, we
have created a sample of common proper-motion pairs that ex-
tends to � ¼ 50000. We have done this by matching SDSS sources
(those that pass the quality flags described in x 2.2) within a 50000
search radius into common proper-motion pairs. Since thismatch-
ing is computationally expensive, we have done this for only one
sample. The r versus g� i distributions of brighter and fainter
components of kinematically selected candidate binaries are
similar to those shown in Figure 3.

2.5. Sample Completeness

Before proceeding with the determination of photometric par-
allax relations and the discussion of the properties of wide bi-
nary systems, we summarize the completeness of geometric and
kinematic samples, and estimate their expected fractions of disk
and halo populations. The samples are selected from a highly di-
mensional space of measured parameters, and an understanding
of the selection effects is a prerequisite for determining the limi-
tations of various derived statistical properties. For example, the
geometric sample is selected using five parameters: the g� i color
of the two components, (g� i)1 and (g� i)2, their apparent
magnitudes, r1 and r2, and their angular separation on the sky, �.
The latter three can be transformed with the aid of a photometric
parallax relation into the difference of their apparent magnitudes
�m ¼ r2 � r1, the distance D, and the projected physical sepa-
ration a. We seek to constrain the photometric parallax relation
by minimizing the difference � ¼ �M ��m, where �M is a
two-dimensional function of (g� i)1 and (g� i)2 (see x 3), and
at the same time derive constraints on the two-dimensional color
distribution of wide binaries, on their a distribution, and on any
variation of these distributions with position in the Galaxy (x 4).
Not all of these constraints can be derived independently of each
other, andmost are subject to severe selection effects. By judiciously
selecting data subsets and projections of this five-dimensional
parameter space, these effects can be understood and controlled
as described below.

To illustrate the most important selection effects, we employ
the photometric parallax relation and its dependence on metallic-
ity derived by Ivezić et al. (2008a, hereafter I08a). The quanti-
tative differences between their photometric parallax relation and
the ones derived here have a negligible impact on the conclusions
derived in this section. For simplicity, we select a sample of
�2.8 million stars with r < 21:5 observed toward the north Ga-
lactic pole (b > 70�), and study their counts as a function of dis-
tance and g� i color. Due to this choice of field position, the
distance to each star is approximately equal to its distance from
the Galactic plane (for a detailed study of the dependence of stel-
lar number density on position within the Milky Way, see J08).
Figure 4 illustrates several important selection effects.

First, for any g� i color there is a minimum and maximum
distance corresponding to the SDSS saturation limit at r � 14
and the adopted faint limit at r ¼ 21:5; the probed distance range
extends from 100 pc to 25 kpc. Within the distance limits appro-
priate for a given color, the sample is essentially complete (�98%;
Finlator et al. 2000). Second, these limits are strongly depen-
dent on color: the bluest stars saturate at a distance of about 1 kpc,

while the reddest stars are too faint to be detected even at a few
hundred pc. Equivalently, due to the finite dynamic range of
SDSS apparent magnitudes, there is no distance range where the
entire color range from the blue disk turnoff edge to the red edge
of the luminosity function is completely covered. At best, at dis-
tances of about 1 kpc the color completeness extends from the
blue edge to the peak of the luminosity function at g� i � 2:7.
Third, when pairing stars into candidate binary systems, their color
distribution at a given distance (the requirement that the differences
of apparent and absolute magnitudes be similar places the two
stars from a candidate pair into a narrow horizontal strip in the
distance modulus [DM] vs. g� i diagram shown in Fig. 4) will
be clipped: the ratio of the number of candidate binaries and the
number of all single stars in the sample decreases at distances
significantly different from �1 kpc because of a bias against
blue-red pairs.
The binary samples selected from the �1 kpc distance range

can be used to measure the two-dimensional color distribution of
wide binaries, as well as to gauge the dependence of their a dis-
tribution on color. The dependence of the a distribution on distance

Fig. 4.—Color-coded map (with legend in the top right corner) showing the
logarithm of the volume number density (stars kpc�3 mag�1) of �2.8 million
stars with 14 < r < 21:5 observed toward the north Galactic pole (b > 70�) as a
function of their distance modulus and the g� i color (the density variation in
the horizontal direction represents the luminosity function, and the variation in
the vertical direction reflects the spatial volume density profiles of disk and halo
stars). The absolute magnitudes are computed using expressions (A3) and (A7)
from I08a, and the displayed distance range is from 100 pc to 25 kpc. Stars are
color selected from the main stellar locus (dominated by main-sequence stars)
using criteria 3Y5 in x 2.3.1 of I08a. The metallicity correction is applied using
photometric metallicity for stars with g� i < 0:7 (based on eq. [4] from I08a)
and by assuming ½Fe/H� ¼ �0:6 for redder stars. This color roughly corre-
sponds to G5, as illustrated above the g� i axis (using the MK spectral type vs.
g� i color table from Covey et al. 2007). The two vertical arrows mark the turn-
off color for disk stars and the red edge of M dwarf color distribution (there are
redder M dwarfs detected by SDSS, but their volume number density, i.e., the
luminosity function, falls precipitously beyond this limit; J. Bochanski 2008,
private communication). The two diagonal dashed lines show the apparent mag-
nitude limits, r ¼ 14 and r ¼ 21:5. The dot-dashed diagonal line corresponds to
r ¼ 20, which approximately describes the 50% completeness limit for stars with
cataloged proper motions (Munn et al. 2004). Around the marked distance range
of 3Y4 kpc, the counts of halo stars begin to dominate disk stars (see Fig. 6 in
I08a), and the distance range around 1 kpc offers the largest color completeness.
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from the Galactic plane can also be studied over a substantial dis-
tance range, but only under the assumption that it is independent
of color.

The imposed � range (300Y3000) limits the range of probed phys-
ical separation to values proportional to distance and ranging
from 3000 to 30,000 AU at a distance of 1 kpc. We discuss and
account for these effects in more detail in x 4.3.

2.6. Separation of Disk and Halo Populations

The counts of main-sequence stars shown in Figure 4 include
both disk and halo populations. With the available data, there are
three methods that might be used for separating stars (includ-
ing candidate binary systems) into disk and halo populations
(M. Jurić et al., in preparation):

1. A statistical method based on the stellar number density
profiles (J08). Beyond about 3 kpc from the plane, halo stars
begin to dominate. However, as shown in Figure 4, only stars
bluer than g� i ¼ 2 are detected at such distances. The stellar
number density profiles suggest that the fraction of halo stars is
below �20% for distances less than 1.5 kpc from the Galactic
plane (see Fig. 6 in I08a).

2. Classification based on metallicity into low-metallicity
( Fe/H½ � < �1) halo stars and higher metallicity stars. As shown
by I08a, this is a robust and accurate method, even when using a
photometric metallicity estimator, but it works only for stars with
g� iP0:7 due to the limitations of the photometric metallicity
method, and the SDSS spectroscopicmetallicity is available only
for a small fraction of stars in the candidate samples.

3. Kinematic selection based on proper-motion measurements
and implemented via a reduced-proper-motion diagram (e.g.,
Salim & Gould 2003; Munn et al. 2004 and references therein).
However, as discussed in detail in Appendix B, this method is ro-
bust only closer than 2Y3 kpc to the Galactic plane due to a rota-
tional velocity gradient of disk stars, which diminishes kinematic
differences between halo and disk stars farther away from the plane.

Given the limitations of these methods, it is not possible to re-
liably separate disk and halo populations throughout the explored
parameter space in both geometric and kinematic samples. For
the geometric sample, the third method is not applicable because
SDSS-POSS proper motions are not reliable at small angular
distances (�P900; see x 4.4). The requirement for the second
method that g� iP0:7 results in a subsample with too narrow a
color range to constrain the photometric parallax relation. Never-
theless, the analysis of this subsample based on results from I08a
indicates that fewer than 10% of stars in the geometric sample
belong to the halo population (this fraction increases with the
distance from the Galactic plane; see Fig. 6 in I08a), and thus
we expect that halo contamination plays only a minor role in the
geometric sample.

The kinematic sample is expected to include a non-negligible
fraction of halo stars due to the selection of stars with substantial
proper motions. We use the reduced-proper-motion diagram to
estimate the fraction of halo candidate binary stars in this sam-
ple. Here, the reduced proper motion for an arbitrary photometric
bandpass, r, is defined as

rRPM ¼ r þ 5 log �; ð5Þ

where� is propermotion in arcsec yr�1 (sometimes an additional
offset of 5 mag is added). Using a relationship between proper
motion, distance, and tangential velocity,

vt ¼ 4:47�D ð6Þ

and

r �Mr ¼ 5 log (D)� 5; ð7Þ

equation (5) can be rewritten as

rRPM ¼ Mr þ 5 log (vt)þ C; ð8Þ

where D is the distance in pc,Mr is the absolute magnitude, vt is
the heliocentric tangential velocity (the projection of the helio-
centric velocity on the plane of the sky), andC is a constant (C ¼
�8:25 if vt is expressed in km s�1). Therefore, for a population
of stars with the same vt, the reduced proper motion is a measure
of their absolute magnitude. As shown using data similar to that
discussed here, halo and disk stars form two well-defined and
separated sequences in the reduced proper motion versus color
diagram (e.g., Salim & Gould 2003; Munn et al. 2004 and ref-
erences therein).We discuss the impact of different halo and disk
star metallicities and velocity distributions on their reduced-
proper-motion distributions in more detail in Appendix B.

Figure 5 shows reduced-proper-motion diagrams for stars ob-
served toward the north Galactic pole, constructed for two ranges
of observed proper motion: 15Y50 and 50Y400 mas yr�1. The
choice of the proper-motion range, together with unavoidable
apparent magnitude limits, strongly affects the probed dis-
tance range: the larger the proper motion, the closer the dis-
tance range over which the selection fraction is non-negligible.
We find that the two sequences closely follow the expectations
based on the analysis of metallicity and velocity distributions
from I08a. The halo sequence can be efficiently separated by se-
lecting stars with reduced proper motion larger than a boundary
generated using the photometric parallax relation from I08a, eval-
uated for the median halo metallicity ( Fe/H½ � ¼ �1:5) and with
vt ¼ 180 km s�1 (see eq. [8]). This separation method is con-
ceptually identical to the � separator discussed by Salim&Gould
(2003). Those authors also proposed to account for a shift of
the reduced-proper-motion sequences with Galactic latitude, an
effect we discuss in more detail in Appendix B. For the reasons
described there, to account for the variation of the reduced-proper-
motion sequences away from the Galactic pole, we simply offset
the vt value from 180 to 110 km s�1 (i.e., the separator moves
upwards in Fig. 5 by 1 mag). While this selection removes some
disk binaries, it is designed to exclude most halo binaries from
the sample.

With the aid of a reduced-proper-motion separator, we sepa-
rate the kinematic sample into candidate halo stars (1336 pairs)
and disk binaries (10,112 pairs). This fraction of halo systems
is consistent with the above estimate obtained for the geometric
sample. To assess selection effects, we first investigate the sam-
ple of single stars. The top left panel in Figure 6 shows the frac-
tion of all stars shown in Figure 5 that have proper motions larger
than 15 mas yr�1 and r < 19:5 (the latter limit ensures SDSS-
POSS proper-motion catalog completeness above �90%). The
selection efficiency is a strong function of distance and falls from
its maximum of �95% for nearby stars to below 50% at a dis-
tance of about 1 kpc. The candidate disk stars are detected in sig-
nificant numbers to �3 kpc, and halo stars beyond �1 kpc. The
fraction of selected stars that are classified as halo stars is below
20% closer than �1.5 kpc to the Galactic plane, and becomes
essentially 100% beyond 3 kpc.

The kinematic difference between halo and disk stars is blurred
at distances beyond 2Y3 kpc (see Appendix B), and the majority
of disk stars at such distances are misidentified as halo stars (the
metallicity distribution implies that disk stars do exist at distances
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as large as 7 kpc from the Galactic plane; see Fig. 10 in I08a). To
demonstrate this effect, we use subsamples of candidate disk and
halo binaries identified using the reduced-proper-motion diagram
that have 0:2 < (g� r)1 < 0:4. For these pairs, it is possible to
estimate photometric metallicity (I08a) and to use it as an inde-
pendent population classifier. Figure 7 shows that practically all
candidate binaries with Fe/H½ � > �1 farther than �2 kpc from
the Galactic plane are misclassified as halo stars when using the
reduced-proper-motion diagram.

In summary, the geometric sample is heavily dominated by
disk binaries, with halo contamination all but negligible at dis-
tances less than about 2 kpc from the plane. The kinematic sam-
ple becomes severely incomplete (<50%) farther than �2 kpc
from the plane, and has a higher fraction of halo binaries than
the geometric sample at a given distance from the plane. How-
ever, this halo contamination can be efficiently removed using
the reduced-proper-motion diagram. Unfortunately, the number
of selected halo binaries is insufficient in number (1336 in the ki-
nematic sample and 5556 in the geometric sample), and spans
too narrow a color range to robustly constrain the photometric
parallax relation. Therefore, both samples of candidate binaries
are supposed to yield similar photometric parallax relations, be-
cause both are dominated by disk stars.

3. PHOTOMETRIC PARALLAX ESTIMATION METHOD

In principle, both the normalization and the shape of the pho-
tometric parallax relation (i.e., the shape of the main sequence in
the Hertzsprung-Russell diagram) vary as a function of color and
metallicity (Laird et al. 1988; Siegel et al. 2002). Since our data
do not allow a reliable estimate of metallicity over the entire range
of observed colors, we can only estimate the ‘‘mean’’ shape of the
photometric parallax relation as a function of color for all metal-
licities present in the sample. Such a mean shape is approximately

an average of individual Fe/H½ �-dependent relations, weighted
by the sample metallicity distribution. J08 derived such ‘‘mean’’
photometric parallax relations that are appropriate at the red end
for the nearby, metal-rich stars, and at the blue end for distant,
metal-poor stars. I08a discuss the offset of the photometric par-
allax relation as a function of metallicity (see their Fig. 20), and
derive the metallicity range implied by the ‘‘mean’’ photometric
parallax relations from J08. The derived metallicity range is con-
sistent with the spatial distribution of metallicity derived by I08a
and the color-magnitude limits of the SDSS survey.

3.1. Photometric Parallax Parametrization

We adopt the J08 polynomial r � i parameterization of the
photometric parallax relation

Mr(r � ij p) ¼AþB(r� i)þ C(r� i)2 þ D(r� i)3 þ E(r� i)4;

ð9Þ

where p ¼ (A;B;C;D;E ) are the parameterswewish to estimate.
To improve their accuracy, J08 used a maximum-likelihood tech-
nique to estimate the r � i color from the observed g� r and r � i
colors. Because of the brighter flux limit employed here, we use
the measured g� i color to derive a best estimate of the r � i
color via a stellar locus relation (J08):

g� i ¼ 1:39f1� exp ½�4:9(r � i) 3 � 2:45(r � i) 2

�1:68(r � i)� 0:050�g þ r � i: ð10Þ

The r � i color estimate obtained with this method has noise sev-
eral times smaller than the measured r � i color. This is because
the observed dynamic range for the g� i color is much larger than

Fig. 5.—Reduced proper-motion diagrams for two subsamples of stars shown in Fig. 4. The color-coded maps show the logarithm of the number of stars per pixel,
according to the inset legends. The left panel corresponds to a sample of �446,000 stars with proper motions in the range 15Y50 mas yr�1, and the right panel to a sam-
ple of 43,000 stars in the range 50Y400 mas yr�1. The requirement of larger proper motions introduces bias toward closer, and thus redder, stars. The two long-dashed
lines in each panel correspond to the photometric parallax relations from I08a, evaluated for ½Fe/H� ¼ �0:6 and with tangential velocities of 55 km s�1 (top curve)
and120 km s�1 (bottom curve). This variation of tangential velocity is consistent with the rotational velocity gradient discussed by I08a. The dot-dashed line is evalu-
ated for ½Fe/H� ¼ �1:5, with a tangential velocity of 300 km s�1. The short-dashed line (second from the bottom) separates disk and halo stars, and is evaluated for
½Fe/H� ¼ �1:5, with a tangential velocity of 180 km s�1.
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that of the r � i color (�3 mag vs. �1 mag), while their mea-
surement errors are similar.

3.2. Parameter Estimation Algorithm

The goal of the parameter estimation algorithm is to determine
the photometric parallax relationMr(r � ij p) that minimizes the
width of the distribution of � values for true binary systems,
where � ¼ (Mr2 �Mr1)� (r2 � r1). The �

2 minimization can-

not be used for this purpose because random pairs, if not re-
moved from the sample, will strongly bias the best-fit Mr. The
available color, angular separation, and proper-motion informa-
tion are insufficient to separate the random pairs from the true
binaries. Therefore, we need to design a fitting algorithm that
will be affected as little as possible by random pairs.

We begin by studying the behavior of � values in mock cata-
logs. The first step in creating a mock catalog is the selection of

Fig. 6.—Same as Fig. 4, but for subsamples selected using proper-motion measurements. Out of 2.8 million stars shown in Fig. 4, 1.24 million are brighter than
r ¼ 19:5 and have proper-motion measurements. Of those, 498,000 have proper motion in the range 15Y400 mas yr�1 (only 10% of selected stars have proper motions
greater than 50mas yr�1). The color-codedmap in the top left panel shows the fraction of such stars as a function of distance and the g� i color. At a distance of�1 kpc,
about half of all stars have proper motion larger than 15 mas yr�1. The top right panel shows the counts of candidate disk stars, selected as stars above the separator
shown in Fig. 5, and the bottom left panel shows halo stars selected from below the separator. The bottom right panel shows the counts of halo stars as a fraction of
all stars selected using the reduced-proper-motion diagram. Note that beyond 3 kpc, the sample is dominated by halo stars.
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51,753 (random) pairs from the random sample. Note that the
fraction of true binaries in the random sample is only �0.25%
(see x 4.1). True binaries are then ‘‘created’’ in the mock catalog
by replacing the observed r2 magnitudes for 20% of the pairs
with

r2 ¼ r1 þ (Mr2 �Mr1)þ N (0; 0:1); ð11Þ

where Mr ¼ Mr(r � ij p0) and p0 ¼ (3:2; 13:30;�11:50; 5:40;
�0:70) (the coefficients from eq. [2] in J08). Here,N (0; 0:1) is a

Gaussian random variate added to account for the intrinsic scat-
ter around the photometric parallax relation. The result of this
process is a mock sample of candidates where 20% of pairs are
‘‘true’’ binaries, and the rest (80%) constitute the contamina-
tion made of random pairs. The distribution of � values for true
binaries is, by definition, a 0.1 mag wide Gaussian centered on
zero when Mr ¼ Mr(r � ijp0).
Figure 8 (top) shows the distribution of � values for the mock

sample evaluated with the true Mr(r � ijp0) photometric paral-
lax relation. The observed � distribution can be described as the
sum of a Gaussian and a non-Gaussian component. The non-
Gaussian component is due to random pairs (the contamination),
while the Gaussian component (0.1 mag wide and centered on
zero) is due to the true binaries.
When an Mr relation different from the true (or best-fit) Mr is

adopted, the Gaussian component becomes wider and the peak
height of the � distributiondecreases, as shown inFigure 8 (bottom).
At the same time, the peak height of the � distribution of the con-
tamination changes much less, since the distribution is much
wider (�2.3 mag wide). Therefore,minimizing the width of the

Fig. 8.—Distribution of � ¼ (Mr2 �Mr1)� (r2 � r1) values for a mock sam-
ple of candidate binaries (solid line) whenMr ¼ Mr(r � ijp0) (top), and for aMr

different fromMr(r � ijp0) (bottom). The fraction of random pairs (the contam-
ination) in the sample is 80%. The � distribution for ‘‘true’’ binaries ( filled circles)
is obtained by subtracting the � distribution of random pairs (open circles) from
the candidate binary � distribution. The best-fit Gaussian for the ‘‘true’’ binaries �
distribution is centered on 0 and 0.1 mag wide in the top panel, and centered on
�0.02 and 0.13 mag wide in the bottom panel. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 7.—Top: Photometricmetallicity vs. distance from theGalactic plane dia-
gram for candidate binaries selected from the geometric sample using �j j < 0:4
and 0:2 < (g� r)1 < 0:4. The �j j < 0:4 cut is used to reduce the contamination
by random pairs (see x 3.6). Note that the fraction of low-metallicity halo binaries
(½Fe/H� < �1) becomes significant only at Z > 2 kpc.Middle: Same as the top
panel, but showing binaries from the kinematic sample. Circles correspond to
binaries with reduced proper motions characteristic of disk binaries, and triangles
to candidate halo binaries. Note that binaries with disklike metallicity (½Fe/H� >
�1) at large distances (Z > 2 kpc) are misclassified as halo binaries. Bottom:
Comparison of the (u� g)1 color distributions and corresponding photometric
metallicity distributions for binaries from the top two panels. The metallicity vs.
u� g color transformation is taken from I08a. The distribution for binaries from
the geometric sample is shown by the thick solid line, and the distributions for bi-
naries from the kinematic sample are shown by the thin solid line (disk candi-
dates) and dotted line (halo candidates). [See the electronic edition of the Journal
for a color version of this figure.]
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� distribution of true binaries is equivalent to maximizing the
peak height of the entire � distribution. We quantify this peak
height as the number of candidate binaries in the most populous
� bin.

3.3. Algorithm Implementation

To robustly explore the parameter space that defines the pho-
tometric parallax relation and to find the best-fit coefficients
p, we implement our algorithm as a Markov chain Monte Carlo
(MCMC) process. The MCMC description given here and our
implementation of the algorithm are based on examples given
by Tegmark et al. (2004), Ford (2005), and Croll (2006).

The basic idea of the MCMC approach is to take an n-step in-
telligent random walk around the parameter space while record-
ing the point in parameter space for each step. Each successive
step is allowed to be some small distance in parameter space from
the previous position. A step is always accepted if it improves
the fit, and is sometimes accepted on a random basis even if the
fit is worse, where the goodness of the fit is quantified by some
parameter (usually with �2). The random acceptance of a bad fit
ensures that the MCMC does not become stuck in a local mini-
mum, and allows the MCMC to fully explore the surrounding
parameter space.

We start a Monte Carlo Markov chain by setting all coef-
ficients from equation (9) to zero ( pi ¼ 0). Using this initial set of
coefficients, we evaluate � ¼ (Mr2 �Mr1)� (r2 � r1) for all can-
didate binaries assumingMr(r � ijpi), and bin � values in 0.1 mag
wide bins. The number of candidate binaries in the most popu-
lous bin, Pi, is used to quantify the relative goodness of the fit.

Given pi, a new candidate step pn ¼ pi þ�p is generated,
where the step size�p is a vector of independent Gaussian ran-
dom variates with initial widths, �, set to 1. Using the candidate
set of coefficients, pn, � values are evaluated, binned, and the
height of the � distribution is assigned to parameter Pn.

Following the Metropolis-Hastings rule (Metropolis et al. 1953;
Hastings 1970) the candidate step is accepted ( piþ1 ¼ pn,Piþ1 ¼
Pn) if Pn > Pi or if exp (Pn � Pi) > �, where � is a random num-
ber between 0 and 1 (� 2 ½0; 1�). Otherwise, the candidate step is
rejected.

While the Metropolis-Hastings rule guarantees that the chain
will converge, it does not specify when the convergence will be
achieved. The speed of the convergence depends on the Gaussian
scatter � used to calculate the step size �p. If the scatter is too
large, a large fraction of candidate steps is rejected, causing the
chain to converge very slowly. If the scatter is too small, the
chain behaves like a random walk, and the number of steps re-
quired to traverse some short distance in the parameter space scales
as 1/�2. The choice of optimal Gaussian scatter � (for each fitted
coefficient) as a function of the position in the parameter space is
not trivial, and it can be very complicated even if the fitted co-
efficients are uncorrelated.

To determine the optimal� values, we follow the Tegmark et al.
(2004) prescription (see their Appendix A). After every 100 ac-
cepted steps, we compute the coefficient covariance matrixC �
h ppti � h pih pti from the chain itself, diagonalize it asC¼ R�Rt,
and use it to calculate a new step size�p0 ¼ Rt�1=2�p for each
coefficient separately.We find that this transformation greatly ac-
celerates the convergence of a chain.

Due to the stochastic nature of the MCMC, the best-fit rela-
tions (coefficients with the highest Pi value in a chain) from dif-
ferent chains will not necessarily be the same. To quantify the
intrinsic scatter between different best-fit relations, we run fifty
10,000-element-long chains and select the best-fit coefficients
from each chain for subsequent comparison (see x 3.4). The proper

mixing and convergence of chains is confirmed using the Gelman
& Rubin R statistic (Gelman & Rubin 1992). Gelman & Rubin
suggest running the chains until R < 1:2 for all fitted coefficients.
With 10,000 elements in each chain, we obtain R < 1:01 for all
fitted coefficients.

In the end, we select p ¼ (A;B;C;D;E ) with the highest Pi

value among all chains as our best-fit relation. The constant term
A is not constrained with our algorithm, because the values of A
(from Mr2 and Mr1) cancel out when evaluating �. Instead, we
constrain A by requiring Mr ¼ 10:07 at r � i ¼ 1:1, obtained
from trigonometric parallaxes of nearby M dwarfs (West et al.
2005).

3.4. Algorithm Robustness Test

To test the robustness of our algorithm, we apply it to the
mock sample described in x 3.2. The best-fit relations (obtained
from Markov chains) are compared on a 0:1 F r � i F 1:5 grid
in 0.01 mag steps. We find an rms scatter of 0.05 mag between
Markov chains, and 0.05 mag rms scatter between the true and
the best-fit relation with the highest Pi value.

We repeat this test with a mock sample containing 30% true
binaries. The rms scatter between the best-fit relations decreases
to 0.03 mag, and the rms scatter between the true and the best-fit
relation with the highest Pi value decreases to 0.01 mag.

Even when only 20% of sources are true binaries (i.e., when
contamination by random pairs is 80%), our algorithm recovers
the ‘‘true’’ photometric parallax relation at the 0.05 mag (rms)
level. The accuracy of the fit increases (to 0.01 mag rms) as the
contamination decreases (from 80% to 70%).

3.5. Best-Fit Photometric Parallax Relations

We apply the method described in x 3.3 to two samples of
candidate binaries and obtain the best-fit photometric parallax
relations,

Mr ¼ 3:32þ 15:02(r � i)� 18:58(r � i)2

þ 13:28(r � i)3 � 3:39(r � i)4; ð12Þ

Mr ¼ 3:42þ 13:75(r � i)� 15:50(r � i) 2

þ 10:40(r � i) 3 � 2:43(r � i) 4; ð13Þ

for the geometrically and kinematically selected samples, re-
spectively. Candidate halo binaries were removed from the kine-
matically selected sample using reduced-proper-motion diagrams
(x 2.6) before equation (13)was derived. The photometric parallax
relations for halo stars cannot be robustly constrained using
geometrically or kinematically selected halo binaries because
the color range they span is too narrow (g� i < 1:0 at 3Y4 kpc;
see Figs. 4 and 6).

We test the correctness of the shape by studying the depen-
dence of median � values on the g� i colors of the brighter and
the fainter components. If the shape of these photometric paral-
lax relations is correct, the distribution of � values will be cen-
tered on zero, and the individual � values will not correlate with
color. The medians are used because they are more robust to
outliers (random pairs in the sample). We start by calculating �
values for each candidate binary sample (using the appropriate
Mr relation) and then select candidates with �j j < 0:4. This cut
reduces the contamination by random pairs, as demonstrated in
x 3.6. The selected candidate binaries are binned in g� i colors
of the brighter and the fainter component, and themedian � values
are shown in Figure 9.
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The distributions of the median � for each pixel are fairly nar-
row (0.07 mag), and centered on zero. Irrespective of color and
the choice of the two best-fit photometric parallax relations, the
deviations are confined to the 0.25 mag range, placing an upper
limit on the errors in the mean shape of the adopted relations.

In Figure 10, we compare the adopted photometric parallax
relations to J08 ‘‘faint’’

Mr ¼ 4:0þ 11:86(r � i)� 10:74(r � i)2

þ 5:99(r � i) 3 � 1:20(r � i) 4 ð14Þ

and ‘‘bright’’

Mr ¼ 3:2þ 13:30(r � i)� 11:50(r � i)2

þ 5:40(r � i) 3 � 0:70(r � i) 4 ð15Þ

photometric parallax relations. The rms difference between equa-
tions (12) and (13), and equation (15) is �0.13 mag, which is
comparable to the rms difference between our equations (12) and
(13) (�0.13mag). Themaximumdifference between equations (12)
and (13), and equation (15) is �0.25 mag, which is again com-
parable to the maximum difference between our equations (12)
and (13) (�0.25 mag). The different color distributions of the
two samples, shown in Figure 11, together with metallicity ef-
fects, is the most likely explanation for differences between the
two photometric parallax relations.

3.6. Analysis of the Scatter in Predicted Absolute Magnitudes

The scatter in � values can be expressed as

h� 2i ¼ h(�M ��m)2i � h�M 2i þ h�r 2i; ð16Þ

where h�M 2i is the scatter in predicted absolute magnitudes,
and h�m2i is the scatter in measured apparent magnitudes. Since
the photometric uncertainties of SDSS are well understood, the
intrinsic scatter around theMr(r � i) relation is possible to mea-
sure and characterize.
In Figure 12, we plot the observed distributions of � values for

the geometrically and kinematically selected binaries, and over-
plot the � distribution of the random sample. The � values for the

Fig. 9.—Dependence of median �, h� i values on r � i colors of the brighter
and fainter component for the geometrically (top) and kinematically selected
(bottom) samples of candidate binaries with �j j < 0:4. The r � i color axes are
interpolated from the g� i axes using eq. (10). Sources are binned in 0:1 ;
0:1 mag g� i color pixels (with a minimum of 6 sources per pixel), and the me-
dian values are color coded according to the inset legends at the top of each panel.
Inset histograms show the distribution of h� i. The h� i distribution medians are 0
to within <0.01 mag, and the scatter (determined from the interquartile range) is
0.07 mag for both samples.

Fig. 10.—Comparison of eq. (14) (dot-dashed line) and eq. (15) (dashed
line) photometric parallax relations from J08 (their eqs. [1] and [2]) with the
eq. (12) (solid line) and eq. (13) (dotted line) photometric parallax relations de-
termined in this work. The inset shows the magnitude difference, � ¼ MJ08�
Mthis work, between the eq. (15) photometric parallax relation (eq. [1] from J08),
and eqs. (12) (solid line) and (13) (dotted line) from this work. The rms scatter
between eqs. (12) and (13), and eq. (15) is 0.13 mag. The rms scatter between
eqs. (12) and (13) (dashed line) is also 0.13 mag. [See the electronic edition of
the Journal for a color version of this figure.]
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random sample were calculated with equations (12) and (13),
respectively. The � distribution of the random sample was fit-
ted to the observed � distribution in the �j j > 1 range using the
Kolmogorov-Smirnov test.

By comparing the random and the observed � distributions,
we find that the two match well for �j j > 1 (the Kolmogorov-
Smirnov test reports P � 0:95), indicating that candidate bina-
ries with �j j > 1 are almost certainly random pairs. On the other
hand, as � approaches zero, the two distributions become remark-
ably different (P � 10�7 for �j j < 1), indicating that these can-

didate binaries are dominated by true binary systems, and not by
random pairs.

The � distribution for true binaries (Fig. 12, dashed line), ob-
tained by subtracting the random from the observed � distribu-
tion, is clearly not Gaussian. It can be modeled as the sum of two
Gaussian distributions (‘‘narrow’’ and ‘‘wide’’) centered close to
zero, and about 0.1 mag and 0.55 mag wide. The centers, widths,
and areas for the best-fit Gaussian distributions are given in Table 1.

To determine the consistency of the observed scatter with pho-
tometric errors, we normalize the � values for the kinematically
selected sample with expected formal errors,

�� ¼ (�2
Mr2

þ �2
Mr1

þ �2
r2
þ �2

r1
)1=2; ð17Þ

and plot the �/�� distribution in Figure 13. The �/�� distribution
for true binaries is not a Gaussian with a width of 1, as we would
expect if the scatter in the � distribution were only due to pho-
tometric errors in the gri bands [note that the expected random
error inMr is about 5Y10 times larger than the random error of

Fig. 11.—Comparison of (g� i)2 vs. (g� i)1 color-color distributions of
geometrically selected (top) and kinematically selected disk binaries (bottom)
with �j j < 0:4. The fraction of binaries in a pixel is color coded according to the
inset legends. The pixels are 0:2 ; 0:2 mag wide in g� i color, and the r � i
color axes are interpolated from g� i axes using eq. (10).

Fig. 12.—Distribution of � values for the geometrically (top) and kinemat-
ically selected (bottom) samples of candidate binaries, with absolute magnitudes
Mr calculated using eqs. (12) and (13), respectively. The � distribution for true
binaries (open circles) is obtained by subtracting the � distribution for random
pairs (triangles) from the � distribution for candidate binaries (thick solid line).
The � distribution for true binaries is a non-Gaussian distribution (dashed line)
that can be described as a sum of twoGaussian distributions. The centers, widths,
and areas for the best-fit narrow (dotted line) and wide (thin solid line) Gaussian
distributions are given in Table 1. The integrals (areas) of � distributions for ran-
dom pairs and candidate binaries are Arnd and Aobs, respectively. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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the g� i color, because dMr /d(g� i) varies from �10 at the
blue edge to �5 at the red edge].

The width of the �/�� distribution for the geometrically se-
lected candidate binaries is about 3 times smaller than in the
kinematically selected sample. We find that this is due to over-
estimated photometric errors in the geometrically selected sam-
ple, as shown in Figure 14. The overestimated photometric errors
in the gri bands overestimate the expected formal error ��, and
the overall �/�� distribution is too narrow.We speculate that the
small angular separation (�300) between the components is the
cause of overestimated photometric errors (perhaps due to sky
background estimates). The small angular separation of compo-
nents does not affect the magnitudes of stars in the geometrically
selected sample. If it did, the two � distributions would be sig-
nificantly different which, as shown in Figure 12, is not the case.

The observed non-Gaussian scatter in predicted absolute mag-
nitudes may be due to photometric parallax variation as a func-
tion of metallicity. As noted at the beginning of x 3, we can only
estimate the ‘‘mean’’ shape of the photometric parallax relation.
Since the intrinsic photometric parallax for a given wide binary
system is different from the mean relation,�M (the difference of
predicted absolute magnitudes) and �m (the measured differ-
ence of apparent magnitudes) will differ. This discrepancy will
increase for systems where the components have significantly
different colors.

To test the assumption that the shape of the photometric par-
allax relation increases the scatter in predicted absolute magni-
tudes, we use the mock sample constructed in x 3.2 and add a
color-dependent offset to apparent magnitudes

r 01 ¼ r1 þ �(g� i)1; ð18Þ
r 02 ¼ r2 þ �(g� i)2; ð19Þ

where � is a random number between 0 and 1 (the same for both
components). These color-dependent offsets simulate the change
in the shape of the photometric parallax relation due to metallic-
ity.We apply the algorithm described in x 3.3 to the mock sample
and obtain a revised photometric parallax relation. Using this re-
lation, we analyze the distribution of � values and find that it can
be modeled as the sum of two Gaussians centered on zero, with
widths of 0.1 and 0.3 mag. This result suggests that the non-
Gaussian scatter observed in candidate samples may be caused
by the difference between the shapes of the mean photometric
parallax relation and a true relation for a given metallicity (and
perhaps other effects, such as age).
This model-based conclusion is consistent with the direct com-

parison of relations derived here and the relations from I08a
evaluated for the median halo metallicity ( Fe/H½ � ¼ �1:5) and
the median disk metallicity ( Fe/H½ � ¼ �0:7 for distances probed
by our sample; see Fig. 5 in the above paper). The two relations
corresponding to halo and disk stars are offset by 0.6 mag due to
the metallicity difference. Our relations match the low-metallicity
relation at the blue end and the high-metallicity relation at the
red end. Therefore, in the worst-case scenario of extremely blue
(r � i ¼ 0:3) and red (r � i ¼ 1:4) disk stars, themaximum error
in the difference of their absolute magnitudes is 0.6 mag. When
convolved with the observed color distribution of pairs, the ex-
pected scatter is about 0.2Y0.3 mag, which is consistent with the
observed and simulated widths of the � distributions.
Unresolved binarity of components in candidate samples may

also contribute to the non-Gaussian scatter in predicted absolute
magnitudes. The multiplicity studies of G dwarfs (Duquennoy
&Mayor 1991) and M dwarfs (Fischer & Marcy 1992) find that
a significant fraction of G andM dwarf stars (40%Y60%) are un-
resolved binary systems. If a component of a wide binary system
is an unresolved binary system, its luminosity will be underes-
timated (with themagnitude of the offset depending on the actual
composition of the binary), and the � value for the wide binary
system will systematically deviate from zero. In Appendix C, we
model the presence of unresolved binaries in wide binary sys-
tems, and find that the model can explain the observed � scatter.
Therefore, both the intrinsic variations of the photometric par-

allax relation and unresolved binaries can explain the observed
non-Gaussian scatter of �. The data discussed here are insuffi-
cient to disentangle these two effects.
Finally, the uncertainty in predicted absolute magnitudes (the

error distribution for the photometric parallax method) can be

TABLE 1

Centers, Widths, and Areas for the Best-Fit Gaussian Distributions

Geometrically Selected Sample Kinematically Selected Sample

Parameter Narrow Gaussian Wide Gaussian Narrow Gaussian Wide Gaussian

Center .................. �0.01 �0.03 �0.05 0.01

Width................... 0.12 0.54 0.11 0.51

Areaa.................... 0.26 0.74 0.34 0.66

a The areas of the narrow and wide Gaussians sum to 1.

Fig. 13.—Distribution of � values normalized by the expected formal errors
�� for the kinematically selected sample of candidate binaries. The �/�� dis-
tribution for true binaries (open circles) is obtained by subtracting the �/�� dis-
tribution of random pairs (triangles) from the �/�� distribution for candidate
binaries (thick solid line). The �/�� distribution for true binaries is a non-Gaussian
distribution (dashed line) that can be described as a sum of two Gaussian distri-
butions. The best-fit narrow Gaussian (dotted line) is 0.75 wide and centered on
�0.10, while the best-fit wide Gaussian (thin solid line) is 4.04 wide and centered
on �0.14. [See the electronic edition of the Journal for a color version of this
figure.]
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obtained by drawing random values x from a non-Gaussian
distribution:

f (x) ¼ A1N xj�1; �1=
ffiffiffi
2

p� �
þ A2N xj�2; �2=

ffiffiffi
2

p� �
; ð20Þ

where N (xj�; �) is a Gaussian distribution, and the best-fit pa-
rameters are listed in Table 1.

4. PROPERTIES OF WIDE BINARIES

The best-fit photometric parallax relation can be utilized to
further refine the samples of candidate binaries and to address
questions about their dynamical and physical properties such as:

1. Do wide binaries have the same spatial distribution as
single stars?

2. Do wide binaries have the same color distribution as single
stars?

3. Are the color distributions of components in wide binary
systems consistent with random pairings?

4. What is the distribution of semimajor axes for wide binaries?

5. Does their distribution of semimajor axes vary with their
position in the Galaxy?

4.1. High-Efficiency Samples of Candidate Binaries

We use the best-fit photometric parallax relations to select
samples of candidate binaries with high selection efficiency (yield-
ing a high fraction of true binaries) by imposing further constraints
on � values in the geometric and kinematic samples.

As shown in Figure 12, the fraction of random pairs in the can-
didate sample is simply Arnd /Aobs , where Arnd and Aobs are the in-
tegrals of the random (triangles) and total (thick solid line) �
distributions. The fraction of true binaries, or the selection ef-
ficiency, is then

� ¼ 1� Arnd=Aobs: ð21Þ

Without a cut on �, the fraction of true binaries (the selection ef-
ficiency) in the geometrically and kinematically selected sam-
ples is 34% and 35%, respectively. It is reassuring to find that the
� value for the geometrically selected sample obtained here and

Fig. 14.—Dependence of median PSF magnitude errors on magnitude for the brighter (left ) and fainter (right ) components in the geometrically (circles) and kine-
matically selected (triangles) samples of candidate binaries. The vertical bars show the rms scatter in each bin (not the error of the median, which is much smaller). The
fainter components of geometrically selected candidate binaries have overestimated median PSF magnitude errors when compared to the kinematically selected bina-
ries. [See the electronic edition of the Journal for a color version of this figure.]
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the one measured in x 2.3 match so well (at a 1% level), even
though the two methods for estimating � are independent.

The selection efficiency of 35% for the kinematically selected
samplemay seem low, given that only 0.5% of random pairs pass
the common proper-motion criteria. This points to a low fraction
of true binaries with angular separation greater than 1500. If this
fraction is about 1/400 (0.25%), the common proper-motion cri-
teria will select 2 random pairs (0.5% of 400), and only 1 true
binary system. Therefore, 66% of the sample (2 out of 3) will be
random pairs, and 34% (1 out of 3) will be true binary systems,
which is similar to what we find for the kinematically selected
sample. The result that only 1/400 pairs with � > 1500 are true bi-
naries puts the fraction of random pairs in the random sample at
99.75%.

Figure 12 shows that the true binaries have a much smaller
range of � values than the random pairs. Therefore, a cut on �
would reduce the contamination and increase the fraction of true
binaries in a sample. By requiring �j j < 0:4, we construct sam-
ples where 63% and 64% of candidates are true binaries. The
numbers of candidate binaries in these cleaner samples are
16,575 (geometrically selected) and 5157 (kinematically se-
lected), with the expected total number of true binaries being
about 13,743. The sample efficiency for the geometric sample
can be further increased to 90% by requiring �j j < 0:2 and Z <
0:3 kpc, where Z is the height above the Galactic plane. Com-
pared to the existing catalogs of wide binaries by Chanamé &
Gould (2004) and Lépine & Bongiorno (2007), our samples rep-
resent a 20-fold increase in the number of candidate binaries and
probe much deeper into the halo (to �4 kpc). Although a non-
negligible fraction of candidate pairs are due to random pairings
(�35%), the increase in the number of potential physical pairs is
substantial.

We emphasize that our method only selects candidates where
both components are main-sequence stars, while rejecting sys-
tems where one of the components has evolved off the main se-
quence. This is due to the fact that the photometric parallax relation,
as defined here, is correct for main-sequence stars only. Together
with the small expected fraction of giant stars in our sample due
to faint apparent magnitudes (1%Y2%; Finlator et al. 2000; I08a),
this bias results in a practically pure main-sequence sample. We
note that the application of a photometric parallax relation that
corresponds to somemeanmetallicity distribution introduces sys-
tematic errors in estimatedMr. We partially mitigate this problem
by averaging distances determined for each binary component
(using eq. [12]). Based on the behavior of photometric paral-
lax relations and � distribution discussed in x 3.6, the systematic
uncertainty in obtained distances is most likely not larger than
10%Y15% (an understimate due to faint bias for blue stars). An-
other source of overall systematic uncertainty in distances is the
normalization of equation (12) adopted from West et al. (2005).
This normalization corresponds to nearby (<100 pc) metal-rich
stars, but most stars in our sample are at distances on the order of
1 kpc. The disk metallicity gradient discussed by I08a implies a
systematic distance overestimate of about 10%Y20%, partially
canceling the above underestimate. These systematic uncertain-
ties propagate as systematic uncertainties of derived semimajor
axes, as discussed in x 4.3.

4.2. Color Distribution of Wide Binaries

The luminosity of a main-sequence star, and thus its color via
photometric parallax relation, can be used as a proxy for stellar
mass. The color-color distribution of wide binaries, therefore,
provides constraints on the distribution of stellar masses in wide
binary systems. To find the color distribution of wide binaries,

we select a volume-complete (0:7 < d /kpc < 1:0) subsample of
geometrically selected candidate binaries with �j j < 0:4 and plot
their distribution in the (g� i)2 versus (g� i)1 color-color dia-
gram in Figure 15 (top). The sample is complete in the 0:4 <
g� i < 2:8 color and 4200 AU < a < 10;000 AU semimajor-
axis range (see x 4.3). Even though the �j j < 0:4 cut increases
the fraction of true binaries, about 14% of candidates (in the
0:7 < d /kpc < 1:0 range) are still random pairs that contami-
nate the map. To remove the contamination, we first select pairs
from the random sample (see the end of x 2.2) with �j j < 0:4
and 0:7 < d /kpc < 1:0. The �j j < 0:4 cut on the random sam-
ple will not increase the fraction of true binaries (�) above�1%
because � decreases rapidly with � (see Fig. 21 [middle left ] in
x 4.3), and the pairs in the random sample have � > 2000. The
(g� i)2 versus (g� i)1 distribution of this random sample is
shown in Figure 15 (middle). The maps are essentially probabil-
ity density maps, as the pixels sum to 1. To correct for the con-
tamination in the top map, we multiply each pixel in the random
map by 0.14 (the contamination in the candidate binary sample),
and take the difference of the two maps. The corrected map, pre-
sented in Figure 15 (bottom), shows that the color-color distribu-
tion of true binary systems is fairly uniform, has a local maximum
around (g� i)1;2 � 2:5, and reflects the underlying luminosity
function, which peaks for red stars (cf. Fig. 4).
The map shown in Figure 15 (bottom) describes the proba-

bility density P½(g� i)1; (g� i)2� of a wide binary system with
components whose (g� i)1 and (g� i)2 colors fall into a given
pixel. This probability density can be expressed as a product

P½(g� i)1; (g� i)2� ¼ P½(g� i)Bj(g� i)A�P½(g� i)A�; ð22Þ

where P½(g� i)Bj(g� i)A� is the conditional probability density
of having one component with (g� i)B color in a wide binary
system where the other component has (g� i)A, and P½(g� i)A�
is the probability density that a star with g� i ¼ (g� i)A color
is in a wide binary system. These probability densities may
also vary with Galactic coordinates (e.g., with the height above
the Galactic plane), but we cannot study such effects directly
because the samples are volume complete only in the 0:7 <
d /kpc < 1:0 range.
The conditional probability density P½(g� i)Bj(g� i)A� can

be extracted from the map in Figure 15 (bottom) by selecting
pixels where either (g� i)1 ¼ (g� i)A or (g� i)2 ¼ (g� i)A.
The resulting P½(g� i)Bj(g� i)A� for several values of (g� i)A
are shown in Figure 16. Red stars [(g� i)Ak 2:0] are more
likely to be associated with another red star than with a blue star,
while for blue stars the companion color distribution is flat. The
best-fit analytic functions that describe the observed trends are
given in Table 2.
The probability density P½(g� i)A� that a star with g� i ¼

(g� i)A is in a wide binary system can be derived by comparing
the g� i color distribution of stars in wide binary systems with
the g� i color distribution of all the stars in the same volume. As
shown in Figure 17 (top), the g� i color distribution of stars in
the volume-complete wide binary sample roughly follows the
g� i color distribution of all the stars in the same volume. The
ratio of the two distributions (renormalized to an area of 1) gives
the P½(g� i)A� and is shown in Figure 17 (bottom).
The probability for a star to be in a wide binary system

(P½(g� i)A�) is independent of its color. Given this color, the
companions of red components seem to be drawn randomly from
the stellar luminosity function, while blue components have a
larger blue-to-red companion ratio than expected from the lumi-
nosity function. These results are consistent with recent results
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by Lépine & Bongiorno (2007). The overall fraction of stars in
wide binary systems is discussed in the next section.

4.3. Spatial Distribution of Wide Binaries

If the semimajor-axis distribution function f (a) is known, the
number of stars in wide binary systems can be determined by
integrating f (a) from some lower cutoff a1 to the maximum semi-
major axis a2. The power-law frequency distribution, f (a) / a	,
	 ¼ �1, is known in the context of wide binaries as the Öpik
distribution (OD; Öpik 1924). When the semimajor-axis distri-
bution of wide binaries follows the OD, the frequency distribu-
tion of log a is a straight line with a slope of zero (Poveda et al.
2007). Alternatively, an equivalent representation of the OD is
the cumulative distribution N (<log a) / log a. In this form, the
OD is a straight line with a positive slope.We use the cumulative
representation, instead of differential, because it reduces the count-
ing noise in sparsely populated bins (although the errors become
correlated between bins).

We utilize geometrically selected candidate binaries (see x 4.4
for a discussion of the kinematic sample), but do not limit the
selection to � < 400 as we did in x 2.3. Since a / �, the removal
of the upper limit on � allows us to probe an extended range of
semimajor axes. The downside is that random pairs dominate at
large �, and a careful accounting for contamination as a function
of � is required before the f (a) distribution can be constrained.
Since we only know the projected separation of our pairs, we use
a statistical relation to calculate the average semimajor axis hai
as hai ¼ 1:411�d, where d is the heliocentric distance (Couteau
1960). Hereafter, we drop the brackets and simply refer to the
average semimajor axis as a.

Figure 18 (top left) shows the cumulative distribution of log a
for candidate wide binaries with �j j < 0:2 selected from the
0:7 < Z /kpc < 1:0 range. The cumulative distribution does not
follow a straight line, as predicted by the OD, but actually in-
creases its slope with log a. We assume that this is due to an in-
creasing fraction of random pairs at high log a and proceed to
verify this assumption.

Figure 18 (top right) shows the differential distribution of an-
gular separation for the selected sample. For � > �max, the ob-
served and random distributions closely match, demonstrating
that random pairs dominate at high � (or high log a). To calculate
how the fraction of true binaries (or random pairs) changes as a
function of �, we fit frnd(� ) ¼ C� to the observed histogram and
calculate the fraction or true binaries, �, using equation (2) (see
x 2.3). The calculated � values, as well as the best-fit second-degree
polynomial �(� ), are shown in Figure 18 (middle left). As an in-
dependent test, the selection efficiency was calculated using
equation (21) (i.e., from the � distribution) for three �-selected
subsamples, and the obtained values agree with �(� ) at a level of
1%. The angular separation for which � falls below �5% is de-
fined as �max. The fraction of true binaries �(� ) also changes as a
function of Z and is determined separately for different distance
bins.

Since the candidates are restricted in Z (Zmin ¼ 0:7 kpc to
Zmax ¼ 1:0 kpc in this example) and � (300 to �max), in order to
ensure a uniform selection in the Z versus a space, we define

amin ¼ 300 ; 1:411 ; 1000Zmax ð23Þ

and

amax ¼ �max ; 1:411 ; 1000Zmin=sin 45
� ð24Þ

as the minimum andmaximum probed semimajor axis, shown as
the selection box in Figure 18 (middle right). The sin 45� factor

Fig. 15.—Fraction of �j j < 0:4 binaries in 0:7 < d /kpc < 1:0 volume-
complete geometrically selected (top) and random (middle) samples that have
(g� i)1 and (g� i)2 as the colors of the brighter and fainter components. The
pixels are 0:2 ; 0:2 mag wide in g� i color, and the r � i color axes are interpo-
lated from g� i axes using eq. (10). The pixels in the maps sum to 1. The bottom
plot shows the difference, fcand½(g� i)1; (g� i)2� � C � frand½(g� i)1; (g� i)2�,
between the two maps, where C ¼ 0:14 is the fraction of random pairs estimated
using eq. (21) for the �j j < 0:4, 0:7 < d /kpc < 1:0 geometrically selected sam-
ple. The pixels with negative values are not shown, and the map has been re-
normalized so that the pixels sum to 1.
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is to account for the fact that the candidates are restricted to high
(b > 45

�
) Galactic latitudes.

To correct the cumulative distribution of log a, we assign a
probability �(� ) to each candidate binary in the aminYamax range
and add the probabilities (instead of counting candidates) when
making the cumulative log a distribution. The corrected cumu-
lative distribution, shown in Figure 18 (bottom left), follows a
straight line up to the turnover point abreak. We define abreak as
the average semimajor axis for which the straight line fit to the
cumulative distribution deviates by more than 1.5%. In addition
to abreak, we also measure the slope of the cumulative distribu-
tion where it follows the straight line. It can be shown that the
slope of the cumulative distribution is equal to the constant of
proportionality, N0, in the Öpik distribution, f (a) ¼ N0 /a. The
number of binaries can be calculated by integrating f (a) from a1
to a2, and we obtain Nbin ¼ N0 log (a2 /a1). For integration limits
we choose a2 ¼ abreak, where we assume that systemswith semi-

major axes greater than abreak are no longer bound, and a1 ¼
100 AU (since a2 3a1, the results are not very sensitive to the
choice of a1).
The uncertainty in abreak, the shape of f (a) (or power-law

index 	 ), and the number of binaries (Nbin) are estimated using
Monte Carlo simulations. We find that the uncertainty in abreak is
less than 0.1 dex, and the error on the power-law index 	 isP0.1.
The uncertainty in measuring Nbin is about 10%. The corrected
cumulative log a distribution obtained from one of these simu-
lations is shown in Figure 18 (bottom right). The semimajor-axis
distribution of ‘‘true’’ binaries in the simulation sample is f (a) /
a�0:8, and is valid between 100AU and abreak ¼ 10;000AU. The
turnover in the distribution happens because there are no ‘‘true’’
binaries above 10,000AU, only random pairs, similar to what we
observe in real data. This similarity is a strong warning not to
overinterpret the slope of f (a) beyond abreak.
To estimate the dependence of 	 [the shape of f (a)], abreak,

and N0 on color, we divide the 0:7 < Z /kpc < 1:0 sample into
three color subsamples using (g� i)1 ¼ 1:8 and (g� i)2 ¼ 1:5
lines. We find that f (a) follows the OD in all three subsamples
(	 ¼ �1), and that the average abreak is 3.99, with a 0.07 rms
scatter. The abreak for the full 0:7 < Z /kpc < 1:0 sample is 4.02.
These results suggest that abreak and the shape of f (a) are inde-
pendent of color of binaries. The N0 value, and subsequently the
number of binaries, will depend on the sample’s color range. For
the full 0:7 < Z /kpc < 1:0 sample, the number of binaries is

Nbin ¼ N 1
0 þ N 2

0 þ N 3
0

� �
log (a2=a1); ð25Þ

where N i
0 ; i ¼ 1, 2, and 3 are the N0 values measured for each

color subsample. Therefore, the number of binaries calculated
for a distance binwill change as the color range changes. Assuming

Fig. 16.—Conditional probability density of having one component with (g� i)B color in a wide binary system where the other component has (g� i)A. The
conditional probability density for (g� i)A < 2:0 (top andmiddle) is independent of (g� i)B, while for (g� i)A > 2:0 (bottom) it changes as the square of (g� i)B. The
best-fit functions describing these conditional probabilities are given in Table 2. [See the electronic edition of the Journal for a color version of this figure.]

TABLE 2

Conditional Probability Density Functions

P½(g� i)Bj(g� i)A� ¼ aþ b(g� i)þ c(g� i)2

Best-Fit Parameters

(g� i)A Bin a b c

0:4 < (g� i)A < 0:8.............. 0.38 0 0

0:8 < (g� i)A < 1:2.............. 0.46 0 0

1:2 < (g� i)A < 1:6.............. 0.37 0 0

1:6 < (g� i)A < 2:0.............. 0.37 0 0

2:0 < (g� i)A < 2:4.............. 0.08 0.14 0.04

2:4 < (g� i)A < 2:8.............. 0.23 �0.50 0.38
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that the g� i color distribution of binaries does not change with
Z, we can use the g� i color distribution for the 0:7 < Z /kpc <
1:0 sample (Fig. 17 [top], solid line) to correct for color incom-
pleteness. We also assume that the fraction of binaries outside
the 0:4 < g� i < 2:8 color range is small. The correct number
of binaries is then

Nbin ¼ N0=A g� ið Þmin; g� ið Þmax

� �
log (a2=a1); ð26Þ

where A½(g� i)min; (g� i)max� is the area underneath the solid
line histogram in Figure 17 (top), between (g� i)min and (g� i)max
(the g� i color range for a given distance bin).

The estimated systematic error in abreak due to the choice of
the �j j cut is measured using �j j < 0:1 and �j j < 0:4 samples.We
find that abreak changes by P0.03 dex between these samples.
This result suggests that abreak is not sensitive to the choice of the
�j j cut. Similarly, the change in abreak is less than 0.03 dex if the
estimate of �(� ) is off by�0.1 (an�10% change) from the best-
fit �(� ).

To establish whether the semimajor-axis distribution follows
the OD in other Z bins, we repeat the f (a) and abreak measuring

procedure on 8 Z bins and show the corrected cumulative distri-
butions with best-fit straight lines in Figure 19. In general, the
corrected cumulative distributions follow a straight line and then
start to deviate from it at abreak. In the 0:1 < Z /kpc < 0:4 bin, we
do not see a turnover, due to a narrow range of probed projected
separations (�max ¼ 1600 limits the range to 3193AU; see Fig. 20),
and only determine the upper limit on abreak.

As the average height above the Galactic plane increases,
abreak moves to higher values. We investigate this correlation in
more detail in Figure 21 (top left). The data follow a straight line
log abreak ¼ k log ½Z(pc)� þ l, where k ¼ 0:72� 0:05 and l ¼
1:93� 0:15, or approximately abreak(AU) ¼ 12;300Z(kpc)0:7 in
the 0:3 < Z /kpc < 3:0 range.

It is possible that abreak also depends on the cylindrical radius
R, with the Sun at R	 ¼ 8 kpc, and perhaps on the local density
of stars 
. Because the sample is dominated by stars at high Ga-
lactic latitudes, it is hard to disentangle the Z-dependence from
the other two effects (the R range is small, and 
 varies strongly
with Z ). We attempt to do so using the volume-complete 0:7 <
Z /kpc < 1:0 sample. First, we divide this sample into three sub-
samples with median Galactic latitudes hbi of 35�, 49�, and 80�,
and determine abreak for each subsample. The best-fit abreak varies
by�0.3 dex between the low-latitude and high-latitude subsam-
ples, despite their having the same median Z. When the 0:7 <
Z /kpc < 1:0 sample is divided into theGalactic anticenter (90

� <
l < 270�) and the Galactic center (l > 270� or l < 90�) sub-
samples, the best-fit abreak varies by �0.1 dex. These variations
suggest that the best-fit Z-dependence does not fully capture the
behavior of abreak. Nevertheless, they are smaller (P0.3 dex)
than the observed variation of abreak (�1 dex).

The spatial distribution of wide binaries can now be compared
to the number density of all stars as a function of height above
the Galactic plane. In Figure 21 (bottom left), we show that wide
binaries closely follow the spatial distribution of stars, with an
exponential decline in the number density as a function of Z. The
fraction of binaries relative to the number of all stars, shown in
the bottom right panel, changes by only a factor of 2 over a range
of 3 kpc, starting from 0.9% at Z ¼ 500 pc and declining to 0.5%
at Z ¼ 3000 pc.

4.4. Limitations of the Kinematic Sample

It would be informative to repeat the f (a) and abreak analy-
sis using kinematically selected binaries, but unfortunately, the
apparent incompleteness of SDSS-POSS proper-motion data at
� < 900 prevents us from doing so. As shown in Figure 22, the
number of common proper-motion pairs drops sharply below
� ¼ 900, probably due to blending of close sources in the POSS
data. Because of this � cutoff, for the same range in Z, the ef-
fective amin for the kinematic sample is 3 times that of the geo-
metric sample (where the lower limit on � is 300). In the case of the
0:1 < Z /kpc < 0:4 sample observed here, the smallest probed
semimajor axis (amin) is at 5079 AU, well above the abreak value
of 4534 AU predicted by the abreak / Z 0:7 relation. Since we are
outside the range where the OD is valid, we cannot measure
where the turnover in f (a) happens, and we therefore cannot de-
termine abreak orNbin. In all the other Z bins, amin is also above the
predicted abreak value, and therefore outside the Öpik regime.

5. DISCUSSION AND CONCLUSIONS

We have presented a novel approach to photometric parallax
estimation based on samples of candidate wide binaries selected
from the Sloan Digital Sky Survey (SDSS) imaging catalog. Our
approach uses the fact that a binary system’s components are at
equal distances, and estimates the photometric parallax relation

Fig. 17.—Top: Comparison of g� i color distribution of stars in the �j j <
0:4, 0:7 < d /kpc < 1:0 volume-complete, geometrically selected, wide binary
sample (solid line), and of all stars in the same volume (dashed line). The dis-
tributions are normalized to an area of 1, and the error bars show the Poisson
noise. Bottom: Probability density for finding a star with g� i color in a wide bi-
nary system, P½(g� i)A� ¼ Pwide binary, calculated as a ratio of the two distribu-
tions from the top panel and renormalized to an area of 1. The equal probability
distribution is shown by the dashed line.
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Fig. 18.—Top left : Cumulative distribution of log a for geometrically selected candidate binaries with �j j < 0:2 and 0:7 < Z /kpc < 1:0, where a is the average
semimajor axis. Top right : Differential distribution of angular separation � for geometrically selected candidate binaries with �j j < 0:2 and 0:7 < Z /kpc < 1:0. The
distribution of random pairs (dashed line) is obtained by fitting a linear function frnd(� ) ¼ C� to the observed histogram for � > 1800. Here, �max is defined as the angular
separation for which the fraction of true binaries falls below�5%.Middle left : Fraction of true binaries � (solid line) calculated from the � distribution using eq. (2) (see
x 2.3) for the 0:7 < Z /kpc < 1:0 sample modeled as a second-degree polynomial �(� ) (dashed line). For three �-selected subsamples (400 Y500, 500 Y600, and 700 Y800), the
fraction of true binaries was also calculated using eq. (21) (i.e., from the � distribution) and is shown with symbols. Middle right : The box (dashed lines) shows the
allowed range in a defined by Zmin, Zmax, and �max (see eqs. [23] and [24]). Only binaries within this a range are considered when plotting the corrected cumulative dis-
tribution of log a. Bottom left : Cumulative distribution of log a for candidate binaries with �j j < 0:2 and 0:7 < Z /kpc < 1:0 (dashed line) corrected using �(� ) to ac-
count for the decreasing fraction of true binaries at large � / a/d separations. The vertical lines show log a for which the straight-line fit (dot-dashed line) to the
cumulative distribution deviates by more than 1.0% ( log alow), 1.5% ( log abreak), and 2.0% ( log ahigh). Bottom right : Corrected cumulative distribution of log a for
mock candidate binaries created using the f (a) / a�0:8 distribution limited to a1 ¼ 100 AU and a2 ¼ 10;000 AU. [See the electronic edition of the Journal for a color
version of this figure.]
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Fig. 19.—Same as Fig. 18 (bottom) but for different Z ( height above the Galactic plane) bins ranging from 0:1 < Z /kpc < 0:4 (top left ) to 2:6 < Z /kpc < 3:6
(bottom right ). The sampled range of average semimajor axes and angular separations is given for each panel. In the 0:1 < Z /kpc < 0:4 bin (top left ), the upper limit on
log abreak is 3.50. [See the electronic edition of the Journal for a color version of this figure.]
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for main-sequence stars by minimizing the difference of their
distance moduli. While this method is similar to constraints on
the photometric parallax relation obtained from globular clusters
in that it does not require absolute distance estimates, it has the
advantage that it extends to redder colors than available for glob-
ular clusters observed by the SDSS, and that it implicitly ac-
counts for metallicity effects.

The derived best-fit photometric parallax relations represent
metallicity-averaged relations, and thus provide an independent
confirmation of relations proposed by J08 in their study of Ga-
lactic structure. An important result of this work is our estimate
of the expected error distribution for absolute magnitudes de-
termined from photometric parallax relations (a rms scatter of
�0.3 mag; see x 3.6), which is in good agreement with the mod-
eling assumptions adopted by J08. The mildly non-Gaussian
error distribution is consistent with both the impact of unresolved
binary stars and the variation of photometric parallax relation
with metallicity; we are unable to disentangle these two effects.

The best-fit photometric parallax relations enabled the se-
lection of high-efficiency samples of disk wide binaries with
�22,000 candidates that include about 14,000 true binary sys-
tems (an efficiency of �2/3). Using the photometric measure-
ments and angular distance of the two components, samples with
an efficiency exceeding 80% can be constructed (see x 4.1). Such
samples could be used as a starting point to further increase the
selection efficiency with the aid of radial velocity measurements.
Spectral observations of systems where the brighter component
is an F/G star, for which it is easy to estimate metallicity, could be
used to calibrate both spectroscopic and photometric methods
for estimating the metallicity of cooler K and M dwarfs. Com-
pared to the state-of-the-art catalogs of wide binaries by Chanamé
& Gould (2004) and Lépine & Bongiorno (2007), the samples
discussed here represent a significant increase in the number of
potential binaries, and probe larger distances (to �4 kpc). To
facilitate further studies of wide binaries, we make the catalog
publicly available.8

Using the high-efficiency subsamples, we analyzed the dy-
namical and physical properties of wide binaries. We find that

the spatial distribution of wide binaries follows the distribu-
tion of single stars to within a factor of 2, and that the probability
for a star to be in a wide binary system is independent of its color.
However, given this color, the companions of red components
seem to be drawn randomly from the stellar luminosity function,
while blue components have a larger blue-to-red companion ra-
tio than expected from the luminosity function (see x 4.2). These
results are consistent with recent results by Lépine & Bongiorno
(2007) and provide strong constraints for the scenarios describ-
ing the formation of such systems (e.g., Giersz 2006 and refer-
ences therein; Clarke 2007; Hurley et al. 2007).
We also study the semimajor-axis distribution of wide binaries

in the 2000Y47,000AU range (see x 4.3). The observed distribu-
tion is well described by the Öpik distribution, f (a) / 1/a, for
a < abreak, where abreak increases roughly linearly with the height
above the Galactic plane (abreak � 12;300 AU at Z ¼ 1 kpc).
Alternatively, abreak correlates with the local number density of
stars as abreak / 
�1=4, but we are unable to robustly identify the
dominant correlation (Z and 
 are highly correlated).
The distribution of semimajor axes for wide binaries was also

discussed by Chanamé & Gould (2004). They used a sample of
wide binaries selected using common proper motion from the
rNLTT catalog (Gould & Salim 2003), and found f (a) / 1/a1:6,
with no evidence of a turnover at aP3000. Their sample ex-
tended to larger angular separations than ours and probed smaller
distances. In addition, Poveda et al. (2007) used wide binaries
from the same Chanamé & Gould (2004) sample and detected
the Öpik distribution, f (a) / 1/a, for a < 3000, which is consis-
tent with the result of Chanamé & Gould (2004). In a recent
study, Lépine & Bongiorno (2007) searched for faint common
proper-motion companions of Hipparcos stars and detected a turn-
over from the Öpik distribution to a steeper distribution around
a � 3000 AU. Their sample also probed much smaller distances
than ours. We compare these results in Figure 23. As is evident,
the variation of abreak with distance from the Galactic plane de-
tected here (approximately with distance, as shown in Fig. 23,
since stars in our sample are mostly at high Galactic latitudes) is
consistent with the above results that are based on more local
samples. In particular, this comparison of different studies suggests
that the flattening of f (a) for small a that ‘‘puzzled’’ Chanamé &
Gould (see their x 4.3) is probably due to a combination of selec-
tion effects and the approach of the domain where the Öpik dis-
tribution is valid in their sample.
The Öpik distribution suggests that the process of star forma-

tion produces multiple stars, which evolve toward binaries after
ejecting one or more single stars (Poveda et al. 2007). The depar-
ture from the Öpik distributionmay be evidence for disruption of
wide binaries over long periods of time by passing stars, giant
molecular clouds, massive compact halo objects (MACHOs), or
disk and Galactic tides (Heggie 1975; Weinberg et al. 1987; Yoo
et al. 2004). However, we note that the abreak / 
�1=4 correlation
(see Fig. 21) is outside the expected range discussed byYoo et al.
(2004; abreak / 
�2=3 for close strong encounters and abreak /

�1 for weak encounters).
The samples presented here can be further refined and en-

larged. First, the SDSS covers only a quarter of the sky. Upcom-
ing next-generation surveys, such as the SkyMapper (Keller
et al. 2007), the Dark Energy Survey (Flaugher et al. 2006), Pan-
STARRS (Kaiser et al. 2002), and the Large Synoptic Survey
Telescope (LSST; Ivezić et al. 2008b), will enable the construc-
tion of such samples over most of the sky. Due to fainter flux
limits (especially for Pan-STARRS and LSST), the samples will
probe a larger distance range and will reach the halo-dominated
parts of the Galaxy. Furthermore, due to improved photometry

Fig. 20.—Fraction of true binaries, �, in the 0:1 < Z /kpc < 0:4, �j j < 0:2 ge-
ometrically selected sample as a function of angular separation. The fraction goes
below �5% at �max ¼ 1600 and sets an upper limit on probed semimajor axes of
�3200 AU. [See the electronic edition of the Journal for a color version of this
figure.]

8 The catalog can be downloaded at http://www.astro.washington.edu /bsesar/
SDSS_wide_binaries.tar.gz.
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Fig. 21.—Top left : Dependence of log abreak (cf. Fig. 19) on log Z ( filled circles) modeled as log abreak ¼ k log (Z )þ l, where k ¼ 0:72� 0:05 and l ¼ 1:93� 0:15,
or approximately abreak(AU) ¼ 12; 302Z(kpc)0:72. The symbol size shows the range between log alow and log ahigh. The arrow indicates that the log abreak in the
0:1 < Z /kpc < 0:4 bin ( log Z � 2:4) is an upper limit. Top right : Dependence of log abreak on log 
, where 
 is the local number density of stars, modeled as log abreak ¼
k log (
)þ l, where k ¼ �0:24� 0:02 and l ¼ 3:35� 0:07, or abreak / 
�1=4. Bottom left : Dependence of the local number density ln 
 of binaries ( filled circles) and
stars (open circles) on the height above the Galactic plane, where the density of stars is normalized to match the density of binaries at 1 kpc. Bottom right: Fraction of
binaries relative to the total number of stars as a function of the height above the Galactic plane. The arrow shows the predicted fraction of binaries in the 0:1 < Z /kpc <
0:4 bin if the abreak value follows the abreak / Z 0:72 relation. [See the electronic edition of the Journal for a color version of this figure.]



and seeing (e.g., by about a factor of 2 for the LSST), the se-
lection will be more robust. We scale the 20,000 candidates dis-
cussed here, assuming log N ¼ C þ 0:4r, to the LSST depth that
enables accurate photometric metallicity (r < 23; I08a) and pre-
dict a minimum sample size of�400,000 candidate wide binary
systems in 20,000 deg2 of sky. It is likely that the sample would
include more than a million systems due to the increase in stellar
counts close to the Galactic plane.

Another important development will come from the Gaia mis-
sion (Perryman et al. 2001; Wilkinson et al. 2005), which will
provide direct trigonometric distances for stars with r < 20. With
trigonometric distances, an accurate photometric parallax relation
can be used to provide strong constraints on the incidence and
color distribution of unresolved multiple systems. Until then, a
radial velocity survey of candidate binaries assembled here could
help to prune random associations from the sample, and with bet-
ter characterization of various selection effects.
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APPENDIX A

SQL QUERIES

The following SQL queries were used to select initial samples of candidate binaries through the SDSS CasJobs interface. When run-
ning these queries, the database context must be set to ‘‘DR6’’ or higher.

selectY Ygeometric selection of candidate binaries
round(p1.ra,6) as ra1, round(p1.dec,6) as dec1, round(p1.extinction_r,3) as rExt1,
round(p1.psfMag_u,3) as psf_u1, round(p1.psfMag_g,3) as psf_g1,
round(p1.psfMag_r,3) as psf_r1, round(p1.psfMag_i,3) as psf_i1,
round(p1.psfMag_z,3) as psf_z1, round(p1.psfMagErr_u,3) as psfErr_u1,

Fig. 22.—Distribution of angular separation for the 0:1 < Z /kpc < 0:4, �j j <
0:2 kinematically selected sample of candidate binaries. The data (solid line)
extend to � ¼ 50000, although the plotted range is restricted for clarity. The dis-
tribution of randompairs (dashed line) was obtained by fitting frnd(� ) ¼ C� to the
observed histogram for � > 20000. The sharp drop-off in the observed distribution
for �P9 is probably due to blending of close pairs in the POSS data. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 23.—Comparison of results for the turnover in the distribution of semi-
major axes (abreak) as a function of distance modulus, of wide binary systems
(1) determined here (symbols with error bars; the horizontal bars mark the range
of probed semimajor axes, and the vertical bars mark the width of the distance
bins. The lowest point is only a lower limit. For the sake of comparison with
other results, we ignore the difference between the distance from us and the dis-
tance from the Galactic plane because our sample is dominated by high Galactic
latitude stars), (2) determined by Lépine & Bongiorno (2007; the dashed rectan-
gle indicates constraints on abreak and the probed distance range), and (3) deter-
mined by Chanamé & Gould (2004; big arrows, indicating upper limits on abreak
and the probed distance range. The point at larger distance modulus corresponds
to halo binaries). The diagonal dashed lines are lines of constant angular scale,
�, for values of 300, 400, 500, 1000, 2000, and 3000 ( from left to right ). [See the elec-
tronic edition of the Journal for a color version of this figure.]
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round(p1.psfMagErr_g,3) as psfErr_g1, round(p1.psfMagErr_r,3) as psfErr_r1,
round(p1.psfMagErr_i,3) as psfErr_i1, round(p1.psfMagErr_z,3) as psfErr_z1,
p1.objid as objid1,

round(p2.ra,6) as ra2, round(p2.dec,6) as dec2, round(p2.extinction_r,3) as rExt2,
round(p2.psfMag_u,3) as psf_u2, round(p2.psfMag_g,3) as psf_g2,
round(p2.psfMag_r,3) as psf_r2, round(p2.psfMag_i,3) as psf_i2,
round(p2.psfMag_z,3) as psf_z2, round(p2.psfMagErr_u,3) as psfErr_u2,
round(p2.psfMagErr_g,3) as psfErr_g2, round(p2.psfMagErr_r,3) as psfErr_r2,
round(p2.psfMagErr_i,3) as psfErr_i2, round(p2.psfMagErr_z,3) as psfErr_z2,
p2.objid as objid2,

round(NN.distance*60,3) as theta
into mydb.binaryClose

from Neighbors as NN join star as p1 on p1.objid = NN.objid
join star as p2 on p2.objid = NN.neighborobjid
where NN.mode = 1 and NN.neighbormode = 1
and NN.type = 6 and NN.neighbortype = 6

and p1.psfMag_r between 14 and 20.5
and (p1.flags_g & ’229802225959076’) = 0 and (p1.flags_r & ’229802225959076’) = 0
and (p1.flags_i & ’229802225959076’) = 0 and (p1.flags_g & ’268435456’) > 0
and (p1.flags_r & ’268435456’) > 0 and (p1.flags_i & ’268435456’) > 0

and p2.psfMag_r between 14 and 20.5
and (p2.flags_g & ’229802225959076’) = 0 and (p2.flags_r & ’229802225959076’) = 0
and (p2.flags_i & ’229802225959076’) = 0 and (p2.flags_g & ’268435456’) > 0
and (p2.flags_r & ’268435456’) > 0 and (p2.flags_i & ’268435456’) > 0

and (p1.psfMag_r-p1.extinction_r) < (p2.psfMag_r-p2.extinction_r)
and (p1.psfMag_g-p1.extinction_g-p1.psfMag_i+p1.extinction_i)<
(p2.psfMag_g-p2.extinction_g-p2.psfMag_i+p2.extinction_i)

and NN.distance*60 between 3 and 4

selectY Ykinematic selection of candidate binaries

round(p1.ra,6) as ra1, round(p1.dec,6) as dec1, round(p1.extinction_r,3) as ext1,
round(p1.psfMag_u,3) as u1, round(p1.psfMag_g,3) as g1,
round(p1.psfMag_r,3) as r1, round(p1.psfMag_i,3) as i1,
round(p1.psfMag_z,3) as z1, round(p1.psfMagErr_u,3) as uErr1,
round(p1.psfMagErr_g,3) as gErr1, round(p1.psfMagErr_r,3) as rErr1,
round(p1.psfMagErr_i,3) as iErr1, round(p1.psfMagErr_z,3) as zErr1,
(case when ((p1.flags & ’16’) = 0) then 1 else 0 end) as ISOLATED1,
NN.objid as objid1,

round(p2.ra,6) as ra2, round(p2.dec,6) as dec2, round(p2.extinction_r,3) as ext2,
round(p2.psfMag_u,3) as u2, round(p2.psfMag_g,3) as g2,
round(p2.psfMag_r,3) as r2, round(p2.psfMag_i,3) as i2,
round(p2.psfMag_z,3) as z2, round(p2.psfMagErr_u,3) as uErr2,
round(p2.psfMagErr_g,3) as gErr2, round(p2.psfMagErr_r,3) as rErr2,
round(p2.psfMagErr_i,3) as iErr2, round(p2.psfMagErr_z,3) as zErr2,
(case when ((p2.flags & ’16’) = 0) then 1 else 0 end) as ISOLATED2,
NN.neighborobjid as objid2,

round(NN.distance*60,3) as theta,
round(s1.pmL,3) as pmL1, round(s1.pmB,3) as pmB1,
round(s2.pmL,3) as pmL2, round(s2.pmB,3) as pmB2

into mydb.binaryPM

from Neighbors as NN join star as p1 on p1.objid = NN.objid
join star as p2 on p2.objid = NN.neighborobjid
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join propermotions as s1 on s1.objid = NN.objid
join propermotions as s2 on s2.objid = NN.neighborobjid

where NN.mode = 1 and NN.neighbormode = 1
and NN.type = 6 and NN.neighbortype = 6

and p1.psfMag_r between 14 and 19.5
and (p1.flags_g & ’229802225959076’) = 0 and (p1.flags_r & ’229802225959076’) = 0
and (p1.flags_i & ’229802225959076’) = 0 and (p1.flags_g & ’268435456’) > 0
and (p1.flags_r & ’268435456’) > 0 and (p1.flags_i & ’268435456’) > 0

and p2.psfMag_r between 14 and 19.5
and (p2.flags_g & ’229802225959076’) = 0 and (p2.flags_r & ’229802225959076’) = 0
and (p2.flags_i & ’229802225959076’) = 0 and (p2.flags_g & ’268435456’) > 0
and (p2.flags_r & ’268435456’) > 0 and (p2.flags_i & ’268435456’) > 0

and (p1.psfMag_r-p1.extinction_r) < (p2.psfMag_r-p2.extinction_r)
and (p1.psfMag_g-p1.extinction_g-p1.psfMag_i+p1.extinction_i)<
(p2.psfMag_g-p2.extinction_g-p2.psfMag_i+p2.extinction_i)

and s1.match = 1 and s2.match = 1
and s1.sigra < 350 and s1.sigdec < 350
and s2.sigra < 350 and s2.sigdec < 350
and sqrt(power(s1.pmL-s2.pmL,2) + power(s1.pmB-s2.pmB,2)) < 5
and (case when sqrt(power(s1.pmL,2) + power(s1.pmB,2)) >
sqrt(power(s2.pmL,2) + power(s2.pmB,2)) then
sqrt(power(s1.pmL,2) + power(s1.pmB,2)) else
sqrt(power(s2.pmL,2) + power(s2.pmB,2)) end) between 15 and 400

APPENDIX B

LIMITATIONS OF THE REDUCED-PROPER-MOTION DIAGRAM

The recent analysis of metallicity and kinematics for halo and disk stars by I08a provides sufficient information to understand the
behavior of the reduced-proper-motion diagram in quantitative detail (including both the sequence separation and the width of each
sequence) and to demonstrate that its efficiency for separating halo and disk stars deteriorates at distances beyond a few kpc from the
Galactic plane. As equation (8) shows, for a population of stars with the same vt, the reduced proper motion is a measure of the stars’
absolute magnitude. For two stars that share a color that is sensitive to the effective temperature (such as g� i ), but that have different
metallicities and tangential velocities, the difference in their reduced proper motions is

�rRPM ¼ rHRPM � rDRPM ¼ �Mr þ 5 log vHt =vDt
� �

; ðB1Þ

where H and D denote the two stars. To the degree that the shape of the photometric parallax relation does not depend on metallicity,
�Mr does not depend on color, and is fully determined by the metallicity difference of the two stars (or populations of stars). Using
metallicity distributions for disk and halo stars obtained by I08a, and their expression for�Mr(½Fe/H �) (their eq. [A2]), we find that the
expected offset betweenMr for halo and disk stars with the same g� i color varies from 0.6mag for stars at 1 kpc from the Galactic plane
to 0.7 mag for stars at 5 kpc from the plane, where the variation is due to the vertical metallicity gradient for disk stars. The finite width of
halo and disk metallicity distributions induces a spread of Mr (rms scatter computed using interquartile range) of 0.15 mag for disk stars
and 0.18 mag for halo stars.

The effect of metallicity on the separation of halo and disk sequences in the reduced-proper-motion diagram is smaller than the effect
of differing tangential velocity distributions. Assuming for simplicity that stars are observed toward a Galactic pole, and that the median
heliocentric tangential velocities are 30 km s�1 for disk stars and 200 km s�1 for halo stars, the induced separation of their reduced-
proper-motion sequences is�4.1 mag (the expected scatter in the reduced proper motion due to finite velocity dispersion is�1Y1.5 mag).
Together with the �0.7 mag offset due to the differing metallicity distributions, the separation of �5 mag between the two sequences
makes the reduced-proper-motion diagram a promising tool for separating disk and halo stars.

However, the reduced-proper-motion diagram is an efficient tool only for stars within 1Y2 kpc of the Galactic plane. The main rea-
son for this limitation is the decrease of rotational velocity for disk stars with distance from the Galactic plane, with a gradient of about
�30 km s�1 kpc�1 (see x 3.4.2 in I08a). As the difference in rotational velocity between halo and disk stars diminishes with distance
from the plane, the separation of their reduced-proper-motion sequences decreases too. Amild increase in the velocity dispersion of disk
stars, as well as a decrease in their median metallicity with distance from the plane, also decreases the sequence separation, but the
dominant cause is the rotational velocity gradient.
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To illustrate this effect, we select a sample of�60,000 stars with 14 < r < 20 and 0:2 < g� r < 0:4, which are observed toward the
north Galactic pole (b > 70�). In this color range it is possible to separate disk and halo stars using the photometric metallicity estimator
from I08a, and we further select a sample of �16,000 likely disk stars with ½Fe/H � > �0:9 and a sample of �34,400 likely halo stars
with ½Fe/H � < �1:1 (see Fig. 9 in I08a for justification). Their proper-motion distributions as functions of distance from the Galactic
plane, Z, are shown in the top left panel in Figure 24. Because of the gradient in the rotational velocity for disk stars, their median proper
motion becomes constant at �8 mas yr�1 beyond Z � 2 kpc, while the median proper motion for halo stars is roughly proportional to
1/Z, with a value of �11 mas yr�1 at Z ¼ 5 kpc.

The top right panel in Figure 24 shows the positions and widths of the reduced-proper-motion sequences for disk and halo stars
as functions of Z, and the two bottom panels show the sequence cross sections for stars with Z ¼ 1Y1:5 kpc and Z ¼ 3:5Y4 kpc. At

Fig. 24.—Top left : Proper-motion distribution as a function of distance from the Galactic plane (Z ) for a sample of�16,000 likely disk stars (red circles) and a sample
of �34,400 likely halo stars (blue circles). All stars have 14 < r < 20 and 0:2 < g� r < 0:4, and are separated using photometric metallicity. The triangles show the
median values in 500 pc wide Z bins for each sample (lower symbols: disk; upper symbols: halo). Note that the median proper motion for disk stars becomes constant
beyond Z � 2 kpc due to the vertical gradient of rotational velocity for disk stars. Top right: Median position (symbols) and widths (lines; �1 � envelope around the
medians) of the reduced-proper-motion sequences for disk (red circles and dashed lines) and halo (blue squares and dot-dashed lines) stars as functions of Z. Bottom:
Cross sections of the reduced-proper-motion sequences for stars with Z ¼ 1Y1:5 kpc (bottom left) and Z ¼ 3:5Y4 kpc (bottom right). The histograms (red for disk stars
and blue for halo stars) are normalized by the total number of stars in each subsample. The disk-to-halo star count ratio is 4.3 in the bottom left panel and 0.38 in the bottom
right panel. Note the significant overlap of the two sequences for large Z.
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distances beyond�2 kpc from the plane, the reduced-proper-motion diagram ceases to be an efficient tool for separating halo and disk
stars because the two sequences start to significantly overlap. This increasing overlap is a result of the rotational velocity gradient for
disk stars and the finite width of halo and disk velocity distributions, and would be present even for infinitely accurate measurements
(with proper-motion errors of�3 mas yr�1 per coordinate [Munn et al. 2004], the sequence widths of�1.0Y1.5 mag are dominated by
velocity dispersions). Hence, beyond�2 kpc from the plane, metallicity measurements are necessary to reliably separate disk and halo
populations.

Fig. 25.—Illustration of the offsets in the position of reduced-proper-motion sequences as a function of distance, position on the sky, and population. Each panel
shows the median value of 5 log (vt /v

NGP
t ), where vt is the heliocentric tangential velocity and v

NGP
t is its value at the north Galactic pole, in a Lambert projection of the

northern Galactic hemisphere. The maps are color coded according to the inset legend in the middle of the figure (magnitudes), and are constructed using stars with
0:2 < g� r < 0:4. Stars are separated into halo and disk populations using photometric metallicity (for details, see I08a). The top left panel shows results for halo stars
with distances in the 3Y4 kpc range. The other three panels correspond to disk stars in the distance ranges 3Y4, 2Y2.5, and 1Y1.5 kpc.
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The above analysis is strictly valid only for fields toward the north Galactic pole. Salim & Gould (2003) found that the positions of
disk and halo reduced-proper-motion sequences relative to their positions at the north Galactic pole varies with Galactic latitude as

�rRPM(b) ¼ 5 log vt=v
NGP
t

� �
¼ �1:43 1� sin bj jð Þ; ðB2Þ

where vNGPt is the median value of vt for stars observed toward the north Galactic pole. This result is a bit unexpected because it does not
contain longitudinal variation due to projection effects of the rotational motion of the local standard of rest. We show the variation of
�rRPM for stars with 0:2 < g� r < 0:4 as a function of Galactic coordinates in Figure 25. We use photometric metallicity to separate
stars into disk and halo populations. As the figure demonstrates, the longitudinal dependence is present for the halo sample, but not for
the disk samples. We have generated simulated behavior of�rRPM using the kinematic model from I08a and reproduced the observed
behavior to within the measurement noise. It turns out that the vertical gradient of rotational velocity for disk stars is fully responsible for
the observed strong dependence of �rRPM on latitude, and that it masks the dependence on longitude. Hence, the sin bj j term proposed
by Salim & Gould (2003) is an indirect discovery of the vertical gradient of rotational velocity for disk stars! These empirical models
also show that a linear dependence of�rRPM(b) on sin bj j is only approximately correct, and that it ignores the dependence on distance.
While a more involved best-fit expression is possible (full two-dimensional consideration of proper motion also helps to better separate
disk and halo stars), we find that halo stars can always be efficiently rejected at bj j > 30� if the separator shown in Figure 5 is shifted
upwards by 1 mag.

APPENDIX C

MODELING UNRESOLVED BINARIES IN SAMPLES OF WIDE BINARIES

One major uncertainty when using a photometric parallax relation is the lack of information as to whether the observed ‘‘star’’ is a
single star or a binary (multiple) system. If the observed ‘‘star’’ is a binary system, its luminosity will be underestimated, with the mag-
nitude of the offset depending on the actual composition of the binary. To model this offset, or to correct for it, one would ideally like to
have a probability density map that gives the probability of amagnitude offset,�Mr, as a function of the observed binary system’s color.

To construct such amap, we have generated a sample of 100,000 unresolved binary systems by randomly pairing stars drawn from the
Kroupa et al. (1990) luminosity function. By independently drawing the luminosities of each component to generate unresolved binary
systems, we implicitly assume that the formation of each component is unaffected by the presence of the other.While there are other proposed
mechanisms for binary formation (see Clarke 2007 and references therein), we have chosen this one because it was easy to implement.

Fig. 26.—Number of unresolved binary systems (normalized with the total count in a given g� i bin) with a magnitude offset�Mr ¼ Mr(assumed)�Mr(true) as a
function of the system’s g� i color. The assumed absolute magnitude for a system with a g� i color, Mr(assumed), was calculated using eq. (15) (eq. [1] from J08),
while the true absolute magnitudeMr(true) was calculated by adding up luminosities of components. The mean, median, and the rms scatter of�Mr are shown by the
dotted, solid, and dashed lines, respectively.
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For every unresolved binary system, we calculate the total r-band luminosity, and the r � i and g� i colors of the system. The
magnitude offset�Mr, caused by unresolved binarity, is obtained as the difference between the true r-band absolute magnitude and the
absolute magnitude for the pair’s joint r � i color, calculated using equation (15). The probability density map is then simply the number
of unresolved binary systems (normalized with the total number of systems at a given color) as a function of �Mr and the pair’s joint
g� i color, shown in Figure 26.

It is worth noting that, with the adopted binary formationmechanism, themagnitude offset is smallest (�Mr < 0:1mag) for the bluest
stars, and greatest (�Mr > 0:7 mag) for the reddest stars. Because of this, the scatter due to unresolved binarity in the � distribution
should be more pronounced in a sample of red stars (g� i > 2:0) than in a sample of blue stars.

The map shown in Figure 26 can be parameterized as a Gaussian distribution P(�Mrj�; �), where

� ¼ 0:037þ 0:10(g� i)þ 0:09(g� i)2 � 0:012(g� i)3 ðC1Þ

is the median �Mr, and

� ¼ 0:041þ 0:03(g� i)þ 0:15(g� i)2 � 0:057(g� i) 3 ðC2Þ

is the scatter (determined from the interquartile range). To verify the validity of this parameterization, we subtract�Mr and �, normalize
the difference with �, find the distribution of such values, and fit a Gaussian to it. As shown in Figure 27, the distribution of normalized
residuals is well described by a Gaussian with � ¼ 0:9. The two peaks in the distribution are due to highly asymmetric distributions of
�Mr values around the median �Mr for the bluest (g� i � 0:1) and reddest (g� i � 2:9) systems.

Fig. 28.—Distribution of � values for the mock sample of wide binaries with both components redder than g� i ¼ 2:0 (open circles). In this sample, a star has a 40%
probability to be an unresolved binary system. Single starYsingle star configurations contribute the central narrow Gaussian (dotted line), unresolved binaryYunresolved
binary configurations contribute the central wide Gaussian (thin solid line), while the single starYunresolved binary configurations contribute the left and the right Gaussians
(dot-dashed lines). The centers, widths, and areas of the Gaussians are: N1(0:00; 0:15; 0:34), N2(0:06; 0:35; 0:28), N3(�0:64; 0:18; 0:18), and N4(0:71; 0:17; 0:19) for the
narrow, wide, left, and right Gaussians, respectively. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 27.—Distribution of differences between the magnitude offset�Mr and the median magnitude offset �, normalized with rms scatter � (solid line). This can be
modeled as a 0.9 wide Gaussian (dotted line).
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To create a sample of wide binaries where some of the stars are unresolved binary systems, we first select pairs with 2000 < � < 3000

from the initial sample of stellar pairs. Following the procedure described in x 3.2, we create the ‘‘true’’ wide binaries by changing the r2
magnitude using equation (11); we then add 0.15 mag of Gaussian noise to simulate the scatter in the photometric parallax due to pho-
tometric errors. A fraction of stars is then randomly converted to unresolved binary systems by subtracting a�Mr value from the r-band
(apparent) magnitude, where �Mr is drawn from a g� i color-dependent P(�Mrj�; �) distribution.

Figure 28 shows the � distribution for such a mock sample, where the components are redder than g� i ¼ 2:0 and have a 40% prob-
ability to be unresolved binary systems. Different configurations of single stars and unresolved binaries that contribute to the observed �
distribution can be easily identified. Wide binaries where both components are single stars contribute the central narrow Gaussian,
whose width is due to photometric errors. If the brighter component is an unresolved binary system, its absolute magnitude is under-
estimated, and the result is an offset in � in the negative direction. A similar outcome happens if the fainter component is an unresolved
binary system, but the offset is positive. Single starYunresolved binary configurations, therefore, contribute the left and the right Gaussians.
If both components are unresolved binary systems, the � will be centered on zero and will be �0

ffiffiffi
2

p
wide, where �0 is the width of the

(�Mr � �) distribution. This behavior is consistent with the � distributions observed in Figure 12.
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