Time Budgets, Thermoregulation, and Maximal Locomotor Performance: Are Reptiles Olympians or Boy Scouts?1

PAUL E. HERTZ

Department of Biological Sciences, Barnard College, Columbia University, New York, New York 10027

RAYMOND B. HUEY AND THEODORE GARLAND, JR.

Department of Zoology, NJ-15, University of Washington, Seattle, Washington 98195

SYNOPSIS. Do ectothermal vertebrates routinely make full use of their locomotor capacities in nature? We address this question by asking whether reptiles ever sprint at maximum burst speeds and whether they often move at speeds near maximum aerobically sustainable levels. Relevant data are largely anecdotal but suggest that lizards (and perhaps other vertebrate ectotherms) do not routinely perform at maximal capacities. They appear to do so only in situations that have a critical impact on fitness. Nevertheless, active lizards do thermoregulate carefully such that they usually maintain the potential for performing at maximal capacity. We consider alternative, but not exclusive, explanations for why reptiles might maintain apparently "excessive" capacities and conclude with suggestions for new field and laboratory studies that would more rigorously address these issues.

INTRODUCTION

The extent to which energetics and physiological capacities constrain the behavior and ecology of animals is a fundamental but unresolved question in physiological ecology. One initial step towards the resolution of this issue involves determining whether or not animals routinely make full use of their physiological capacities in nature. Such determinations would enable us not only to ascertain the day-to-day significance of physiological constraints on ecology and behavior, but also to evaluate whether the evolution of maximal capacities is driven by routine activities or by rare, but significant, events (Wiens, 1977; Gans, 1979; Kingsolver and Watt, 1983).

Despite their importance, these questions have been directly addressed in very few studies (Wells and Taigen, 1984; Garland, 1988). Nevertheless, the implicit assumptions that animals are active as often as possible and that they regularly use their full locomotor capacities are widespread in many ecological studies and models (see Herbers, 1981). Although these assumptions may reflect biological reality, they might simply represent the cultural baggage of western socioeconomic traditions (Rapport and Turner, 1977) and our fascination with maximal performance in athletics and other endeavors.

We question whether the above assumptions necessarily apply to ectothermal vertebrates such as reptiles and amphibians (Maiorana, 1977). In contrast to the endothermic vertebrates (birds and mammals), ectotherms have relatively low metabolic requirements and limited capacity for sustained (but not burst) activity (Bennett, 1978, 1980b; Regal, 1978, 1983; Bennett and Ruben, 1979; Pough, 1980). For example, lizards in nature have annual energy budgets that are only about one-fortieth those of birds and mammals of equivalent size (Nagy, 1982, 1983), and reptiles can often survive long periods without any energy input (Benedict, 1932; McNab, 1963; Pough, 1980).

In this paper we consider two basic issues relating to the behavior and energetics of ectotherms (especially of lizards and other reptiles) under natural conditions. First, do ectotherms maintain field active body temperatures that are conducive to performance at maximal capacities? Second, how

frequently do ectotherms actually perform at maximal levels?

We focus on the intensity of activity and on locomotor performance because these characteristics may well influence an organism’s fitness (sensu Arnold, 1983). Our analysis of available data leads to the tentative conclusion that lizards rarely perform at maximal levels. Instead, they seem to do so only in situations that are critical to fitness. However, most species do thermoregulate carefully while emergent and are therefore active at body temperatures that are conducive to maximal locomotor performance. Lizards (and perhaps other reptiles) therefore appear to be less like Olympic athletes than Boy Scouts: they may not be chronic overachievers, but at least they are almost always prepared.

Are Field Active Body Temperatures Conducive to Maximal Locomotor Performance?

An ectotherm’s physiology and thermoregulatory behavior interact with the physical environment to set limits on potential locomotor capacity (Huey, 1982, 1983; Kingsolver and Watt, 1983; Waldschmidt and Tracy, 1983). At certain body temperatures animals may be able to sprint and accelerate at maximum rates or to sustain activity for extended periods. Such maximal capacities potentially enhance the rate, duration, and intensity of prey capture activities, the ability to escape from predators, and possibly the ability to dominate social interactions (Greenwald, 1974; Webb, 1976; Huey and Stevenson, 1979; Christian and Tracy, 1981; Huey and Hertz, 1984b). Available data (summarized below) on field activity temperatures and on the thermal dependence of locomotor performance support the hypothesis that most active lizards maintain temperatures that are conducive to maximal locomotor performance.

Although sprint speeds of lizards show a strong temperature dependence, the temperature performance profile for many species has a broad plateau over which nearly maximal speeds can be attained (Bennett, 1980a; Hertz et al., 1983). Data on the temperature dependence of locomotor stamina are more limited than those on sprint speed. Maximal distance running capacity appears to be relatively insensitive to temperature over a broad range of temperatures in lizards (Bennett, 1980a) and perhaps anurans (Putnam and Bennett, 1980). Treadmill endurance may be more strongly temperature dependent in lizards (Moberly, 1968b; John-Alder and Bennett, 1981; van Berkum et al., 1986; see also Brett et al., 1958).

But are the field active body temperatures of ectotherms really conducive to maximal locomotor performance? With regard to sprint speed, the answer is yes. In the vast majority of 50 species surveyed, the mean field active body temperature (as well as the central 50% of individual temperature records) allows a sprint capability that is within 10% of the maximum sprint speed recorded in the laboratory (R. B. Huey, F. van Berkum, P. E. Hertz, and A. F. Bennett, in preparation). Similarly, four thermophilic lizard species (Bennett, 1980a), as well as two anuran species (Putnam and Bennett, 1980), show maximal distance running capacity within the range of body temperatures that they usually experience in nature.

A few exceptions to this generality are notable. For example, high altitude and high latitude populations frequently are active at body temperatures low enough to impair sprint performance, especially during the early morning warmup (Hertz et al., 1983; Huey, 1983; Crowley, 1985; Stevenson et al., 1985; van Berkum, 1986). In addition, some nocturnal, crepuscular, forest, and cryptic lizards are routinely active at temperatures suboptimal for sprinting (van Berkum, 1986; Huey and Bennett, 1987; R. B. Huey, F. van Berkum, P. E. Hertz, and A. F. Bennett, in preparation). Similarly, two lizard species that are typically active at low body temperatures would apparently function with less than maximal stamina under natural conditions (Bennett, 1980a).

Do Most Lizards Routinely Use Maximal Locomotor Capacities?

A direct answer to the question of whether reptiles frequently use their maximal locomotor capacities is presently impossible, simply because continuous,
long-term data on movement speeds of active lizards are unavailable. (Garland [1988, Table 1] summarizes the available data on average movement rates in lizards.) Ideally we would like to know the number, duration, and intensity (speed) of movements under natural conditions as well as the maximal sprint speed and stamina for the same individuals. In the absence of such data, we rely on two inexact estimators. First, mostly anecdotal accounts provide some indication of whether reptiles routinely move quickly or often. Second, data on lactic acid concentration can suggest recent burst activity, for such activity is fueled largely by anaerobic metabolism (Bennett, 1978).

Sprinting

Accounts of how frequently lizards sprint are rarely quantitative, but our interpretation of these accounts and our own field observations suggest that sprinting at near maximal speeds is infrequent. Maximal accelerations and sprints are used rarely during feeding (e.g., van Berkum et al., 1986) and in social encounters (Huey, 1974; Bickler and Anderson, 1986), but more frequently in predator avoidance (Belkin, 1961; Moberly, 1968a; Schall and Pianka, 1980; Christian and Tracy, 1981; Vitt and Price, 1982; van Berkum et al., 1986; reviewed in Greene, 1988). Running speeds of *Amblyrhynchus cristatus* fleeing the attack of Galapagos hawks (Gleeson, 1980) approached the experimentally determined maximum average burst speed (2.5 m/sec) measured by chasing animals in the field (Gleeson, 1979). Whether sprints by other ectotherm species are undertaken at maximal speed remains an open question. Some tadpoles are thought to use maximal burst speed in predator avoidance maneuvers (Feder, 1983; Gatten et al., 1984). However, some predatory fish swim at substantially less than maximal speeds when pursuing prey (Webb, 1986), and migrating salmon use maximum burst speeds for only short periods of time (Brett et al., 1958).

Anaerobiosis

Anaerobic metabolism is used to support burst activity and to augment aerobic metabolism during locomotion above the maximal aerobic speed (i.e., the speed at which VO₂max is attained [John-Alder and Bennett, 1981]) or above the “anaerobic threshold” (see Taigen and Beuchat, 1984). But the use of anaerobic metabolism can quickly lead to exhaustion and to a period of enforced inactivity necessary to repay the oxygen debt (Bennett, 1978). Interestingly, both anaerobic scope (i.e., the maximal rate of lactate production) and anaerobic capacity (i.e., the maximal amount of lactate produced) show very low thermal dependence (Bennett, 1982); as a result, most ectotherms have the potential to use maximal anaerobic response at the lower end of the range of body temperatures experienced while active in nature.

Anaerobic metabolism is readily indexed by the concentration of lactate (Bennett and Licht, 1972), the endpoint of anaerobic glycolysis; but the interpretation of such data is difficult in the absence of information about the type, duration, and level of prior activity as well as resting and maximal lactate levels (Gatten, 1985). High levels of lactate indicate recent burst activity, but the implications of low to intermediate lactate levels is unclear.

In 10 laboratory studies researchers have measured lactate levels in vertebrate ectotherms induced to perform natural behaviors that required at least some locomotor movement. In many cases the animals experienced no lactate accumulation above resting levels, indicating that activity levels were probably below maximal aerobic capacity: burrowing by *Scaphiopus hammondi* (Seymour, 1973), diving in *Chelydra serpentina* (Gatten, 1980) and *Sternotherus minor* (Gatten, 1984), vigorous swimming in tadpoles of *Rana berlandieri* (Feder, 1983), *Hyla gratiosa*, *R. catesbiana*, and *R. utricularia* (Gatten et al., 1984). In other cases, animals experienced significant elevation of lactate above resting levels, but the levels were well below maximum (hence, the animals were not near exhaustion): feeding by *Chalcides ocellatus* (Pough and Andrews, 1985a) and *Thamnophis elegans* (Feder and Arnold, 1982), threat-induced diving by *Chrysemys picta* (Gatten, 1981), courtship by *Desmognathus ochrophaeus* (Bennett and Houck, 1983). In only
three instances among these 10 studies did lactate levels possibly approach exhaustion levels: anti-predator behavior by *Plethodon jordani* (Feder and Arnold, 1982) and active swimming during threat-induced dives by *Iguana iguana* (Moberly, 1968b) and by *Sternotherus minor* (Gatten, 1984).

Several studies of field-active ectotherms suggest that anaerobic metabolism is often used in nature but that the animals are rarely near exhaustion. Normal underwater feeding activity and return to shore by *Amblyrhynchus cristatus* produced no significant increase in lactate concentration (Gleeson, 1979; but see Bartholomew et al., 1976, p. 719). Only slight to moderate increases over resting lactate levels were produced by territorial behavior in *Anolis bonairensis* (Bennett et al., 1981) and *Sceloporus jarrovi* (Pough and Andrews, 1985b), nesting by *Chelonia mydas* (Jackson and Prange, 1979), normal feeding activities on land by *Sceloporus virgatus* (Pough and Andrews, 1985b), routine activity by *Cnemidophorus exsanguis*, *C. sonorae*, *Sceloporus virgatus*, and S. jarrovi (Pough and Andrews, 1985b), swimming by *Hydrophis cyanocinctus* and *H. belcheri* (Seymour, 1979) and diving by *Laticauda laticauda* and *L. colubrina* (Seymour, 1979). Although emergence from the nest and the subsequent hatchling frenzy lead to a substantial increase in lactate concentration in *Caretta caretta*, it is unclear whether anaerobic scope or capacity is reached (Dial, 1987). Indeed, the only field-active animals in which lactate levels clearly approached the anaerobic capacity of the species were two *L. laticauda* captured after making natural dives (Seymour, 1979); because a majority of snakes in the sample did not have elevated lactate levels (see above), Seymour concluded that only a small fraction of the dives by this snake require significant anaerobic energy input.

These data suggest that exhausting burst activity by vertebrate ectotherms is relatively rare under natural conditions. We do not doubt that reptiles sometimes do utilize their full anaerobic capacities, most likely when they are attempting to escape from predators. (It would be extremely interesting to examine lactate levels in reptiles that had just been captured by predators [cf. Feder and Arnold, 1982; Bennett et al., 1985].) For those critical circumstances, anaerobiosis provides an undeniably vital energetic boost (Bennett, 1983). Our point is not to deny the ecological significance of anaerobiosis, but instead to argue that available measurements of lactate support the field anecdotes (above) that near-maximal burst activities may generally represent rare events in the lives of most reptiles.

Time budgets

Partial time budgets have been constructed for 18 lizard species, and these data provide information about the levels of activity in which individuals engage (Table 1). Because of enormous differences in the ways researchers have defined activities and constructed time budgets, the least common denominator for evaluating activity is the percentage of emergent time lizards devote to vigorous activities (prey capture and handling, patrolling territories, social interactions, courtship) as opposed to being nearly immobile (resting or monitoring from a display perch). Lizards vary widely in the percentage of the time that they spend moving. Herbivores and most sit-and-wait predators spend relatively little time in vigorous activity, whereas active foragers spend more than half of their emergent time in movement (Huay and Pianka, 1981).

Time budget data must be interpreted cautiously, however, and in relation to data on daily and annual periods of activity. For example, *Cnemidophorus tigris* has been observed to spend more than 90% of its emergent time moving. However, this species is “active” approximately 5 hr per day for about 6 mo of the year (Pianka, 1970; Anderson and Karasov, 1981). An individual therefore spends a maximum of 10% of a year’s time emergent, of which 90% is spent in vigorous activity. If, for the sake of comparison, we assume that a female *Anolis polylepis* is “active” for 10 hr per day for 12 mo of the year, she is emergent for about 40% of a year’s time, of which about 10% is spent in vigorous activity. Overall, the *Cnemidophorus* spends only twice as much time (and, perhaps, energy)
Table 1. The proportion of emergent time that lizards spend in vigorous activities (i.e., those requiring locomotor movements).

<table>
<thead>
<tr>
<th>Species</th>
<th>Proportion of time</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbivores:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egeria cunninghami</td>
<td>0.08</td>
<td>Wilson and Lee, 1974</td>
</tr>
<tr>
<td>Iguana iguana</td>
<td>0.10</td>
<td>Moberly, 1968a</td>
</tr>
<tr>
<td>Ambushing predators:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis bonaiensis</td>
<td>0.32</td>
<td>Bennett and Gorman, 1979</td>
</tr>
<tr>
<td>Anolis cupreus—males</td>
<td>0.60</td>
<td>Fleming and Hooker, 1975</td>
</tr>
<tr>
<td>—females</td>
<td>0.22</td>
<td>Fleming and Hooker, 1975</td>
</tr>
<tr>
<td>Anolis polyplepis—males</td>
<td>0.55</td>
<td>Andrews, 1971</td>
</tr>
<tr>
<td>—females</td>
<td>0.12</td>
<td>Andrews, 1971</td>
</tr>
<tr>
<td>Callisaurus draconoides</td>
<td>0.02</td>
<td>Anderson and Karasov, 1981</td>
</tr>
<tr>
<td>Eremias lineocellata</td>
<td>0.14</td>
<td>Huey and Pianka, 1981</td>
</tr>
<tr>
<td>Meroles suborbitalis</td>
<td>0.14</td>
<td>Huey and Pianka, 1981</td>
</tr>
<tr>
<td>Sceloporus occidentalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infected with Plasmodium</td>
<td>0.05</td>
<td>Schall and Sarni, 1987</td>
</tr>
<tr>
<td>Uninfected</td>
<td>0.07</td>
<td>Schall and Sarni, 1987</td>
</tr>
<tr>
<td>Uta stansburiana</td>
<td>0.30</td>
<td>Alexander and Whitford, 1968</td>
</tr>
<tr>
<td>Widely foraging predators:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameiva quadrilineata</td>
<td>0.75</td>
<td>Hillman, 1969</td>
</tr>
<tr>
<td>Cnemidophorus murinus</td>
<td>0.77</td>
<td>Bennett and Gorman, 1979</td>
</tr>
<tr>
<td>Cnemidophorus tigris</td>
<td>0.91</td>
<td>Anderson and Karasov, 1981</td>
</tr>
<tr>
<td>Eremias lugubris</td>
<td>0.57</td>
<td>Huey and Pianka, 1981</td>
</tr>
<tr>
<td>Eremias namaquensis</td>
<td>0.54</td>
<td>Huey and Pianka, 1981</td>
</tr>
<tr>
<td>Ichnotropis squamulosa</td>
<td>0.55</td>
<td>Huey and Pianka, 1981</td>
</tr>
<tr>
<td>Nucras tessellata</td>
<td>0.50</td>
<td>Huey and Pianka, 1981</td>
</tr>
</tbody>
</table>

in vigorous activity as does the anole, despite the ninefold difference that is “apparent” in Table 1.

Locomotor stamina

Stamina per se can be measured in different, but still ecologically relevant, ways, and laboratory data on capacities can be compared with movement rates in the field. “Treadmill endurance,” the length of time that an animal can run at a fixed, low speed, has been used in numerous studies, including attempts to evaluate physiological constraints on sustained foraging movements or social interactions (e.g., John-Alder and Bennett, 1981; Garland, 1984, 1988; Huey et al., 1984; van Berkum et al., 1986). “Distance running capacity,” the total distance run (in a fixed time or until exhaustion) at high speed has also been used, but primarily to assess capacities for stamina during escape from predators (Bennett, 1980a; Putnam and Bennett, 1980; Garland, 1984, 1988; Huey et al., 1984).

Several integrated field and laboratory studies suggest that many species—even the most active ones—routinely move at rates below their maximal aerobic speeds (Cnemidophorus murinus, Bennett and Gleeson, 1979 and Bennett and Gorman, 1979; C. tigris, Garland, 1988; Ameiva festiva, van Berkum et al., 1986; Trachydosaurus rugosus, John-Alder et al., 1986). Cnemidophorus tigris is striking in this regard (Garland, 1988). This species is the archetypal widely-foraging lizard (Pianka, 1970), and individuals may spend up to 91% of their emergent time moving (Table 1). However, their normal movement speeds are often substantially below their known capacities. Similar results were observed for foraging movements of another teiid (Ameiva festiva, van Berkum et al., 1986) and for movements of a toad (Bufo americanus) during breeding choruses (Wells and Taigen, 1984). In laboratory studies, some amphibians also move at rates well below their sustainable limits during predator escape (tadpoles of Rana berlandieri, Feder, 1983), mating (Desmognathus ochrophaeus, Bennett
Several reports suggest that ectotherms do operate at the limits of their aerobic capacity under exceptional circumstances. Crawling to nest sites, nest excavation, and emergence of hatchlings may require the maximum sustainable levels of activity of sea turtles (Jackson and Prange, 1979; Dial, 1987). Similarly, migrating salmon are almost certainly swimming at the limits of their physiological capacity (Brett, 1972). These species would presumably expend much less energy during any of their routine activities at other stages of their life cycles.

Recent studies on lizards infected with malaria demonstrate that reduced stamina may have subtle but important consequences. Infected lizards (Sceloporus occidentalis) have significantly reduced aerobic scopes, probably because the parasites disrupt oxygen transport (Schall et al., 1982). Even so, infected and uninfected lizards had generally similar time budgets and activity patterns (our Table 1; Schall and Sarni, 1987). However, infected lizards engaged in significantly fewer social interactions than did non-infected lizards (Schall and Sarni, 1987). Thus, physiological capacities may well limit social interactions and potential fitness in some (see also Garrard, 1988), but not all (Bennett and Houck, 1983), species. This is an important finding, and its generality must be tested.

Conclusions

Our analysis of the literature suggests that taxonomically diverse reptiles do not routinely use their maximal capacities for locomotion. In this section we first address two related questions. 1) Why aren’t reptiles more active than they are in nature? 2) Why do they support apparently “excessive performance” capacities? Because our analysis and conclusion are based on circumstantial data, we also describe the types of field and laboratory data that are needed to evaluate these issues fully.

Why aren’t reptiles more active?

The potential advantages of increasing locomotor performance are evident (see Introduction), but we have demonstrated that lizards are rarely active to the extent
Table 2. Average daily movement distance (m) and average treadmill endurance (min, running at 1.0 km/hr) for nine lizard species differing in body mass (g).

<table>
<thead>
<tr>
<th>Family: Species</th>
<th>Mass</th>
<th>Distance moved</th>
<th>References*</th>
<th>Endurance time</th>
<th>References*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iguanidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callisaurus draconoides</td>
<td>15</td>
<td>250</td>
<td>1, 5</td>
<td>7.1</td>
<td>5</td>
</tr>
<tr>
<td>Ctenosaura similis (juveniles)</td>
<td>23</td>
<td>53</td>
<td>5, 6</td>
<td>5.9</td>
<td>4</td>
</tr>
<tr>
<td>Diplosaurus dorsalis</td>
<td>60</td>
<td>169</td>
<td>5, 6</td>
<td>15.0</td>
<td>9</td>
</tr>
<tr>
<td>Gamberlia wislizenii</td>
<td>32</td>
<td>314</td>
<td>5, 11</td>
<td>32.2</td>
<td>5, 6</td>
</tr>
<tr>
<td>Uma stansburiana</td>
<td>3</td>
<td>200</td>
<td>5, 8</td>
<td>2.2</td>
<td>6</td>
</tr>
<tr>
<td>Lacertidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eremias lineocellata</td>
<td>4</td>
<td>171</td>
<td>7</td>
<td>4.6</td>
<td>6</td>
</tr>
<tr>
<td>Scincidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egeria cunninghami</td>
<td>268</td>
<td>84</td>
<td>5, 12</td>
<td>7.0</td>
<td>10</td>
</tr>
<tr>
<td>Teiidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnemidophorus murinus</td>
<td>55</td>
<td>768</td>
<td>3, 5</td>
<td>3.0</td>
<td>2</td>
</tr>
<tr>
<td>Cnemidophorus tigris</td>
<td>23</td>
<td>900</td>
<td>1, 5</td>
<td>>120.0</td>
<td>5</td>
</tr>
</tbody>
</table>

that they could be. (This finding may not apply to flying insects with short adult life-spans [J. Kingsolver, personal communication].) An obvious explanation involves the risk of predation (Maiorana, 1977; Herbers, 1981). Although frequent activity might often increase net energy gains (Schoener, 1974; Norberg, 1977), it might also advertise an animal’s availability to its predators (Gerritsen and Strickler, 1977; Huey and Pianka, 1981; Vitt and Price, 1982). An alternative possibility is that speed, acceleration, and stamina are simply less important than agility, reaction time, or behavioral “choices” (Howland, 1974; Feder, 1983; Webb, 1986). In any case, we encourage additional theoretical and empirical studies of this topic.

Why do reptiles maintain capacities for high performance?

Our general conclusion is that although careful thermoregulation is conducive to maximal locomotor performance, lizards rarely take advantage of these enhanced capacities. Why do lizards thermoregulate carefully, and why do they maintain “excessive” capacities? Thermoregulation can be time-consuming and energetically expensive (Huey and Slatkin, 1976), and the development and support of structures that maintain maximal performance are generally assumed to be costly as well (but see Garland, 1984, 1988; Garland and Else, 1987).

The “principle of excessive construction” may offer a general answer to this question. Gans (1979) notes that the phenotypic capacities of animals often exceed their routine needs and thus appear to be “excessively constructed.” However, he proposes that maximal capacities are shaped, not by routine events, but by rare events that may be critical to an animal’s survival. Predator escape and nest excavation are examples of relatively brief experiences that have a major impact on fitness. Our analysis suggests that animals may perform at maximum levels during just such critical activities.

By extension, careful thermoregulation and maintenance of high capacities may reflect the overriding selective importance of such rare events (van Berkum et al., 1986). Of course, enhanced locomotor capacity is not the only reason for thermoregulation (review in Huey, 1982), but it may be a major determinant of field active body temperatures (van Berkum et al., 1986). From this perspective, thermoregulation and high performance capacities are evidence that lizards are always pre-
pared for action, however rarely they may actually engage in vigorous activity. Hence, they are more like Boy Scouts than Olympic athletes.

Assessing the reality of this view will be especially difficult, simply because we need to monitor and evaluate rare events. Although we advocate following individuals for extended periods of time, this may not be an efficient or productive approach. For example, after following a lizard for a year, one might observe only a few instances of maximal performance. (On the other hand, such a finding would be concrete evidence for the conclusion that burst activities are rare.) Alternatively, following endothermal predators of lizards might be more productive (H. Snell, personal communication).

A comparative approach might provide a more viable, even if indirect, solution. One could establish *a priori* hypotheses about the effects of food availability or predator abundance on expected performance levels, and then test these hypotheses with detailed analyses from several populations or related species. This approach rephrases the question being addressed from “Do they perform at maximal levels, and if so, how commonly?” to “Under what ecological circumstances have higher performance capacities evolved?” In other words, studying the pattern or products of evolution might be more efficient than studying the process.

Another, non-exclusive reason that lizards maintain maximal locomotor performance is plausible. Consider the hypothetical possibility that maximal performance at normal activity temperatures is never used. Could this truly excessive capacity be maintained by selection even in this case? Yes, and the reason relates to the fact that ectotherms are sometimes active at temperatures *sub-optimal* for locomotion (Bennett, 1980a; Christian and Tracy, 1981; Hertz et al., 1983; Crowley, 1985; van Berkum, 1986). If lizards are particularly vulnerable to predation at these times (Christian and Tracy, 1981; Hertz et al., 1982; Crowley and Pietruszka, 1983), then selection could favor increased capacity at low body temperature. And if performance at low temperature is genetically correlated with performance at high body temperature (Leamy and Cheverud, 1984), this would lead to the observed “excessive” performance at high body temperature. We cannot critically evaluate this second hypothesis because relevant field and genetic data are simply unavailable. However, relative locomotor performance of individual lizards is correlated across temperatures (Bennett, 1980a; Huey and Hertz, 1984a).

Types of studies needed

We have analyzed data from a series of studies, each of which addresses a small part of the overall picture. As a result, our conclusions are tentative. Here we suggest a unified approach that would provide conclusive answers to questions about how fully animals use their potential locomotor capacities.

Physiology and morphology set limits on locomotor capacities (e.g., Bennett et al., 1984; Garland, 1984, 1988). Consequently, to determine whether animals make full use of these capacities, we must first make laboratory measurements of maximal burst speed, acceleration, distance running, and cruising stamina (Bennett, 1980a). The particular measure used (e.g., acceleration *versus* maximal speed, distance running capacity *versus* treadmill endurance, agility *versus* speed or stamina) must be ecologically relevant to the species under investigation (Huey and Stevenson, 1979). Even so, interspecific comparisons may be difficult if different measures of locomotor performance are appropriate for different species. Field data on actual movement patterns (frequency of movement, acceleration, speed, distance moved) are often difficult (and tedious) to obtain over extended periods, but casual field observations during limited time periods are sometimes misleading (Regal, 1983; R. D. Pietruszka, personal communication). Ideally, we would have continuous, detailed, long-term records of movements by individuals, obtained with an accelerometer/radiotelemeter (Dunkle, 1983). Such remote data will not eliminate the need for concomitant field observations.
REPTILE ACTIVITY AND LOCOMOTOR PERFORMANCE

(Greene, 1986), for the behaviors that require maximal performance may be surprising (e.g., digging a burrow, courtship, Garland, 1988; male-male combat, Hickler and Anderson, 1986).

The study that may come closest to providing an exemplary analysis is that by Kooyman (1982) on the diving behavior of Weddell seals. These seals have the physiological capacity to dive for more than 1 hr, but they usually dive for less than 25 min, the limit of their aerobic capacities. By minimizing the time used to recover from anaerobic metabolism, this strategy may maximize underwater hunting time. Long dives are quite rare and occur primarily during emergencies.

Finally, we need explicit studies on the energetic costs (or lack thereof, Garland, 1984, 1988; Garland and Else, 1987) of developing and maintaining the anatomical and physiological machinery that allow high performance. Ideally, these data, when coupled with information on the frequency of stressful events, could be incorporated into models that predict fitness given varying rates of stressful events for animals with differing levels of maximal performance (cf. Alexander, 1981). Kingsolver and Watt (1983) have developed a formal statistical analysis of the fitness consequences of variation in the frequency of stressful events (specifically, the risk of overheating in Colias butterflies), and their approach might well serve as a general model for the types of analyses we suggest here.

ACKNOWLEDGMENTS

This work was supported by grants from the National Science Foundation (BSR 82-18878 to P.E.H. and BSR 84-15855 to R.B.H.). We thank J. Kingsolver for comments on the manuscript, S. J. Arnold and T. Daniel for useful discussions, S. J. Arnold, L. D. Houck, E. C. Larson, and B. Wu for providing comfortable worksites, and J.R. for patience and support.

REFERENCES

Seymour, R. D., C. R. Peterson, and J. S. Tsuji. 1985. The thermal dependence of locomotion,

