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ABSTRACT 

Compared with illuminance-based metrics, luminance-

based metrics and evaluations provide better 

understandings of occupant visual experience. However, 

it is computationally expensive and time consuming to 

incorporate luminance-based metrics into architectural 

design practice because annual simulations require 

generating a luminance map at each time step of the 

entire year. This paper describes the development of a 

novel prediction model to generate annual luminance 

maps of indoor space from a subset of images by using 

deep neural networks (DNNs). The results show that by 

only rendering 5% of annual luminance maps, the 

proposed DNNs model can predict the rest with 

comparable accuracy that closely matches those high-

quality point-in-time renderings generated by Radiance 

(RPICT) software. This model can be applied to 

accelerate annual luminance-based simulations and lays 

the groundwork for generating annual luminance maps 

utilizing High Dynamic Range (HDR) captures of 

existing environments.  

INTRODUCTION 

Architectural daylighting design is not only driven by 

energy concerns but also motivated by a desire to 

improve human comfort. The presence of daylight can 

improve occupants’ health, awareness, and feelings of 

well-being (Boyce 2014). However, uncontrollably 

maximizing daylight penetration into buildings can lead 

to undesirable luminous environments that can impair 

vision or create visual discomfort.  

Attitudes and research practices in architectural lighting 

field are shifting towards luminance-based metrics and 

evaluations. Compared with illuminance-based metrics, 

luminance-based metrics provide more meaningful 

information about occupant visual experience. For 

example, the primary source of indoor visual discomfort 

is discomfort glare caused by excessive light or contrast 

in an occupant’s field of view. Therefore, glare can be 

better understood through luminance distribution-based 

metrics (Wienold and Christoffersen 2006, Jakubiec and 

Reinhart 2012, Suk et al. 2013, Konis 2014, Van Den 

Wymelenberg and Inanici 2015).  

Practitioners and researchers need long-term daylighting 

simulations to predict the effectiveness of their design 

strategies and decisions. Although illuminance-based 

annual simulations are accessible to lighting 

professionals through a number of programs and metrics, 

luminance-based annual simulations remain 

computationally expensive. Long-term simulations are 

computed through multi-phased daylight coefficient 

methodologies, which have steep learning curves and 

long simulation times. There is a need to improve the 

availability and accessibility of long-term luminance-

based lighting simulations.  

Accelerating annual daylight simulations is an active 

area of research. Daylight coefficient (DC) approach has 

been developed as a numerical methodology to perform 

annual daylight predictions in a more efficient manner 

(Tregenza and Waters 1983). The classic DC concept is 

to divide the celestial hemisphere into discrete sky 

segments and calculate the contribution of each segment 

to the illuminance level at various sensor points. Further 

developments of dynamic daylight simulation methods 

(DDS) divide the light flux transfer process into multiple 

phases to better model complex fenestration systems 

(Laouadi et al. 2008, Ward et al. 2011). 

More recent developments in lighting simulation 

acceleration depend on advances in modern computing 

technology. Two recent trends in lighting acceleration 

research are: 1) Increasing rendering efficiency by 

tracing multiple primary rays in parallel on a graphics 

processing units (GPU) (Jones and Reinhart 2014). 

Modern GPUs with highly parallel structure make them 

more efficient than general purpose central processing 
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units (CPUs) for parallel computing of large data blocks. 

2) Predicting lighting performance using machine 

learning based-algorithms.  

This research follows the second trend and develops a 

workflow to generate annual luminance maps of indoor 

space from a subset of data using artificial neural 

networks (ANNs). Machine learning, and specifically 

ANN, has been used recently within the architectural 

lighting field. ANNs have been investigated for 

predicting indoor daylight illuminances (Kazanasmaz et 

al. 2009, Zhou and Liu 2015, Navada et al. 2016, Ahmad 

et al. 2017) and for developing and classifying sky 

models (Li et al. 2010, Satilmis et al. 2016). 

Although statistical methods have been utilized to 

predict long-term luminance maps from limited number 

of imagery (Inanici 2013), the predictions were more 

successful for overcast skies and need further 

improvements to better model the sun patches under 

sunny skies. To the best of the authors’ knowledge, there 

are no previous studies that utilize machine learning to 

predict long-term luminance distributions. This study 

provides a novel solution for long-term luminance 

simulation accelerations. It is inspired by Ren et al. 

(2015), which is based on learning the non-linear 

mapping of pixel-scale luminance values from local and 

contextual attributes of surface points. The accuracy, 

applicability, and usefulness of the proposed DNNs 

model is demonstrated, and its effectiveness is 

exemplified through computer-generated images. 

OBJECTIVES 

The objective of this research is to demonstrate the 

utilization of deep neural networks (DNNs) (a.k.a deep 

ANNs) techniques to predict long-term luminance maps 

from a small subset of data. The ultimate goal is to 

generate annual luminance maps from High Dynamic 

Range (HDR) photographs of existing environments, 

which will enable quantitative analysis of daylit 

environments without the time-consuming modeling 

process. To reach this final goal, in this paper, simulated 

images (instead of captures of existing buildings) are 

utilized to facilitate the development of the algorithm 

with adequate number of imageries under controlled 

settings.  

Specifically, the contributions of this paper are as 

follows:  

• A presentation of the first deep learning framework to 

conduct architectural luminance predictions: The 

proposed DNNs model accelerates annual luminance-

based simulations by generating annual luminance maps 

extracted from a small set of rendered inputs. The 

performance of the model is quantitatively investigated 

to meet the scientific accuracy requirement for 

applications in architectural lighting. 

• An analysis of the sensitivity of prediction accuracy to 

sample data size, which inform the optimum sample size 

for data collection and generation: The study further 

evaluates the impact of lower-precision predictions on 

the design decision making processes by utilizing false 

color images and visual discomfort indices. 

•  An exploration and analysis of the various processing 

and design decisions of the proposed DNNs system. 

• A demonstration of a workflow that accurately predicts 

annual luminance maps from a small number of rendered 

images.   

METHODOLOGY 

ANNs 

Machine learning is an approach to analyze and model 

complex systems. One popular and powerful Machine 

learning technique is ANNs. ANNs were proposed in 

1943 (McCulloch and Pitts 1943) and inspired by 

biological neurons of animal brains and consist of 

neuron-like connected computing units called nodes. 

These nodes are organized into layers: input, output, and 

the hidden layers (i.e. layers between input and output). 

The connection between two nodes has a weight which 

defines how much the previous node influences the next 

node. The network gathers information and finds 

relationships between inputs and outputs through a 

learning (training) process. During the learning process, 

information is transferred from layer to layer and learned 

knowledge is stored in node weights. This enables neural 

networks to solve complex problems, where numerical 

solutions are difficult to obtain. A DNNs model is an 

ANN model with multiple hidden layers between the 

input and output layers. Like shallow ANNs, DNNs can 

solve complicated nonlinear problems such as predicting 

long-term luminance. In this study, DNNs are used to 

approximate the non-linear relationship between the 

image pixel luminance and daylighting conditions with 

minimal inputs. 

Fig. 1. gives an overview of the proposed methodology. 

The workflow starts with the generation of sample data 

(HDR renderings) using the Radiance simulation engine. 

Radiance (Ward, 1994) is a physically-based simulation 

engine that has been validated against illuminance 

measurements in full-scale spaces (Mardaljevic 2000). 

Each sample consists of the input parameters and a pair 

of images: a high-quality rendering and a sun patch 

image. The high-quality renderings are used as ground 

truth for training the neural networks, while the low-

quality sun patch images and simulation parameters are 
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used as input to the network. The network is trained so 

that it accurately predicts the high-quality renderings 

from the simulation parameters and sun patch images. 

Once trained, the network can be used to generate high-

quality renderings from other sun patch images and 

simulation parameters.  

Light Transport Modeling 

A light transport model (Eq. 1.) defines how light travels 

through space. When conducting daylight simulations in 

physically-based simulation engine, the light transport 

model is computed using complete scene information 

(scene geometries, light sources, and material 

properties). In contrast, the light transport model in this 

study is approximated from a limited number of rendered 

HDR images that exhibit scene appearance under various 

lighting conditions. Such a model can quickly and 

accurately predict a luminance map of the scene under 

different illumination conditions. The light transport 

model M of the scene is approximated with a machine 

learning driven neural networks model (MNN). 

L = M × I   (Equation 1) 

Where M is the light transport model, and L represents 

the luminance of image pixels. I is a feature vector which 

describes the illumination condition. 

Input and Output of the DNNs Model 

The first task in designing a DNNs model MNN is to 

determine the input and output. MNN encodes the non-

linear relationship between the feature vector I and the 

image luminance L. The model MNN is constructed the 

same way to approximate the relationship between L and 

I. Image luminance Lp of a pixel is the output, and the 

input is the feature vector Ip that consists of several 

parameters described the illumination conditions. These 

input parameters include: 1) the location of the sun, 

defined by sun altitude θsun and azimuth Ωsun; 2) the 

luminance distribution of the sky, defined by direct 

irradiance Irdir and diffuse irradiance Irdif. Direct and 

diffuse irradiances can be easily retrieved from the 

weather files, and they are the essential parameters 

required by Perez all-weather sky models (Perez et al. 

1993); 3) the location of the pixel defined by x and y 

coordinates (Px, Py). These six parameters describe the 

luminous environment within an indoor scene at a given 

date and time. Augmenting the input parameters with the 

average luminance of a pixel (Lumave) improves the 

accuracy of the model. This is consistent with a previous 

study which demonstrates that average color of a pixel 

indicates its similarity to other pixels in material and 

geometric properties (Ren et al. 2015). Thus, the 

proposed input feature vector includes 7 inputs Ip = {Px, 

Py, Ωsun, θsun, Irdir, Irdif , Lumave}. 

 

Figure 1. Overview of the framework: a) To train the DNN model, a small number of HDR images generated with 

the Radiance simulation engine are utilized. b) Pairs of high-quality renderings and quick sun patch renderings are 

generated. The high-quality renderings are used as ground truths for training the DNN, while the sun patch images 

are used as input to the DNN. c) The sun patch images and simulation parameters are combined to create input for 

the DNNs.  d) The network is trained so that it accurately predicts the high-quality renderings from the input. e) 

Once trained, the network can be used to generate high-quality renderings from novel sun patch images and 

simulation parameters. 
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Data Generation 

To develop the method under controlled settings, 

Radiance generated images are used. The test room 

model (Fig. 2) is located in Seattle (47.6°N, 122.3°W) 

and consists of a south-facing window and basic 

furniture. The reflectance values of walls, ceiling and 

floor are 50%, 80%, and 20%, respectively.  

Perez all-weather sky models are generated using the 

direct and diffuse irradiance values extracted from 

Seattle EnergyPlus weather file (EPW). Two sets of 

images are then rendered using Radiance RPICT 

method:  high-quality renderings with 4 ambient bounces 

(-ab 4) and quick sun patch renderings with 0 ambient 

bounce (-ab 0). These two sets of images share the other 

rendering parameters (-ps 2 -pt .05 -pj .9 -dj .7 -ds .15 -

dt .05 -dc .75 -dr 3 -st .15 -aa .1 -ar 512 -ad 2048 -as 1024 

-lr 8 -lw .005). The HDR renderings of the scene are 

generated in 1-hour intervals for the entire year. The total 

number of these images is 4379 for both high-quality 

renderings and sun patch renderings. This database is 

prepared for model development purposes only. When 

applying the workflow, the user only needs to generate a 

small subset of these images.  

The generated images are divided into three groups: 

training, validation and test groups. The images in the 

training group are the input to feed into the model. 

During the training process, only the model with the 

improved performance on validation sets are saved. The 

test group images are used to evaluate the performance 

of the method. There is no overlap between the test group 

and training/validation group. K-means method (divide 

the training samples into evenly distributed clusters and 

uniformly select samples from each cluster) is used to 

reduce the bias in the training, validation and test sets. 

This makes selected training samples well-distributed 

over the light domain. 

 

 

Data Preprocessing 

After the data generation step, the input parameters and 

the output luminance are preprocessed and normalized to 

the range of [0,1]. This is done to reduce the variations 

in the input values so that they contribute more 

proportionately to the final results. However, due to the 

nature of high dynamic range renderings, the luminance 

values in one image can span several orders of 

magnitude (e.g., the brightest part of the solar corona 

compared to the shadows in the room). Therefore, after 

the normalization, most of the indoor luminance values 

are very low. A gamma-correction of 2.2 is applied to 

increase the contrast and spread the range of luminance 

more evenly over the range of [0,1]. After the training 

process, the inverse of the preprocessing transform is 

applied to reconstruct the final luminance maps.  

ANNs Architecture  

It is known that a neural network can fit any function 

with arbitrary accuracy, given adequate network size and 

training data. An ANNs model with more trainable 

parameters may provide more computational power 

during the training process, but meanwhile, require more 

input data to avoid overfitting (Turmon and Fine 1994). 

Initially, the study started by designing a model with the 

same number of learnable parameters as described in 

Ren et al. (2015). But the proposed DNN model differs 

from Ren et al. in that it utilizes a single DNN rather than 

an ensemble model created via a hierarchical clustering 

mechanism. The model achieves the same level of 

accuracy and can be trained in hours on a single machine 

rather than CPU cluster nodes. The DNNs model is 

created with five hidden layers, each of 600 nodes. In 

each layer, the network applies a linear convolution to 

the output of the previous layer and then applies a 

nonlinear activation function Rectified linear unit 

(ReLU). ReLUs are simple and fast to evaluate and have 

been shown to achieve state-of-the-art performance in 

many optimization tasks. 

Initial experiments show that a model based on the 

feature vector composed of 7 inputs can capture the 

smoothly varying illumination, but it fails to adequately 

capture the sharp shadows and sun penetrations caused 

by the direct sunlight (Fig. 3 (b)(d)). Although this model 

can be improved by using more high-quality rendering 

samples that cover more sun positions, this defeats the 

purpose of training with a limited number of high-quality 

renderings. To improve the result, a second feature 

vector (pixel luminance of sun patch renderings Lumsun 

patch) is added. Compared with high-quality renderings, 

quick sun patch renderings have two advantages: 1) they 

can be quickly simulated, and 2) they can be generated 

using a crude model constructed from either HDR 

Figure 2 Room model used in Radiance simulations 
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photographs or basic CAD models. This information can 

aid neural networks in modeling the light transport of 

scenes with sharp shadows and sun penetrations, as 

shown in Fig. 3 (c)(e). This second feature vector also 

provides the network with more data to avoid the 

overfitting problem.  

The proposed DNNs model (Fig. 4) contains two input 

vectors: a vector with 7 parameters and 2nd vector 

consisting of the luminance of the sun patch image 

(Lumsun patch). The 1st and 2nd input first go through 4 

convolutional layers of 600 filters and 1 convolutional 

layer of 200 filters; respectively. All convolutional layers 

using the same kernel size of 1 and stride of 1. A 

concatenation layer then merges these input layers. The 

combined features are followed by two additional 

convolutional layers of 600 filters and 1 filter; 

respectively. The ReLU activation functions are applied 

to all layers. Increasing the kernel size lowered the model 

accuracy during model design studies. Because this 

model yields satisfactory results, adding more 

complicated types of layers is not necessary.  

Training 

The main idea of training the neural network is to 

minimize the difference between the predicted image 

and the ground truth image (high-quality rendering). The 

backpropagation algorithm is used to train the network 

via examples. The idea is to repeatedly update the neural 

networks by comparing the predicted image and the 

ground truth images, until a stopping condition is 

achieved. The metric to evaluate this difference during 

the training process is called the loss function. Choices 

of loss functions greatly impact DNNs and their learning 

dynamics (Janocha and Czarnecki 2017). After 

evaluating several loss functions, a combination of mean 

square error (MSE) (Eq. 2.) and relative error rate (RER) 

(Eq. 3.) produced the best results.  The final loss function 

is defined as f = MSE+ RER * 0.01. The training process 

takes 2 hours on NVIDIA Tesla K80 GPU. After the 

training is finished, prediction of a new lighting 

condition can be made in seconds. 

MSE = 
1

𝑛
∑ (𝐼𝑖 − 𝐼𝑖)2𝑛

𝑖=1        (Equation 2) 

RER = √
∑ (𝐼𝑖− 𝐼𝑖)2

𝑖

∑ 𝐼𝑖
2

𝑖
        (Equation 3) 

Figure 3. An example illustrates the comparison of the predictions made by the 1st DNNs model and the final 

proposed DNNs model.  The ground truth luminance map (a) is poorly predict as in (b) with blurry shadows and sun 

penetrations by the 1st DNNs model. With the help of quick sun patch renderings, the final proposed model generates 

more satisfying results as in (c). (d) and (e) are errors maps for (b) and (c). 

 

Figure 4 The proposed DNNs architecture. After a series 

of 2-dimensional convolutional layers, a concatenate 

layer merges two heads of input: one for regressing the 

sun patch images (Input2) and the other for the location, 

sun and sky parameters, etc. (Input1). The number 

indicates the amount of filters in each layer (e.g., 600 

conv2d). 
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where n is the number of elements, and  𝐼𝑖  and  𝐼𝑖  are the 

ground truth and predicted luminance of pixel i. 

RESULTS AND DISCUSSION 

The neural network trained using a limited number of 

samples from the training group results in an 

approximation of the light transport model MNN. The 

model is then tested on images under new illumination 

conditions that the networks have not seen before. The 

test sets contain 500 samples randomly selected from the 

test group. The model’s performance is measured by 

MSE (Eq. 2.) and RER (Eq. 3.) between the predicted 

images and the ground truth images. The results are 

evaluated using false color images and image subtraction 

operations.  

A sensitivity analysis is performed using the training sets 

of 50, 100, 200, 500, and 1000 images (out of 4379 

images) and the test set of 500 images. The purpose of 

the analysis is to understand how the number of training 

samples influences the prediction accuracy, and to find 

the optimum sample size. Fig. 5 shows the result error 

curves with respect to the number of training samples. 

The predicted image accuracy, measured by MSE and 

RER, increases with the number of training samples. 

However, the error curves decrease slowly after the 

number of images reach to 200. Therefore, 200 images 

are selected as the optimum sample size, with predictions 

MSE of 1e-05 and RER of 0.063 using a three-fold cross 

validation. This demonstrates that using 5% (200 out of 

4379) of high-quality renderings, and the model can 

predict a luminance map of any time of the year with an 

average 93% accuracy. 

Additionally, to evaluate how the results can influence 

lighting design decisions, the daylight glare probability 

(DGP) (Wienold and Christoffersen, 2006) is added as a 

visual comfort indicator, In DGP analysis, luminance 

maps are processed to determine the potential glare 

sources, and subsequently, to determine the percentage 

of the population who would find the scene as glary. 

DGP is applied to both the ground truth images and the 

predicted images. Note that both images have the same 

field of view. The results show that DGPs evaluated 

using predicted images closely match those using ground 

truth images with an average absolute error of 2.6e-08.  

To better illustrate the results, Fig. 6 shows three selected 

samples of different sky conditions (clear sky, 

intermediate sky, and cloudy sky) from the test set of this 

study. Predicted images are compared to ground truth 

images, with error maps illustrating the absolute 

differences. All images are shown in false color with 

logarithmic scale and each image is labeled with MSE, 

RER, and DGP values. The results show that: 1) It is hard 

to differentiate predicted images from ground truth 

images in false color without the help of error maps. 

False color images are commonly used by architects or 

lighting professionals to make design decisions. The 

proposed model is able to make predictions that will lead 

to the same design decisions of those real high-quality 

renderings, even with a small number of input samples 

(50 images out of 4379 images).  2) Similarly, DGPs of 

predicted images closely match those of ground truth 

images. This leads to a similar conclusion that same 

design decision can be made with predictions based on 

small training samples. 3) As more clearly shown in error 

maps, the differences decrease when the number of 

images increases. This matches the conclusion of the 

previous sensitivity analysis. 4) Among the three sky 

conditions, predicted images of a sunny sky with high 

direct irradiance have the highest errors.  5) While the 

result generated by this method looks almost 

indistinguishable from the ground truth, the hardest part 

to predict is the outdoor ground plane seen through the 

window. This planar geometry is not the Radiance 

generated ground hemisphere, which can be more easily 

predicted.  

CONCLUSION 

This study presents the development of a novel machine 

learning based method to generate annual luminance 

maps. Annual luminance maps are essential for 

qualitative and quantitative lighting evaluations, but they 

are computationally expensive to generate. The results 

demonstrate that by using a DNNs model, it is possible 

to shorten the annual simulation time by using 5% high-

quality renderings evenly sampled over the year as input 

and reach a comparable accuracy in the test set. This 

method can be used as an alternative to accelerate annual 

luminance-based simulations. 

This study is a first successful step towards using DNNs 

for generating annual luminance maps from a limited 

Figure 5. Sensitivity tests show the relationship between 

the number of input images and the accuracy of test sets 

evaluated by RER (left) and MSE (right). The dashed 

lines indicate an optimal sample size of 200. 
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number of HDR captures. It demonstrates that DNNs can 

be applied to solve complicated rendering problems. 

Specifically, the study shows a DNN approach is able to 

recognize and approximate the fundamental, underlying 

non-linear relationship between the image pixel 

luminance and daylighting conditions without 

overfitting, and generate high-quality renderings.  

The next step is to apply the method to real world data 

capture with HDR photographs instead of rendering 

images. It is clear that this will be more difficult than 

developing and testing the model in a controlled setting. 

One major challenge is the duration of the collection 

period. In the current training data, though sparse, the 

input is distributed over the entire year in order to cover 

wide ranging sun positions. However, it is not practical 

to capture the scene multiple times throughout the year. 

Further studies will be conducted to minimize the data 

collection period without compromising the accuracy. 

The successful development of a practical workflow will 

enable quantitative analysis of daylit environments 

without requiring a time-consuming modeling process. 
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