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Abstract

Building on the Bayesian approach to estimating stellar distances from broadband photometry, we show that the
computation can be accelerated by about an order of magnitude by using neural networks. Focusing on the case of
the ugrizy filter complement for Rubin’s Legacy Survey of Space and Time (LSST), we show that the Bayesian
approach is equivalent to mapping from a 10-dimensional space of five measured colors and their uncertainties to
a three-dimensional space of absolute magnitude, metallicity, and interstellar dust extinction along the line of
sight. Once the neural network is trained, this mapping is faster by more than an order of magnitude compared to
the Bayesian approach, for both optimized grid search and Markov chain Monte Carlo implementation methods.
We have developed and tested a pipeline that achieves significant acceleration by first running the Bayesian
method on 5%–10% of the sample, then using it to train a neural network, and finally processing the entire sample
with the resulting neural network. This computation is done in patches of about 10 deg2 due to the variation of
Bayesian priors across the sky. We present an analysis of pipeline performance, including speed and biases as
functions of input stellar parameters and signal-to-noise ratio, using TRILEGAL-based simulated LSST catalogs
by P. Dal Tio et al. We intend to run this pipeline on LSST data releases and make its outputs publicly available.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Distance measure (395); Distance indicators
(394); Stellar distance (1595); Extinction (505); Interstellar extinction (841); Reddening law (1377)

1. Introduction

Stellar color measurements delivered by Vera C. Rubin’s
Legacy Survey of Space and Time (LSST; Ž. Ivezić et al.
2019) will enable photometric distance estimates for over 10
billion Milky Way stars (L. Palaversa et al. 2025). LSST-based
stellar distances will reach about 10 times further than Gaia’s
color-based distances (C. A. L. Bailer-Jones et al. 2021) and
will be transformative for studies of the Milky Way in general
(e.g., M. Jurić et al. 2008; N. A. Bond et al. 2010; M. Berry
et al. 2012), and of its stellar and dark matter halo in particular
(e.g., S. R. Loebman et al. 2012, 2014). Distance accuracy for
stars with sufficiently small LSST photometric errors will be
within the 5%–10% range, or about twice as accurate as for
surveys lacking the UV u band (which provides metallicity
constraints).
L. Palaversa et al. (2025) describe a Bayesian procedure

and pipeline that builds on previous work and can handle
LSST-sized data sets. Their photo-D method is conceptually
quite simple: “multidimensional color tracks (either empirical
or model-based), parameterized by luminosity, metallicity, and
extinction, are fit to observed colors and the best fit produces
estimates of the three model parameters.” They achieved a
computation speed of about 10 ms per star on a single core for
both optimized grid search and Markov chain Monte Carlo
methods. Consequently, it would take about 10 days to process
data for 10 billion stars on a 100-core machine. While not
prohibitively expensive, it seems prudent to explore various
ways to accelerate this computation.

In this paper, we explore the potential of neural networks for
accelerating the Bayesian approach. The Bayesian computa-
tion is equivalent to mapping from a 10-dimensional space of
five measured colors and their uncertainties to a three-
dimensional model parameter space of absolute magnitude,
metallicity, and interstellar dust extinction along the line of
sight (discussed in detail in Section 2.2). This computation
uses Bayesian priors and is done in patches of about 10 deg2

due to the variation of Bayesian priors across the sky (see
L. Palaversa et al. 2025 for details). Once the neural network is
trained for such a patch, its application is faster by more than
an order of magnitude compared to the Bayesian approach. We
present here a pipeline that achieves significant acceleration by
first running the Bayesian method on a small fraction (5%–
10%) of the full sample, then using it to train a neural network,
and finally processing the entire sample with the resulting
trained neural network.
In Section 2, we describe the technical details of our

methodology and in Section 3 we optimize and analyze its
performance. Our discussion and our principal conclusions are
summarized in Section 4.

2. Methods

To accelerate the Bayesian approach, we developed a
custom neural network model specifically designed for this
problem. The architecture of the model was decided using the
hyperparameter tuning process described further below (see
Section 2.5). The input to the neural network consists of a
measured magnitude (chosen here in the r band) and colors
(u − g, g − r, r − i, i − z), along with their associated
observational uncertainties. Although model parameters are
fundamentally constrained by measured colors, the inclusion
of photometric errors is essential, as discussed further below
(see Section 2.2). We use three data sets to optimize the
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method and test its performance: two simulated data sets
where the true values of model parameters are known, and a
catalog based on the Sloan Digital Sky Survey (SDSS) for a
high-extinction region in the Galactic plane, as follows.

2.1. Data

We used multiple data sets throughout this study. One
simulated data set is used to perform hyperparameter tuning.
Two data sets, one observed and one simulated, are used to
train and evaluate the model performance.
All simulated data sets used in this study are derived from

the TRILEGAL simulation (P. Dal Tio et al. 2022), which
provides a realistic mock catalog of the Milky Way stars to
LSST depth (r = 27.5) and over the entire LSST survey area.
Each star in the simulated catalog is characterized by apparent
magnitudes in the ugriz photometric bands, as well as the true
values of absolute magnitude Mr, interstellar dust extinction
along the line of sight Ar, and stellar metallicity [Fe/H]. For a
given sky patch (with an area of ∼10 deg2, which is similar to
the size of the LSST Camera’s field of view), the sample is
binned by apparent r-band magnitude (27 bin centers from
r= 14 to r= 27, and overlapping bins with 1 mag width), and
prior distribution in the model parameter space is estimated for
each bin.
For the hyperparameter tuning, we used a data set consisting

of around 720,000 simulated stars, divided into a training set
(70%), validation set (15%), and test set (15%). This allowed
us to systematically evaluate different neural network
architectures on a consistent data split.
For training and testing the final model, we used a separate

data set consisting of around 440,000 stars. On that data set,
we conducted an additional search to identify the minimal size
of training set required for optimal performance. Through this
process, we determined that only 10,000 stars were needed for
training. These 10,000 stars were further split into a training
set (75%) and a validation set (25%), with validation sets used
for early stopping and learning rate scheduling. The remainder
of the data set of around 430,000 stars was reserved for testing.
All final results reported in this paper were evaluated on this
test set.
The observed data set is based on SDSS-SEGUE catalogs

assembled and discussed by4 M. Berry et al. (2012). For
testing, we selected their catalog that overlaps the Galactic
plane between longitudes l= 110° and l= 130°, with 150,000
stars.

2.2. Why Neural Networks Need Photometric Errors

Stellar model parameters are fundamentally constrained by
measured colors. A restricted case of blue stars where two
model parameters—effective temperature and metallicity—are
constrained in a two-dimensional g − r versus u − g color–
color space is visualized in Figure 2 from Ž. Ivezić et al.
(2008). It thus may be somewhat surprising that photometric
errors play a role too in estimating model parameters. While
photometric errors are not too important in a regime of
high signal-to-noise ratio (SNR), they are essential in one of
low SNR and are needed to avoid bias in estimated model
parameters.

The impact of measurement errors is incorporated naturally
in the Bayesian approach, both directly through the likelihood
function and indirectly through the role of priors (see Section
2.1 of L. Palaversa et al. 2025). The Appendix provides a toy
model and detailed analysis of the impact of photometric
errors, particularly in the u − g color, on the accuracy of
metallicity estimates. This example highlights the necessity of
incorporating the measurement uncertainties into the neural
network’s input: instead of a naive expectation that the input
space is spanned by five measured colors, it contains their five
measurement uncertainties, too. As mentioned earlier, the
primary role of the r-band magnitude is the parameterization
of priors (see also discussion in Section 2.1 of L. Palaversa
et al. 2025).
Therefore, neural networks must learn how to incorporate

the measurement uncertainties into their predictions. By
incorporating them, the network can learn to adjust its
predictions based on the level of uncertainty in the input.
The network will be trained to minimize not only the
difference between the predicted and true values of model
parameters but also that between the predicted and true (input)
values of their uncertainties (as computed by the Bayesian
approach for the training sample).

2.3. Neural Network Model

The neural network (NN) model used here is based on a
fully connected feedforward network: the first layer serves as
an input layer, and is followed by several hidden layers, ending
with the output layer. The model is structured to take as input
both the photometric measurements (r, u − g, g − r, r − i, and
i − z) and their associated errors (rerr, u − gerr, g − rerr, r − ierr,
and i − zerr). It is trained to predict the absolute magnitude Mr,
extinction Ar, and metallicity [Fe/H], along with their
uncertainties.
Our neural network uses the moments network approach

(N. Jeffrey & B. D. Wandelt 2020), where the output for each
parameter is not a single value but two numbers: the mean (μi)
and the standard deviation (σi) of the predicted parameter’s
posterior distribution. This probabilistic output allows the
model to provide an estimate of the uncertainty of its
predictions, which is crucial for estimating standard deviation.

2.4. Loss Function

The loss function used during training is designed to
minimize the squared error between the predicted values and
the true values while taking into account the predicted
uncertainty. The form of the loss function is

(( ) (( ) ) ) ( )µ µ= +
=

L
N

1
1

i

N

i i i i i
1

2 2 2 2

where θi are the true values of the parameters, and μi and σi are
the predicted mean and standard deviation, respectively.
We train the network to predict all parameters (Mr, Ar, [Fe/H])

simultaneously, using a weighted sum of the loss functions
described above for each parameter:

( )/= + +L L L L
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where LMr, LAr, and /LFe H are the individual loss functions for
each parameter. Values of 0.1 mag, 0.02 mag, and 0.1 dex are
typical minimal values for Mahalanobis distance, based on

4 Their catalogs are publicly available for download from http://faculty.
washington.edu/ivezic/sdss/catalogs/tomoIV/ws.html.
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photometric accuracy of around 0.01–0.02 mag, as shown in
previous work (Ž. Ivezić et al. 2008). These weights ensure
that each parameter’s contribution to the total loss is
appropriately scaled relative to its typical uncertainty.
The predicted uncertainties (σi) play a critical role in

ensuring that the model provides not only accurate predictions
but also appropriate error estimates, which are essential for
understanding the confidence in the distance estimates.

2.5. Hyperparameter Tuning

Hyperparameter tuning refers to the process of optimizing
key parameters of the neural network, such as the numbers of
layers, neurons per layer, and activation functions. This
process is typically computationally expensive and requires
significant resources, which is why it was performed on the
HPC Bura at the University of Rijeka. All jobs were run on its
CPU cluster, with each job utilizing two CPU cores and 4 GB
of RAM. It is a one-time process to find the best-performing
network architecture. Once determined, this architecture is
used for all subsequent stellar parameter prediction models
without the need for any future hyperparameter adjustments.
During the hyperparameter tuning, a hyperparameter data set of

around 720,000 simulated stars was used, and separated into
training, validation, and test sets as described in Section 2.1. The
training set was used to optimize model weights for each
candidate hyperparameter configuration, the validation set was
used to monitor the training progress, while the test set was used
to select the best-performing models according to their loss.
For this experiment, hyperparameter tuning was carried out

using the Hyperband algorithm (L. Li et al. 2018), an approach
that allows for efficient exploration of a vast hyperparameter
space. The algorithm operates by training many networks for a
small number of epochs and gradually eliminating poorer-
performing models, similar to a knockout tournament. The
final models are then trained for up to 1024 epochs, with the
best-performing models being evaluated based on mean square
error (MSE) metrics.
A total of 45 runs of the Hyperband algorithm were

conducted, with the “winner of winners” being selected from
the last 45 finalists. In total, 34,740 models were compared per
job, with each job taking approximately 7 days to complete,
running in parallel.
The hyperparameters varied in the tuning included:

1. Total number of hidden layers: minimum 1, max-
imum 10.

2. Number of neurons in each hidden layer: minimum 1,
maximum 50.

3. Activation function for each hidden layer: a choice from
ELU (D.-A. Clevert et al. 2015), GELU (D. Hendrycks
& K. Gimpel 2016), Hard Sigmoid, Linear, ReLU
(R. H. R. Hahnloser et al. 2000; V. Nair & G. E. Hinton
2010), SELU (G. Klambauer et al. 2017), Sigmoid,
Softmax (C. Dugas et al. 2000), Softplus (V. Nair &
G. E. Hinton 2010), Softsign (D. Macêdo et al. 2019),
Swish (P. Ramachandran et al. 2017), and Tanh.

Each model was initialized with a learning rate α = 0.01.
The learning rate was reduced by a factor of 0.9 after the loss
metric stopped improving, following a “Reduce learning rate
on Plateau” strategy (D. Wilson & T. Martinez 2001). This
iterative approach allowed the algorithm to search as large a
portion of the parameter space as possible (around 1.5 × 106

searched out of 8 × 1024 possible combinations), ultimately
identifying the best-performing architecture.
The best-performing model, selected based on the validation

set, was then used as a standard model architecture for further
training and evaluation on the final data set.

2.6. Bayesian Error Estimation Using Neural Networks

In addition to predicting stellar parameters, we train a secondary
neural network to estimate the uncertainties of the Bayesian
predictions. This network uses the same architecture as the
primary network to ensure consistency and simplicity in design.
This secondary neural network takes the input photometric

features (r, u − g, g − r, r − i, i − z) and photometric errors
(rerr, u − gerr, g − rerr, r − ierr, i − zerr) and is trained to predict
the Bayesian uncertainties for each stellar parameter (σB).
These uncertainties represent the error in the Bayesian
estimates for a given stellar parameter and are combined with
the uncertainties from the primary network to give the total
uncertainty of the predictions.
The loss function used for training this secondary network is

a weighted sum of the MSE for each prediction of stellar
parameter uncertainty, with the same weights as those used in
the primary loss function. This allows the secondary network
to focus on estimating the Bayesian errors for all parameters
simultaneously, scaled by their respective uncertainties.
The need for this additional network arises because the

primary neural network predicts uncertainties relative to the
Bayesian estimates (σNN), but does not account for the
inherent uncertainty in the Bayesian estimates themselves.
The total uncertainty is then calculated by combining the two
error sources as follows:

( )= + 3total NN
2

B
2

where σNN is the uncertainty in the neural network’s prediction
relative to the Bayesian estimate, and σB is the Bayesian error.
This formula applies under the assumption that the

correlation between the uncertainties predicted by the neural
network and those of the Bayesian model is negligible. To
verify this, we calculated the correlation between the errors for
each stellar parameter. The correlations are around 0.1 for Mr,
around 0.05 for Ar, and around 0.2 for [Fe/H]. Since these
values are close to zero, we can confidently use the expression
in Equation (3) without including a correlation. This approach
ensures that the final predictions account for both the
uncertainty in the Bayesian model and the uncertainty in the
neural network’s predictions.

3. Results

The main argument for using neural networks against the
Bayesian approach is that the NN algorithm is much faster
without any significant compromise in accuracy. Therefore,
the errors added by the NN approach should be much less than
the uncertainties already introduced by the Bayesian algo-
rithm. By performing the analysis on NN predictions, Bayesian
predictions, and ground truth we can examine the NN
performance and the loss in accuracy due to the speed-up.
This section presents the optimized size of training set

(number of stars), the best-performing NN architecture after
hyperparameter tuning, and a comparison between the neural
network and Bayesian approaches for estimating stellar
parameters (Mr, Ar, and [Fe/H]). We also include comparisons
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with ground truth from simulations and real-world data. The
figures are divided into four categories: simulation results
comparing Bayesian method versus ground truth, NN and
Bayesian methods, NN versus ground truth results, and
Bayesian versus NN results on real data.

3.1. Training Size

To determine the appropriate training size for our neural
network, we tested various sample sizes. We found that 10,000
stars were the minimal training size in which the performance of
the neural network was comparable to the ground truth in terms
of both the loss and the MSE metrics. The loss function used here
is the same as the one described in Section 2, which accounts for
both the predicted values and their uncertainties. As shown in
Figure 1, the loss values between the neural network and the true
values stabilize at 10,000 examples. Although the curve exhibits
noise due to the stochastic nature of training, the moving average
stabilizes around 10,000 training examples. Beyond this point, the
typical loss values plateau and show no significant improvement,
suggesting that this is a reasonable balance point between
performance and size of training set. Additionally, in both the
neural network versus Bayesian estimates and the neural network
versus true values, the error becomes negligible compared to the
Bayesian method’s own comparison with the true values.
All subsequent analyses in this work are performed on an

independently selected test set and consistently demonstrate
strong results. This reinforces the conclusion that using a
training set of 10,000 stars is sufficient, and a further increase
in training size does not justify the increase in the computa-
tional cost of generating training labels with the Bayesian
algorithm in the full pipeline as described in Section 4.1.

3.2. Neural Network Architecture

The neural network architecture was chosen after perform-
ing an extensive hyperparameter tuning, and it was used in two
separate neural networks: the primary network for predicting
the stellar parameters and a secondary network for estimating

uncertainties in the Bayesian photo-D algorithm. The details of
the architecture are as follows.

1. Input layer. The input to the network consists of 10
neurons, with a linear activation function.

2. First hidden layer. The first hidden layer contains 45
neurons with the Gaussian error linear unit (GELU)
activation function.

3. Second hidden layer. This layer consists of 45 neurons,
using the Softsign activation function.

4. Third hidden layer. The third layer contains 42 neurons
with the Softsign activation function.

5. Fourth hidden layer. The fourth layer consists of 33
neurons, using the Sigmoid activation function.

6. Fifth hidden layer. The fifth layer contains 36 neurons,
using the GELU activation function.

7. Output layer. For the primary network the output layer
contains six neurons while for the secondary it contains
three. Both networks use a linear activation function.

Training details. The primary network was trained using the
Adam optimizer (D. P. Kingma & J. Ba 2014), with a learning
rate of 0.001. The training process was allowed to run for a
maximum of 1024 epochs, with a batch size of 1024. If there
was no improvement on the validation set for 100 epochs, the
run was stopped early. The training included two complete
runs, and the best-performing run was selected based on the
performance of the validation set.
The secondary network used the same architecture as the

primary network with one modification: the output layer
consisted of only three neurons, corresponding to the
uncertainties predicted for Mr, Ar, and [Fe/H]. This secondary
network was trained for a maximum of 256 epochs, with only
one complete training run, and the same early stopping
criterion as the primary network was applied.

3.3. Comparison between Bayesian Estimates and Ground
Truth (Simulation)

To establish the basis of comparison, we first evaluated the
predictions of the Bayesian algorithm against the ground truth
derived from simulations. This comparison highlights the
inherent errors in the Bayesian estimates relative to the true
values. While this analysis was done extensively by L. Palaversa
et al. (2025), it is helpful to repeat it with the same data and in the
same way as with NN prediction. These comparisons were
performed on the test set of approximately 430,000 stars, which
were not used during training as described in Section 2.1.
Figure 2 compares Bayesian estimates to actual parameter

values, with a dashed red line indicating a perfect 1:1 correlation.
Residuals between Bayesian estimates and true values, as

functions of u − g color and its error, are shown in Figures 3,
4, and 5, mirroring the panels of L. Palaversa et al. (2025). No
major bias is evident and results are as expected.
Figure 6 illustrates how Bayes-predicted residuals vary with

differences in u magnitude, Mr, and [Fe/H]. The strong
correlation between Mr and [Fe/H] residuals is due to the
dependence of the Mr versus color relation on metallicity,
which is essentially a shift in Mr as a function of [Fe/H] (see
the bottom left panel of Figure 20 and Equation (A2) of
Ž. Ivezić et al. 2008).
Residual histograms for Mr, Ar, and [Fe/H] (normalized by

estimated standard deviations) are shown in Figure 7. A

Figure 1. Search for the optimal size of the training set. The figure shows the
magnitude and a moving average of the magnitude of a weighted loss function
(Equation (2)) for the neural network predictions and true values for different
sizes of training data sets. We found that the best training size is around 10,000
examples. Both curves display fluctuations due to stochastic training effects,
but beyond 10,000 examples typical loss values plateau and show no
significant improvement. The Bayesian loss remains flat because its
predictions are fixed and independent of training size.
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Gaussian distribution reference (N(0, 1)) is marked by a red
line to evaluate prediction uncertainties. All of these results are
consistent with L. Palaversa et al. (2025).

3.4. Comparison between NN and Bayesian Estimates
(Simulation)

In this subsection, we compare the performance of the
neural network model to the Bayesian method using a
simulated data set. This comparison was conducted on the
same test set of around 430,000 stars described in Section 2.1.

Figure 8 shows the comparisons between the NN and
Bayesian estimations. The NN model demonstrates a strong
agreement with the Bayesian approach across all three

Figure 2. Comparison between Bayesian estimates and ground truth for Mr,
Ar, and [Fe/H] using simulated data. The dashed red line indicates the 1:1
correlation. The data set includes 434,865 stars with a minimum magnitude
SNR of 5 in all bands. The color scale represents the density of points.

Figure 3. Performance of the Bayesian algorithm forMr. The color code in the
left panel shows the median ofMr in each pixel, that in the middle panel shows
the median residuals ΔMr (Bayesian – ground truth), and that in the right
panel shows the standard deviation of the residuals.

Figure 4. Performance of the Bayesian algorithm for Ar. The color code in the
left panel shows the median of Ar in each pixel, that in the middle panel shows
the median residuals ΔAr (Bayesian – ground truth), and that in the right panel
shows the standard deviation of the residuals.

Figure 5. Performance of the Bayesian algorithm for [Fe/H]. The color code
in the left panel shows the median of [Fe/H] in each pixel, that in the middle
panel shows the median residuals Δ[Fe/H] (Bayesian – ground truth), and that
in the right panel shows the standard deviation of the residuals.

Figure 6. Residuals between Bayesian predictions and true values plotted
against u magnitude (top), Mr (middle), and differences in [Fe/H] (bottom).
The full red line represents the median residuals, the dashed red line represents
the standard deviation of the residuals, and the density of residuals is shown on
a color scale.
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parameters. Although some scatter is observed, particularly for
Ar, the overall trends follow the expected behavior. This
scatter is much less for Mr and [Fe/H] than in Figure 2,
showing that the dominant source of error is the Bayesian
algorithm. Ar scatter, while higher, is still comparable to the
Bayesian algorithm as seen in Table 1.
Residuals between the NN and Bayesian estimates, as

functions of u − g color and its error, are presented in
Figures 9, 10, and 11. Figures show the bias dependence of the
neurons associated with the u − g color. Results show
consistent residuals across most regions, with slightly higher
residuals of [Fe/H] in some regions, likely due to its
sensitivity to photometric errors. Compared to Figures 3, 4,
and 5, biases are less pronounced, which is also seen in
Table 1.
Figure 12 shows that the residuals between the NN-

predicted values and the Bayes estimates are smaller in areas
where the data set has the most examples. The median [Fe/H]
residual is stable across the range of u magnitude. Mr residuals
are tightly clustered around zero with small deviations for
brighter stars where the representation of the stars is scarce.
The metallicity residuals do slightly affect the Mr estimates,
which is to be expected from the dependence on metallicity of
the absolute magnitude versus color relation (for details see
L. Palaversa et al. 2025).
Figure 13 shows that Mr, Ar, and [Fe/H] residuals follow a

Gaussian distribution, with only minor deviations in the tails.
Mr and [Fe/H] show a slight overestimation of the standard
deviation, while Ar shows a slight underestimation. Despite
this, the overall distribution remains centered around zero,
suggesting that overall the NN performs without any
significant bias.
In summary, the results demonstrate that the neural network

model provides stellar parameter estimates that are highly
consistent with those from the Bayesian method. Both the
residuals and error distributions show that the NN maintains a
high level of accuracy across all parameters. This is also
supported by the residual histograms shown in Figure 13, as
well as the summary statistics presented in Table 1, which
quantify both the bias and scatter for each parameter across the
methods. While there are slight deviations from the Bayes
predictions, those are all negligible compared to the Bayes
uncertainties.

3.5. Comparison between NN and Ground Truth (Simulation)

To fully measure the performance of the NN algorithm, we
also compare the performance of the neural network model
against the ground truth using simulated data. This evaluation

was performed on the test set of approximately 430,000
simulated stars, which were not seen during training.
Figure 14 compares the NN estimates and the ground truth.

The NN shows a close alignment with the ground truth,
especially for Mr. Most of the features in this figure are also
present in Figure 2. A larger amount of scatter is visible than in
Figure 8, due to challenges in accurately estimating those
parameters with the Bayesian approach.
Figures 15, 16, and 17 show the predicted values of the

stellar parameters as well as residuals in the u − g and u − g

Figure 7. Histograms of residuals between Bayesian estimates and ground
truth for Mr (left), Ar (middle), and [Fe/H] (right). The red curves show a
normal distribution (N(0, 1)) for comparison.

Figure 8. Comparison between NN and Bayesian estimates for Mr, Ar, and
[Fe/H] using simulated data. The dashed red line indicates the 1:1 correlation.
The data set includes 434,865 stars with a minimum magnitude SNR of 5 in all
bands. The color scale represents the density of points.
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error space. All the regions are very similar to the performance
of the Bayes algorithm (Figures 3, 4, and 5).

[Fe/H] and Mr residuals on Figure 18 remain close to zero
across most of the magnitude range, while the scatter increases for
the faintest stars, where photometric errors are larger. Residuals for
Mr are centered around zero for the whole Mr range, and we can
see a clear correlation between residuals in Mr and [Fe/H], which
is expected. The main scatter comes from Bayes estimation, which
is evident when comparing Figures 12 and 6 with Figure 18.

Finally, Figure 19 shows that the normalized residuals for
Mr align closely with a normal distribution, indicating that the
NN provides a reliable prediction for absolute magnitude. Ar
shows greater deviation, suggesting that the errors are slightly
overestimated. Still, this overestimation is overall smaller than
with the Bayes algorithm. [Fe/H] shows a very slight bias,
which is also present in Bayes estimations.
Table 1 summarizes the residual statistics for each of the

three stellar parameters. For each comparison, we report the
median and robust standard deviation of the residuals.
These values quantitatively support our claim that the

dominant source of error arises from the Bayesian algorithm.
The residuals between the NN and Bayesian predictions are
significantly smaller in both bias and scatter than the residuals
between Bayesian estimates and the true values. Moreover, the
NN residuals relative to the ground truth remain comparable in
scale to the Bayesian residuals, confirming that the speed-up
introduced by the NN does not come at a significant cost in
accuracy.
Overall, the main source of errors is the Bayes estimation of

truth, while the NN estimation of the Bayes contributes only a
small amount of the total error.

3.6. Comparison with Observations

In addition to simulated data, we applied the NN model to
observational data and compared the estimates with those from
the Bayesian method. Figure 20 displays the comparison of the

Figure 9. Performance of the NN algorithm for Mr. Analogous to Figure 3
except the residuals are defined as (NN – Bayesian).

Figure 10. Performance of the NN algorithm for Ar. Analogous to Figure 4
except the residuals are defined as (NN – Bayesian).

Figure 11. Performance of the NN algorithm for [Fe/H]. Analogous to
Figure 5 except the residuals are defined as (NN – Bayesian).

Figure 12. Residuals between NN predictions and Bayes estimates plotted
against u magnitude (top), Mr (middle), and differences in [Fe/H] (bottom).
The full red line represents the median residuals, the dashed red line represents
the standard deviation of the residuals, and the density of residuals is shown on
a color scale. Limits of the y-axis are halved when compared to Figure 6.

Figure 13. Histograms of residuals between NN and Bayesian estimates for
Mr (left), Ar (middle), and [Fe/H] (right). The red curves show a normal
distribution (N(0, 1)) for comparison.

Table 1
Median and Robust Standard Deviation of Residuals for Each Stellar

Parameter

Comp. Parameter Median Robust Std. Dev.

Bayes versus truth Mr −0.010 0.282
Ar −0.009 0.041

[Fe/H] −0.006 0.315

NN versus Bayes Mr 0.005 0.123
Ar 0.007 0.048

[Fe/H] −0.003 0.110

NN versus truth Mr 0.005 0.324
Ar −0.004 0.055

[Fe/H] −0.014 0.352

Note. The data set consists of 434,865 simulated stars with SNR > 5 in all
bands.
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NN predictions and Bayesian estimates for Mr, Ar, and [Fe/H]
on real data.
As seen in the simulations, the NN model’s predictions closely

follow the Bayesian estimates across all three parameters, with a

Figure 14. Comparison between NN and ground truth estimates for Mr, Ar,
and [Fe/H] using simulated data. The dashed red line indicates the ideal 1:1
correlation. The data set includes 434,865 stars with a minimum magnitude’s
SNR of 5 in all bands.

Figure 15. Performance of the NN algorithm for Mr. Analogous to Figure 3
except the residuals are defined as (NN – ground truth).

Figure 16. Performance of the NN algorithm for Ar. Analogous to Figure 4
except the residuals are defined as (NN – ground truth).

Figure 17. Performance of the NN algorithm for [Fe/H]. Analogous to
Figure 5 except the residuals are defined as (NN – ground truth).

Figure 18. Residuals between NN predictions and true values plotted against u
magnitude (top), Mr (middle), and differences in [Fe/H] (bottom). The full red
line represents the median residuals, the dashed red line represents the
standard deviation of the residuals, and the density of residuals is shown on a
color scale.

Figure 19. Histograms of residuals between NN and ground truth estimates for
Mr (left), Ar (middle), and [Fe/H] (right), normalized by predicted
uncertainties. The red curves show a normal distribution (N(0, 1)) for
comparison.
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near 1:1 correlation line, as shown by the dashed red lines in
Figure 20. However, some scatter is observed, particularly in the
metallicity ([Fe/H]) estimates. We observe that the neural
network estimates of [Fe/H] tend to saturate around −0.5 for a
subset of stars where the Bayesian method predicts significantly
lower metallicities (below −0.7). We find that approximately 5%
of the data set falls into this regime. The likely explanation is that
low-metallicity stars are underrepresented in the training set,
which limits the neural network’s ability to accurately learn the
mapping in this region. Additionally, the abrupt drop in the

density of stars with Bayes Mr < 4 is due to the main-sequence
turn-off, which reflects the age of the stellar population.
As seen in Figure 21, the Mr estimates in real data show

good agreement between NN and Bayesian methods. The
scatter for Mr remains minimal, increasing only in the regions
of low SNR. Next, in Figure 22, we show the comparison of
extinction (Ar) between the NN and Bayesian predictions. The
two methods align well, although some scatter is noticeable for
stars with larger color errors. This is consistent with the
behavior observed in simulations, where extinction estimates
tend to be more challenging due to photometric uncertainties.
Lastly, the comparison for metallicity ([Fe/H]) is presented in
Figure 23. Here, we observe a more pronounced bias than for
Mr and Ar, likely due to the complexity of accurately
estimating metallicity with low-SNR photometric colors. The
scatter increases for stars with lower SNRs, where uncertain-
ties in the u − g color become more significant.
We further analyze how the residuals behave across

different parameter ranges by plotting them as a function of
u magnitude, Mr, and Δ[Fe/H], as shown in Figure 24. The
[Fe/H] residuals remain relatively small across the magnitude
range, with slight deviations for fainter stars. Similarly, the Mr

residuals are tightly clustered around zero and a slight
correlation between [Fe/H] and Mr residuals is noticed, as
observed in the simulations.

Figure 20. Comparison between NN and Bayesian estimates for Mr, Ar, and
[Fe/H] using real observational data. The dashed red line indicates the ideal
1:1 correlation. The data set includes 147,064 stars with a minimum
magnitude’s SNR of 5 in all bands.

Figure 21. Performance of the NN algorithm for Mr using real
observational data. Analogous to Figure 3 except the residuals are defined
as (NN – Bayesian).

Figure 22. Performance of the NN algorithm for Ar using real
observational data. Analogous to Figure 4 except the residuals are defined
as (NN – Bayesian).

Figure 23. Performance of the NN algorithm for [Fe/H] using real
observational data. Analogous to Figure 5 except the residuals are defined
as (NN – Bayesian).
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Finally, in Figure 25 we present the histograms of the
residuals between the NN and Bayesian estimates normalized
by uncertainties predicted by the primary network for Mr, Ar,
and [Fe/H], compared to a standard Gaussian. The distribu-
tions forMr and Ar align closely with the Gaussian, but there is
a slight deviation for [Fe/H] and a slight bias, indicating that
metallicity estimates may be more affected by photometric
errors.
In summary, the NN model performs well on observational

data, closely matching the Bayesian estimates for Mr and Ar.
However, the [Fe/H] predictions show more scatter, particu-
larly for stars with higher photometric errors. This analysis
confirms the robustness of the NN model for large-scale
surveys like LSST, while also highlighting the challenges in
estimating metallicity from photometry alone.

4. Discussion and Conclusion

4.1. Integration Plan for a Full-sky Data Set

To efficiently handle the massive amount of data expected
from the Vera C. Rubin Observatory’s Legacy Survey of
Space and Time, we have developed a pipeline that balances
the strengths of Bayesian methods and neural networks,
optimizing both speed and accuracy. The pipeline significantly
accelerates the estimation of stellar parameters while main-
taining Bayesian-level precision.
The method we employ starts by applying the Bayesian

approach to approximately 5%–10% of the full data set
(around 10,000 examples), carefully selected to represent the
diverse stellar populations across the sky. The stellar
parameters (Mr, Ar, [Fe/H]) estimated from this sample are
then used to train both the primary neural network and the
secondary network. Once trained, the neural networks
processes the remaining 90%–95% of the data, significantly
speeding up the overall computation.
To account for the regional variation in stellar populations

and dust extinction across the sky, we divide the sky into
patches of approximately 10 deg2. The final results from all
patches are aggregated to produce a full-sky map of stellar
parameters.
Overall, this pipeline is capable of processing large data sets

in a fraction of the time required for a fully Bayesian approach,

without compromising accuracy. The results from this pipeline
will be made publicly available to benefit the wider
astronomical community.

4.2. Computational Efficiency

One of the key advantages of the hybrid Bayesian–neural
network pipeline is its significant reduction in computation
time. The Bayesian algorithm, when applied to the full data set
of 440,000 stars, is expected to take approximately 4400 s.
However, by applying the Bayesian method to only a small
fraction of the data, we significantly reduce the computation
time required for this step.
We measured the time required to process the same data set

using the NN and found the average time to be 65 s with a
standard deviation of approximately 20 s. Given these results,
the hybrid approach would take approximately 165 s to evaluate
the full data set of 440,000 stars. This represents a drastic
reduction in computational time compared to the full Bayesian
approach, making the pipeline feasible for processing the vast
amounts of data expected from future LSST releases.
All computations were performed on CPUs. During the

development and testing phases, we observed that training with
GPUs led to a linear slowdown proportional to the number of
GPUs used. This is likely due to the simplicity of the model,
where the overheads associated with the use of GPUs outweigh
the benefits. Given that the model is lightweight, the CPU-based
approach provides low-cost alternatives without requiring
expensive hardware and could be effectively run on most
consumer-grade personal computers.
From our analysis, we observed that the uncertainties

predicted by the Bayesian method are, on average, much
higher than those predicted by the NN. This is consistent
across most stars in the data set as seen in Figures 26 and 27.
The lower uncertainties from the NN suggest that the model
has learned the inherent structure in the data efficiently and
without introducing significant additional uncertainty into the
predictions.
This computational efficiency is a major benefit of our

method, allowing for rapid processing of large data sets
without sacrificing accuracy. By applying the hybrid pipeline,
we can ensure the feasibility of processing billions of stars,
which are expected by the upcoming sky surveys.

4.3. Conclusion

Our results demonstrate that a neural network, once trained,
can provide predictions that are comparable in accuracy to
those from Bayesian methods while being over an order of

Figure 24. Residuals between NN predictions and true values plotted against u
magnitude (top), Mr (middle), and differences in [Fe/H] (bottom) for real
observational data. The full red line represents the median residuals, the
dashed red line represents the standard deviation of the residuals, and the
density of residuals is shown on a color scale.

Figure 25. Histograms of residuals between NN and Bayesian estimates for
Mr (left), Ar (middle), and [Fe/H] (right) using real observational data,
normalized by predicted uncertainties. The red curves represent a normal
distribution (N(0, 1)) for comparison.
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magnitude faster. The neural network consistently produced
uncertainties that were significantly lower than those predicted
by the Bayesian approach, indicating that the model has
successfully learned the structure of the data without
introducing additional errors.
Looking forward, the application of this pipeline to real

LSST data will allow for the efficient analysis of stellar
populations across the entire sky, enabling new discoveries in
Galactic structure, stellar evolution, and the interstellar
medium. The flexibility of the pipeline allows it to be adapted
for other large-scale sky surveys, making it a versatile tool for
the broader astronomical community.
Overall, the hybrid Bayesian–neural network pipeline

represents a significant step forward in the ability to process
vast astronomical data sets efficiently, and it will play a key
role in the analysis of the unprecedented data volume expected
from future sky surveys.

Acknowledgments

Ž.I. acknowledges funding by the Fulbright Foundation and
thanks the Ruđer Bošković Institute for hospitality. K.M. and
Ž.I. acknowledge support from the DiRAC Institute in the
Department of Astronomy at the University of Washington.
K.M. and Ž.I. acknowledge support from the Center for
Advanced Computing and Modeling, University of Rijeka, and
the HPC Bura. This work is financed within the Tenure Track
Pilot Programme of the Croatian Science Foundation and the
Ecole Polytechnique Fédérale de Lausanne and the Project
TTP-2018-07-1171 “Mining the Variable Sky,” with the funds
of the Croatian-Swiss Research Programme.
Facilities: Rubin:Simonyi, Gaia, Sloan.
Software: Astropy (Astropy Collaboration et al. 2013,

2018, 2022), TensorFlow (M. Abadi et al. 2015), Keras
(F. Chollet et al. 2015), Matplotlib (J. D. Hunter 2007), SciPy
(P. Virtanen et al. 2020).

Appendix

To demonstrate how photometric errors can affect metalli-
city estimates, a simplified model was employed inspired by
actual observations. The model values are obtained by
randomly sampling [Fe/H] from both a flat distribution
spanning the range from −3 to 0 and a distribution that is
made of two equal-size concatenated Gaussian distributions
centered on [Fe/H] = −1.5 and [Fe/H] = −0.5, and with σ
equal to 0.3 dex and 0.2 dex, respectively. The colors are
calculated using the equation

( )= + ×y 0.84 0.34 10 A1x0.45

where x represents [Fe/H] and y corresponds to the u − g
color. This particular functional form (A1) can be explained by
the absorption of flux in the ultraviolet region by metallic lines
according to Beer’s law. The coefficients in the equation are
determined by fitting SDSS data from stars with g − r ∼ 0.3
(Ž. Ivezić et al. 2008). To simulate the scatter caused by
measurement errors, random variations were introduced to
both [Fe/H] and u − g using Gaussian distributions with a
standard deviation of σ = 0.1.
The resulting simulated sample is presented in Figures 28 and

29. This visualization demonstrates that using the median value
(or any other average statistic) of spectroscopic [Fe/H] within
bins of u − g color as a photometric metallicity estimator fails
when u − g errors are not negligible, particularly in comparison
to the relevant dynamic range. Specifically, the median [Fe/H]
values are biased toward higher values for regions of low [Fe/H]
(blue u − g) and biased toward lower values for regions of high
[Fe/H] (red u − g).
The magnitude of this bias depends on the errors in u − g

color. In Figure 30, the bias is depicted as a function of
assumed u − g errors for three different true u − g values.
Note that the metallicity bias can be positive or negative. As

Figure 26. Comparison of uncertainties using simulated data. Left: histograms
of the ratio σtotal/σB for all three stellar parameters show that the total error is
nearly equal to the Bayesian error. Right: histograms of the ratio σNN/σB show
that neural network-induced error is typically much smaller than the Bayesian
error. This confirms that the dominant uncertainty originates from the
Bayesian estimates.

Figure 27. Same as Figure 26 but for real observational data. The distributions
are broader, but the same trend holds: the total uncertainty is dominated by the
Bayesian method, while the neural network adds only a small contribution.

Figure 28. Uniform toy model illustrating the bias in photometric metallicity
estimation caused by significant errors in u − g color. The panel shows
approximately 40,000 small dots, generated according to the process outlined
in the text. The dashed line represents Equation (A1). The large symbols
represent the median [Fe/H] values within each bin of u − g color. The figure
is generated by sampling [Fe/H] from a uniform distribution before
calculating Equation (A1).
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expected, no bias is observed when errors are negligible. The
bias is also influenced by the underlying true [Fe/H]
distribution; as seen in Figure 30, the difference in bias
between the uniform underlying true [Fe/H] distribution and a

binormal distribution is significant. Additionally, the bias is
particularly pronounced when the “measured” u − g values are
bluer than the bluest possible u − g color in the absence of
noise (u − g < 0.84, as stated in Equation (A1)).
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Figure 29. Binormal toy model illustrating the bias in photometric metallicity
estimation caused by significant errors in u − g color. Analogous to Figure 28
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and with σ equal to 0.3 dex and 0.2 dex, respectively.

Figure 30. Demonstration of the median [Fe/H] as a function of assumed
u − g errors, using Gaussian distributions of u − g, for three different u − g
colors: 0.89 (circles), 0.99 (squares), and 1.09 (triangles). Lines represent the
true values of [Fe/H], open symbols correspond to medians of a uniform
[Fe/H] distribution (as shown in Figure 28, while closed symbols represent the
case where [Fe/H] is composed of two concatenated Gaussian distributions of
equal size, centered at [Fe/H] = −1.5 and [Fe/H] = −0.5, with standard
deviations of 0.3 dex and 0.2 dex, respectively, as shown in Figure 29.
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