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ABSTRACT: New research in daylighting metrics and developments in validated digital High Dynamic Range 
photography techniques suggest that luminance based lighting controls have the potential to provide occupant 
satisfaction and energy saving improvements over traditional illuminance based lighting controls.  This paper 
studies the occupant preference of patterns of luminance within these contexts.  Three existing luminance threshold 
analysis methods (scene average based luminance threshold, predetermined absolute luminance, and task average 
based luminance) are studied as well as additional candidate metrics for their ability to explain luminance 
variability of 18 participant assessments of ‘preferred’ and ‘just disturbing’ scenes.  The most consistent and 
effective existing metric is found to be ‘absolute luminance threshold’, where the criteria is determined as limiting 
the percentage of pixels that exceed the threshold (~10 % of pixel values> 2000 cd/m2 were rated as ‘just 
disturbing’).  
Keywords: luminance based lighting controls, discomfort glare, occupant preference, high dynamic range imaging 

 
 
INTRODUCTION  
Successful daylight designs of office buildings can 
provide significant energy savings when properly 
integrated with daylight sensing lighting control 
systems.  However, previous research shows that 
spaces (excepting large volume toplit spaces [1]) 
designed to integrate daylighting and electric lighting 
controls rarely produce the energy savings purported 
during design stages [2].  Discrepancies in realized 
savings are attributed to complicated specification, 
installation, and commissioning [3, 4] and are 
compounded by operational issues associated with 
suboptimal manual blind (or shade fabric) operation 
and user dissatisfaction, resulting in systems being 
disabled [2].  

Commercially available lighting control systems 
are exclusively based upon illuminance, often 
measured at the ceiling plane looking toward the work 
plane.  In general, illuminance-based metrics drive 
lighting design decisions and control system 
technology due to their predominance in professional 
standards [5], and the historic measurement limitations 
including the cost of luminance measurement 
equipment. However, a literature survey on 
determinants of lighting quality [6] indicates that 
illuminance is important for visual performance only at 
extremely low levels; and it does not significantly 
affect the task performance over a wide range of 
illuminance levels and varieties of tasks. On the other 

hand, visual performance studies (such as Blackwell 
[7], Boyce [8], Rea and Ouelette [9]) and visual 
comfort metrics such as Daylight Glare Index (DGI) 
[10] and Daylight Glare Probability [11] (DGP) 
establish a relationship between luminance, comfort, 
and visibility.  Contemporary office occupants spend a 
significant amount of time working on vertical tasks 
(computer monitors) rather than paper-based horizontal 
tasks.  Therefore, it stands to reason that occupant 
preferences in office settings can be better predicted by 
patterns of luminance in the vertical visual field than 
horizontal illumination. As a result, luminance-based 
lighting control systems can potentially provide better 
energy savings and user satisfaction than traditional 
illuminance-based systems. 

With the developments in digital High Dynamic 
Range (HDR) photography [12, 13] and its validated 
technique [14] for collecting luminance data, it is 
possible to analyze complex datasets and correlate 
luminance distribution patterns with user preference. 
Single quantities, whether they are luminance or 
illuminance measures, are not very informative about 
the quantitative and qualitative dynamics of lighting 
across an entire space.  Luminance mapping techniques 
provide much more information about a luminous 
environment than a limited number of measurements. 
However, there is a need to determine appropriate data 
analysis techniques that can be used to quickly analyze 
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the information and provide useful feedback for 
lighting design decisions and control strategies. 

Recent studies with luminance mapping techniques 
incorporate a threshold luminance value, where 
exceeding values are likely to cause occupant 
discomfort. These studies can be grouped into three 
areas as follows: 
1. Scene average based luminance threshold: Average 

luminance values are calculated in a large field of 
view (hemispherical fisheye lenses allow data 
collection in 180° horizontally and vertically), and 
the discomfort threshold is determined as the 
multiplication of the average scene luminance with 
a constant. Radiance ‘findglare’ tool [15] adopts 
this method and the default constant is 7. An 
average luminance value (L) in a scene yields to a 
luminance threshold of 7*L (i.e. luminance values 
above 7*L are identified as potential glare sources).  
Different glare indices, including DGI, are 
calculated based upon the brightness, location, and 
apparent size of the glare sources and the 
background luminance for a particular viewpoint.  

2. Predetermined absolute luminance threshold: An 
acceptable luminance threshold is set as a 
predetermined value.  A recent study [16] used 2000 
cd/m2 as the threshold value for the average 
luminance of the unobstructed portion of the 
window wall. In this research, the threshold value is 
used to control an automated roller shade system in 
an open plan office space to control direct sun and 
window glare while providing an adequate amount 
of daylight and view to the outdoors.   

3. Task average based luminance threshold: Average 
task luminance is calculated in a given area, and the 
threshold is determined as the multiplication of the 
average task luminance with a constant. A new 
glare metric, DGP [11] utilizes this method, where 
the threshold value is determined as 4 times the 
average task luminance.  In this research, 
psychophysical experiments were conducted on 70 
subjects under varying daylight conditions in a 
private office and 349 unique scenes resulted in a 
squared correlation of 0.94 for DGP as compared to 
0.56 for DGI [17]. 
It is important to note that both Radiance ‘findglare’ 

tool and DGP allow the user to set a predetermined 
threshold value. 

In a simple daylit setting, Howlett et al. proposed a 
framework for other luminance-based metrics and 
assessed their temporal and spatial stability [18].  
Additionally, Newsham et al. tested other measures 
with a group of 40 subjects in a ‘glare-free’ office 
laboratory with low daylight levels (glass 0.20 visible 
transmittance) to determine which explained the 

greatest proportion of lighting preferences [19]. Sarkar 
and his colleagues have demonstrated applications 
where small cameras collect HDR information and 
control electric lighting systems in architecturally 
stable environments [20, 21].  

The research outlined above marks the beginning of 
a new generation of luminous field control system and 
metrics research while several important issues remain 
unresolved. These include concerns regarding occupant 
privacy with cameras in the workplace, technical 
challenges associated with physically positioning 
cameras to adequately control lights and blinds (even in 
simple private offices, not to mention open office 
applications or other more complex settings), questions 
about economic feasibility of such systems so that 
market uptake is possible, and lack of a foundation of 
solid human factors research to support design metrics 
and control algorithms.  

The aim of this paper is to advance the area of 
human preference analysis while maintaining the work 
within the contexts of the lighting and blind control 
systems, and building design performance analysis 
metrics.  The paper explores methods for analyzing and 
evaluating the luminance quantities and distribution 
patterns in an office space under daylight conditions. 
The three unique luminance threshold methods 
described above are analyzed in connection with 
occupant preference, and other candidate metric 
solutions are reviewed.  

Accurate predictions of occupant preference under 
daylight conditions with validated metrics and 
thresholds will progress the design industry in two 
significant ways.  First, it will help designers make 
more informed choices among the candidate design 
solutions, and therefore, improve the quality of 
daylighting in buildings.  Second, it has the potential to 
significantly propel lighting and shading controls 
beyond traditional illuminance measures, and therefore, 
better optimize energy savings while accommodating 
user preference.  
 
 
METHODOLOGY 
The research involves collection of large field of view 
luminance maps and illuminance measurements along 
with occupant surveys to study the occupant 
preferences in an office space along with quantitative 
measurements.  The research setting (Fig. 1) is a 3.5m 
x 4.5m (~16 m2) private office with a southwest facing 
window (33º from true South) exposure in Boise, Idaho 
(43º N and 116º W).  
 The experiment was conducted on December 16th–
17th, 2008 between 11:30-16:00.  Sky condition varied 
from sunny to cloudy, bright with haze, and full 
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environment that improves the preference ratings of the 
occupants, whereas excessive luminance variability 
tends toward creating uncomfortable spaces.  

The ability of several metrics examined to 
consistently differentiate preferred scenes from just 
disturbing scenes is encouraging.  However, as 
expected, it is difficult to establish two-way threshold 
(above x = comfort, below x = discomfort) due to 
several known dynamic variables (individual 
preference, temporal variability, setting variability).  
This suggests that calibration for luminance controls 
under various settings is straightforward and makes 
predictive modelling difficult because of its 
dependency on occupant positions. These results 
suggest that the most practical approach for assessment 
of the three current methods is the ‘predetermined 
absolute luminance threshold’ measure. As the next 
step, this line of research will be expanded to 
investigate other potential metrics for effective 
luminance assessment within additional settings and 
daylighting conditions for use with automated lighting 
and blind controls and for predictive design 
performance assessment.  
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