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abstract: Climate warming may lower environmental resource lev-
els, growth, and fitness of many ectotherms. In a classic experiment, Brett
and colleagues documented that growth rates of salmon depended strik-
ingly on both temperature and food levels. Here we develop a simple bio-
energetic model that explores how fixed temperatures and food jointly
alter the thermal sensitivity of net energy gain. The model incorporates
differing thermal sensitivities of energy intake and metabolism. In qual-
itative agreement with Brett’s results, it predicts that decreased food in-
take reduces growth rates, lowers optimal temperatures for growth, and
lowers the highest temperatures sustaining growth (upper thermal limit).
Consequently, ectotherms facing reduced food intake in warm environ-
ments should restrict activity to times when low body temperatures are
biophysically feasible, but—in a warming world—that will force ecto-
therms to shorten activity times and thus further reduce food intake.
This “metabolic meltdown” is a consequence of declining energy intake
coupled with accelerating metabolic costs at high temperatures and with
warming-imposed restrictions on activity. Next, we extend the model to
explore how increasing mean environmental temperatures alter the ther-
mal sensitivity of growth: when food intake is reduced, optimal tempera-
tures and upper thermal limits for growth are lowered. We discuss our
model’s key assumptions and caveats as well as its relationship to a re-
cent model for phytoplankton. Both models illustrate that the deleteri-
ous impacts of climate warming on ectotherms will be amplified if food
intake is also reduced, either because warming reduces standing food re-
sources or because it restricts foraging time.

Keywords: climate warming, energetics, resource availability, growth,
metabolism, temperature.

Introduction

Net energy gain influences an organism’s growth and repro-
duction—and ultimately its fitness. An ectotherm’s net en-
ergy gain depends primarily on its body temperature (Tb) and
its intake of available food resources. Climate warming could
potentially affect net energy gain by altering Tb distribu-
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tions, by restricting foraging opportunities, or by reducing
the availability of food in the environment (Dunham 1993;
Kearney et al. 2009; Sinervo et al. 2010; Sears et al. 2016;
Lister and Garcia 2018).
Here we develop a basic bioenergetic model that exam-

ines how the combined effects of climate warming, Tb, and
food intake alter the energetics and thermoregulatory strate-
gies of ectotherms. Our project was inspired by J. R. Brett
and colleagues (Brett et al. 1969; Brett 1971), who discovered
that the thermal sensitivity of growth rates of young salmon
depended strikingly on temperature and food ration (fig. 1,
redrawn from data in Brett et al. [1969] and Brett [1971]).
When Brett provided food in excess, salmon grew fastest at
an intermediate temperature (∼137C) but began to lose mass
at ∼247C, which thus represented the upper thermal limit
for growth. But when Brett restricted food, (1) growth rate
declined at all temperatures, roughly in proportion to level
of food restriction; (2) the upper thermal limit for growth
dropped; and (3) the optimum temperature (Topt) for growth
also dropped. In effect, growth rate became less heat tolerant
under restricted food. Similar patterns were later documented
for other ectotherms (e.g., Elliott 1976; Gerard 1997; Peck et al.
2003; McLeod et al. 2013; Thomas et al. 2017) and suggests
that the negative effects of climate warming will be ampli-
fied if warming results in reduced food intake (McLeod et al.
2013; Thomas et al. 2017).
The thermal sensitivity of growth physiology (fig. 2A, 2C)

provides a conceptual basis for the patterns in figure 1. Food
consumption (gross energy intake) under unlimited food typ-
ically increases with temperature up to an optimum temper-
ature and then drops precipitously (fig. 2A; Waldschmidt
et al. 1986; Koskela et al. 1997). In contrast, total metabolic
expenses (maintenance, foraging, and digestion) typically in-
crease exponentially with temperature but ultimately drop at
stressfully high Tb (Lighton and Turner 2004; Marshall and
McQuaid 2011). Net energy gain (consumption gain minus
metabolic expenses) thus is maximal at an intermediate but
relatively warm temperature (see fig. 2B, 2D). Using this logic,
Hainsworth and Wolf (1978; their fig. 2) and Huey (1982; his
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fig. 5) developed graphic models suggesting that lowered food
rations will not merely reduce net energy gain (thus growth)
but will also reduce Topt for growth, consistent with Brett’s
findings (Brett et al. 1969; Brett 1971).

We begin by building a simple energy balance model that
formalizes the graphical models of Hainsworth and Wolf
(1978) and of Huey (1982). Our basic model mimics Brett’s
experiment design—and thus assumes fixed Tb and food
ration—but also adds comparisons involving thermal gen-
eralists versus specialists as well as for metabolic rate curves
with different steepness (Q10; fig. 2). However, because ecto-
therms in nature have variable (not fixed) Tb, we next recast
the model to allow for Tb distributions that can have dif-
ferent means and variances. We can thereby determine the
Tb distribution that maximizes net energy gain under differ-
ent food intake levels: in effect, this approach explores how
the combined effects of climate change and food level alter
the mean net energy gain.

Net energy gain will of course decline if climate warm-
ing forces ectotherms to be active at Tb above optimal
physiological levels (fig. 2B, 2D). But if food intake is simulta-
neously reduced, then net energy gain and growth are now
maximized at low Tb. In other words, a warming environ-
ment may push ectotherms toward accepting activity at high
Tb, but energetics would push ectotherms to try to be active
at low Tb. Thus, the selective forces are in opposite direc-
tions. In the discussion section, we will argue that declining
food intake is in fact a likely consequence of climate warm-
ing, at least in environments that are already warm or hot.
Thus, warming plus the associated food restriction could po-
This content downloaded from 128.09
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tentially amplify negative effects of climate warming, effec-
tively lead to a “metabolic meltdown,” and thereby accen-
tuate any negative energetic consequences of warming (see
also Thomas et al. 2017).
Growth Rates in Constant Thermal
Environments: Basic Model

We use a basic bioenergetic model (Kitchell et al. 1977; Hain-
sworth and Wolf 1978; Huey 1982), where the growth rate G
of an organism is determined by its energy flux balance:

G p (A ⋅ f ⋅ C)2 R: ð1Þ
In this model, C is the rate of energy intake of ingested food
(ingestion rate), R is the rate of energy expenditure associ-
ated with metabolism and digestion (metabolic rate), A is
the conversion efficiency of ingested food, and f is the food
level (see below). In general, C, R, and A will all depend on
body temperature, Tb. For simplicity, we will assume that
conversion efficiency A is constant (Brett 1971; Kingsolver
and Woods 1997; Angilletta 2009; see “Discussion”).
The temperature dependence of ingestion rate (C(Tb))

and of metabolic rate (R(Tb)) have been examined in many
ectotherms (Irlich et al. 2009; Dell et al. 2011). A thermal
performance curve (TPC; Huey and Kingsolver 1989) for
ingestion rate and other aspects of organism performance
has a characteristic asymmetric shape (figs. 1, 2) in which
performance is maximal at some intermediate to warm “op-
timal” temperature (Topt) and declines more rapidly at higher
than at lower temperatures (Gilchrist 1995; Dell et al. 2011).
Here we model the TPC for ingestion rate (and gross energy
intake rate p A#C) as a Gaussian multiplied by a Gom-
pertz function (eq. [2]), with parameters Topt, r, and j, where
j determines the steepness of the left portion of the TPC and
r determines the steepness of the right portion (for details,
see Frazier et al. 2006):

C p Cmax exp(2exp((r(Tb 2 Topt))2 6)2 r(Tb 2 Topt)
2):

ð2Þ

In contrast, metabolic rate typically increases exponentially
over a wide range of temperatures (Savage 2004) until very
high Tb (Lighton and Turner 2004; Marshall and McQuaid
2011). Consequently, we used an exponential equation to
quantify the thermal dependence of metabolic rate for three
typical Q10 values (2.0, 2.5, 3.0) and assume that R is inde-
pendent of food intake (but see “Discussion”). The net rate of
growth (or net energy gain) then is the difference between
gross energy gain and metabolic rate (eqq. [1], [2]; fig. 2C,
2E). All analyses were performed using the R statistical envi-
ronment (ver. 3.5.3; R Core Team 2019).
How might food limitation alter the thermal sensitivity

of ingestion and net energy gain? We will explore another
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Figure 1: Growth rate of fingerling salmon at fixed temperatures and
food rations (from 0% [starvation] to excess; units p % dry weight/
day). Inverted triangles indicate estimated Topt for each food ration level.
Both Topt and the upper threshold temperature for growth decline with
decreasing food ration. Curves are loess smoothers. Redrawn from data
in Brett et al. (1969) and Brett (1971).
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scenario below, but the simplest approach is to allow food
level to be altered proportionately at all temperatures: that
is, that ingestion rate p f ⋅ C, where f is the proportional
food level relative to unlimited food, when f p 1. In this
case reductions in food will basically flatten the intake curve
(e.g., fig. 2A vs. 2B). Importantly, reduced food intake not
only reduces maximum growth but also reduces both Topt

and the maximum Tb for positive growth, especially for steep
Q10’s (fig. 2B, 2D). This simple model, which formalizes prior
graphical models (Hainsworth and Wolf 1978; Huey 1982),
generates results that qualitatively match those of Brett’s ex-
periments (Brett et al. 1969; Brett 1971; fig. 1).

The quantitative effects of food limitation on net growth
are also influenced by the shape of the TPC for ingestion
(C(Tb)) and of the thermal sensitivity of metabolic rate
(R(Tb)). To illustrate this, we modeled two hypothetical
cases: a thermal generalist with a broad performance breadth
(r p 0:9, j p 0:008; fig. 2A, 2B) and a thermal specialist
with a narrow performance breadth (“thermal specialist”;
r p 0:9, j p 0:02; fig. 2C, 2D). We set Topt to 307C for both
This content downloaded from 128.09
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cases and incorporate a generalist-specialist trade-off where
the area under the TPC for energy ingestion is the same for the
two cases (Levins 1968; Huey and Slatkin 1976; Gilchrist
1995), resulting in a lower maximum energy gain for the gen-
eralist than the specialist (cf. fig. 2B, 2C). We also consider
two levels (3.0, 2.0) of Q10 (fig. 2B, 2C).
The basic patterns (fig. 1) in Brett et al. (1969) and Brett

(1971) hold qualitatively for each of these variations (fig. 2).
Specifically, reduced food levels reduce Topt as well as the
maximum temperature, allowing positive net growth of both
generalists and specialists. However, reduced food lowers both
traits more for generalists than for specialists (fig. 2), and a
steep Q10 also accentuates the drops in these traits.
Mean Growth Rates in Variable Thermal Environments

The model described above quantifies ingestion, metabolic,
and net growth rate for a given (fixed) temperature Tb and
a fixed food level f, thus matching Brett’s (1971) experimen-
tal conditions. However, natural thermal environments vary
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Figure 2: When Tb and food intake are held constant, thermal dependence of net energy gain is sensitive to the breadth of the thermal per-
formance curve for energy intake (generalists, specialists) as well as to the steepness (Q10, or the factorial increase in metabolic rate over1107C
shift) of the metabolic-temperature curve. A, C, Gross energy gain (declining from black to gray) under three food levels and metabolic losses
(red) at three Q10 values (2, 2.5, 3) for a thermal generalist (A) and for a thermal specialist (C). B, D, Net energy gain for a generalist (B) and a
specialist (D) under three food levels and with a Q10 of 2 (solid lines) or 3 (dotted lines). Topt for each (red dots) and the upper temperature
threshold for growth both decline with food ration, especially for generalists with steep Q10.
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in both time and space (Waldschmidt and Tracy 1983; Grant
and Dunham 1990; Potter et al. 2013; Sears et al. 2016), and
so ectotherms generally experience a range of environmental
and body temperatures. Our model can predict mean growth
rate during some time interval or life stage by integrating over
the distribution of body temperatures experienced during
the interval or stage (p(Tb); Huey and Slatkin 1976; Deutsch
et al. 2008; Vasseur et al. 2014). Body temperature distribu-
tions of active ectotherms are typically left skewed and uni-
modal and can be broad or narrow (Huey and Pianka 2017).
We arbitrarily selected activity Tb of two desert lizards (Pedio-
planus lineoocellata, from the Kalahari Desert; Phrynosoma
playrhinos, from northern US deserts) as exemplars of Tb

distributions (Huey and Pianka 2017) of ectotherms with
a relatively narrow versus broad distribution, respectively.
We fit a skewed normal distribution (R package fGarch;
Wuertz et al. 2017) to field Tb data for each species. Skew-
ness was similar for both species (0.53 and 0.41, respectively),
but their standard deviations differed (2.17C and 3.77C, re-
spectively). In our simulations, we set skewness p 0.5 for
both and set standard deviations of 27C and 47C, respectively.
For simplicity, in our simulations the skew and standard de-
viation do not change with mean environmental tempera-
ture v. We then calculate mean growth rate �G for a temper-
ature distribution p(Tb):

�G p

ð
G(Tb)p(Tb) dTb: ð3Þ

Equation (3) shows that mean growth rate will depend on
the distribution of body temperatures, the thermal sensi-
tivities of ingestion and metabolic rates, and the food level
(see eq. [1]). For simplicity, suppose environmental tem-
peratures directly determine theTb of an ectotherm (a “thermo-
conformer”; see “Discussion”). Asmean environmental tem-
perature v (and thus Tb) increases during climate warming,
mean growth rate will also change. In the simplest case (food
level remains constant and high during climate warming),
mean growth rate declines rapidly at high mean environmen-
tal temperatures because ingestion declines while metabolic
rate accelerates (see fig. 2A, 2C).

Climate change may also have direct or indirect effects
on the food resources available to ectotherms. As described
in the discussion section, global warming or other aspects
of anthropogenic environmental change may decrease avail-
able food levels (Deutsch et al. 2008; Hallmann et al. 2017;
Bestion et al. 2018; Lister and Garcia 2018) as well as reduce
opportunities to forage (Dunham 1993; Sinervo et al. 2010;
Sears et al. 2011), at least at high temperatures (Levy et al.
2017). We consider two cases: (1) reduced food levels that
are independent of mean environmental temperatures (fig. 3,
solid lines) and (2) food levels that decline as mean envi-
ronmental temperature increases (fig. 3, dashed line), which
This content downloaded from 128.09
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might occur if resources decline with climate warming or
if foraging becomes restricted at high environmental tem-
peratures (but see Levy et al. 2017). We characterize this
decline in food level f using a sigmoid function (Borchers
2018):

f p f max 2
f max 2 f min

11 exp(2a(v2 vmid))
, ð4Þ

where fmax and fmin are the maximum and minimum food
levels, respectively; vmid is the midpoint environmental tem-
perature at which food level is midway between fmax and fmin;
and a determines the slope of the decline in food level. Food
level f varies between 0 and 1, where f p 1 indicates the case
of unlimited food (see above). Note that at v p vmid, the
slope of equation (4) is df =dv p 2að f max 2 f min)=4 (see
fig. 3).
Effects on growth rates of various levels of food ration

and of mean environmental temperature show that Brett’s
basic results (fig. 1) hold for shifting temperature distribu-
tions (fig. 4) as well as at fixed temperatures (fig. 2B, 2D).
When food declines proportionately at all temperatures
(solid black or gray lines in fig. 4), growth declines, Topt

shifts to lower temperatures, and the highest temperature
permitting growth declines, and they all do so more strongly
for thermal generalists (fig. 4A, 4B vs. 4C, 4D). When food
declines (fig. 3) mainly at high environmental temperature
(v), Topt drops dramatically (fig. 4, dashed black lines). In
this case, the growth curve converges on that of excess food
at low v but on that of restricted food at high v. Increasing
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Figure 3: Food levels at different environmental temperatures. Case 1:
food level is independent of temperature, and solid lines indicate
constant food levels of 1.0 (black), 0.75 (darker gray), and 0.5 (lighter
gray). Case 2: food level declines with increasing mean environmental
temperatures (dashed black line; a p 0:3). Line thickness is scaled to
food level.
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Metabolic Meltdown E000
the magnitude of thermal environmental variation (standard
deviation in the temperature distribution p(Tb)) generally de-
creasesmaximummean growth rates but causes only amod-
est increase (!0.57C) in the magnitude of the response to
(uniformly) decreased food intake (compare left and right
columns in fig. 4). Changing the midpoint temperature (vmid)
or slope (a) of the relationship between food level and environ-
mental temperature (eq. [4]; fig. 3) does not qualitatively al-
ter these effects. Thus, declining resources will amplify the
negative consequences of climate warming for mean growth
and will lower the environmental temperatures at which cli-
mate warming will start to have negative impacts on growth
rate.
Discussion

Climate warming can have disruptive effects on the per-
formance and fitness of organisms, and these effects will be
mediated in part on physiological processes such as food
consumption and metabolism as well as by behavioral ther-
moregulation (Kearney et al. 2009). For ectotherms, high en-
vironmental temperatures can lead to reduced rates of growth,
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at least if Tb’s are elevated above optimal levels. But if food
resources are declining simultaneously, either directly as a
result of warming or other concurrent environmental changes
or indirectly as a result of behavioral restrictions on activity
time during warm periods (Stevenson 1985; Dunham 1993;
Sinervo et al. 2010), then maximal growth rates will decline,
the highest temperature permitting growth will decline, and
the optimal temperature for growth will also decline. Thus,
although climate warming can itself be energetically delete-
rious, warming plus reduced food will be multiplicatively
deleterious: ectotherms will become energetically less heat
tolerant while living in a warming environment, a phenom-
enon we call metabolic meltdown. Below we discuss the bio-
logical justification underlying key assumptions of our sim-
ple model and also consider some implications of metabolic
meltdown.
Will Tb Increase with Warming?

Our model assumes that Tb will increase one to one with
changes in environmental temperatures (v). Thus, our model
is most appropriate for thermoconformers, which typically
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Figure 4: Net energy gain as a function of mean environmental temperature (v) for thermal generalists (A, B) and specialists (C, D) during
climate warming. Two levels of thermal environmental variation are considered: SD p 27C (A, C) and SD p 47C (B, D). The solid black
lines indicate net energy gain under excess food, and solid gray lines indicate food levels of 0.75 (darker) or 0.5 (lighter). The dashed black
line indicates a sigmoidal decline in food with temperature (1.0 to 0.5). Solid red circles indicate Topt for different food levels.
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have limitedmobility or live in thermallyhomogeneous envi-
ronments and thus have limited opportunity for behavioral
adjustments (Huey 1974; Willmer 1982; Helmuth et al. 2002;
Chown andNicholson 2004). However, ourmodel should still
be relevant for thermoregulators, even though their Tb do
not change as fast as Te (Huey 1974; Kearney et al. 2009).
Lizards that are careful thermoregulators typically have ele-
vated Tb in warm seasons (Huey et al. 1977; Christian et al.
1983; Gunderson and Leal 2012), and some even stay active
at very high Tb during hot times (McGinnis and Dickson
1967; Grant and Dunham 1988; Gunderson and Leal 2012).
Thus, p(Tb)—especially that of thermoconformers—is likely
to increase as climates warm.

Importantly, the primary behavioral adjustments used by
thermoregulators often involve restricting activity and for-
aging time (i.e., by withdrawing to a thermal retreat during
hot periods; Porter et al. 1973; Stevenson 1985; Kearney et al.
2009) or restricting space use (i.e., to cool microenviron-
ments; Stevenson 1985; Gunderson and Leal 2015; Sears et al.
2016): both adjustments should effectively reduce food con-
sumption and reproduction (Dunham 1993; Sinervo et al.
2010) even if environmental food levels are unchanged. In
effect, the optimal behavioral solution (activity only at lower
Tb) will further reduce net energy gain by restricting forag-
ing. Therefore, thermoregulators may be able to reduce met-
abolic meltdown in warming environments (Kearney et al.
2009; Huey et al. 2012), but they cannot escape it.
Will Food Availability Decline with Warming?

The effects of climate change on primary productivity and
resource levels will vary across geographic regions and eco-
systems, but recent analyses suggest that warming tempera-
tures and climate change will negatively impact resources
in many temperate and tropical systems. For example, de-
creasing mean and increased variability in precipitation can
reduce primary productivity in grassland ecosystems (Pan
et al. 2017). Phytoplankton productivity may decline in re-
sponse to climate change in many marine ecosystems, par-
ticularly in tropical shelf and upwelling areas (Blanchard
et al. 2012; Thomas et al. 2017).

Warming temperatures potentially reduce standing food
levels in several ways.Warming can reduce primary produc-
tivity, thereby reducing the food base for herbivores and
higher trophic levels (Hallmann et al. 2017; Lister andGarcia
2018).Warming plus drought can cause plant dieback (Ciais
et al. 2005), which will reduce not only the food base (for
herbivores) but also habitat shading, increasing operative
temperatures and thus either increasingTb or reducing forag-
ing time and opportunity (or both).

Warming temperatures can also alter rates of popula-
tion growth (fitness) of organisms serving as competitors
This content downloaded from 128.09
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or as prey for higher trophic levels (Buckley 2013; Bestion
et al. 2018). In cold environments, of course, warming may
accelerate prey population growth, but in warm environ-
mentswarmingmay depress rates of population growth (Vas-
seur and McCann 2005; Deutsch et al. 2008; Kingsolver et al.
2011). In particular, climate change is predicted to reduce
reproductive rates and survival of insects in tropical and
many temperate regions (Vasseur and McCann 2005;
Deutsch et al. 2008; Kingsolver et al. 2011). In addition, in-
creasing mean temperatures can reduce population carrying
capacity (Savage et al. 2004; Vasseur and McCann 2005;
Woodworth-Jefcoats et al. 2017; Bernhardt et al. 2018a,
2018b). For example, a recent experimental study showed
that increasing temperature reduced mean cell size, carry-
ing capacity, and total biomass of a mobile phytoplankton
(Bernhardt et al. 2018a, 2018b). These results suggest that cli-
mate warming—at least in already-warm environments—
may reduce the density of resources available for many ecto-
thermic predators and herbivores.
Field studies confirm that food levels have declined in re-

cent decades in some terrestrial ecosystems. For example,
abundances of arthropods have declined markedly over sev-
eral decades in Puerto Rico and Mexico, with apparent re-
percussions on higher trophic levels: climate warming is
the likely cause (Lister and Garcia 2018). Declines in insect
pollinators can potentially reduce plant reproduction and
also food supply to predators of pollinators (Biesmeijer et al.
2006). Of course, food can decline for reasons other than
climate warming (Zhao and Running 2010; Hallmann et al.
2017). For example, the biomass of flying insects in pro-
tected sites in Germany has declined 75% in 27 years, but this
decline shows no obvious imprint of climate change (Hall-
mann et al. 2017). In any case, what matters is whether food
is declining in parallel with climate warming, not whether cli-
mate warming is the driving factor. Interestingly, diverse
ectotherms lower their preferred body temperatures under
reduced (or fasting) food regimes (reviewed in Angilletta
2009, pp. 102–105), but lowered preferred temperatures will
constrain activity time in warm environments, further re-
ducing energy gain (Dunham 1993; Sinervo et al. 2010). Al-
ternatively, ectotherms could reduce metabolic rates in re-
sponse to warming (Marshall and McQuaid 2011), which
will reduce metabolic meltdown but likely slow growth and
reproduction.
Our discussion has focused on the consequences of warm-

ing in already-warm environments. However, many ecto-
therms routinely experience low suboptimal temperatures—
especially in seasonal environments (fig. 6b in Huey et al.
2012). For them, warmingmay enhance growth rates (Deutsch
et al. 2008; Kingsolver et al. 2013), but that enhancement
will be blunted under reduced food ration (fig. 4). Never-
theless, metabolic meltdown is mainly a high-temperature
effect.
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Can Other Mechanisms Lead to Meltdown?

The predictions from our model emerge from three basic
elements: maximal ingestion rate varies with tempera-
ture, where ingestion rate is maximal at some intermediate
(optimal) temperature; ingestion rate at any given tempera-
ture increases with food level; and metabolic rate accelerates
with increasing temperature. Our simple model assumes that
ingestion rate is linearly related to food level, but nonlinear
relationships between ingestion (intake) and food level (nu-
trient concentration) are widespread. In particular, individual
or population growth rate is a saturating (decelerating) func-
tion of the availability of a limiting resource in many bacteria,
plankton, and animals (Monod 1949; Holling 1959; Eppley
et al. 1969; Thomas et al. 2017).

Thomas et al. (2017) recently modeled interactions be-
tween temperature and nutrient concentration in phyto-
plankton. In their model, population growth rate is a func-
tion of both temperature (where population growth rate is
maximal at some intermediate [optimal] temperature) and
of nutrient concentration (where population growth rate is
a decelerating function of concentration that saturates at
some maximal growth rate). This model predicts that de-
clining nutrient concentrations will reduce maximal (pop-
ulation) growth rate, the optimal temperature, and the up-
per thermal limit (the temperature at which the population
growth rate is zero). Thus, predictions from our energetic
model of metabolic meltdown qualitatively match those
from a population one (Thomas et al. 2017). Laboratory ex-
periments with a marine diatom confirm that the optimal
temperature for population growth declines with declining
nutrient (phosphate and nitrate) concentrations; the de-
cline in optimal temperatures is particularly pronounced
at very low nutrient concentrations (Thomas et al. 2017).
Note that their model does not explicitly consider metabolic
or respiration rates (which are incorporated via their effects
on population growth rates), nor does it consider behavioral
responses to warming.

Mathematically, the similar qualitative predictions from
these twomodels emerge from the decelerating function re-
lating growth rate to resource concentration (Thomas et al.
2017) versus the accelerating function relating respiration
rate to temperature (the current model; fig. 2). More gener-
ally, suppose that net performance or fitness results from
the difference between two functions of temperature: a de-
celerating “gain” function and an accelerating “loss” func-
tion (eqq. [1], [2]). Reductions in resources (or other envi-
ronment factors) that reduce gains or magnify losses will
have similar effects on shifting optimal andmaximal temper-
atures, as described here. In particular, the effects of resource
levels on birth and death functions could also alter the ther-
mal dependence of fitness in ectotherms (Amarasekare and
Savage 2012). These considerations suggest that there aremul-
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tiple mechanisms by which temperature and resources may
interact to exacerbate the negative consequences of climate
changes for ectothermic organisms (Thomas et al. 2017).
Caveats

Our model is intentionally simple and summarizes key fac-
tors involving food, temperature, and energetics that are uni-
versal for ectothermgrowth. In the future,more complexmod-
els (e.g., incorporating nutrients, energetics, biophysicalmodels
of heat exchange; Kooijman 2010; Clissold and Simpson
2015; Sears et al. 2016; Thomas et al. 2017; Malishev et al.
2018) can explore fine-scaled aspects of metabolicmeltdown.
Here we highlight a few known complications.
First, our model belongs to a family of models (e.g., Huey

and Slatkin 1976; Vasseur et al. 2014) that integrate perfor-
mance or fitness over a distribution of Tb (eq. [2]). How-
ever, physiologists have long appreciated that the effect of
Tb on performance or fitness can change with acclimation
(Bernard 1865; Fry and Hart 1948), ontogeny (Brett 1970),
and time at temperature (Wilhoft 1958; Kingsolver and
Woods 2016). Such effects—whenmajor—will alter the con-
clusions, especially at high temperatures (Brakefield and Kes-
beke 1996; Schulte et al. 2011; Niehaus et al. 2012; Colinet
et al. 2014; Kingsolver and Woods 2016; Sinclair et al. 2016;
Kremer et al. 2018; Bernhardt et al. 2018a, 2018b).
Second, we assumed that metabolic rate is independent

of food intake. However, many ectotherms (and even hu-
mans) reduce metabolic rate under reduced food (Secor and
Diamond 2000; Auer et al. 2015). Reducedmetabolic rate un-
der low food intake should reduce—but not eliminate—the
declines in Topt and in the highest temperature for growth
(compare results for the two Q10’s in fig. 2B, 2D).
Third, our model assumes that the distribution of Tb is uni-

modal and left skewed: this is valid for ectotherms such as
diurnal desert lizards when active (Huey and Pianka 2017).
However, growth is sensitive to Tb over 24 h, not just during
activity.When compiled over 24 h (or longer),Tb distributions
typically have relatively broad distributions, at least at low Tb,
and sometimes they are even bimodal (Stevenson et al. 1985).
However, our simulations with two breadth levels (standard
deviations) suggest that the breadth of the Tb distribution will
have limited effect on themagnitude of the drop in Topt caused
by food restriction. For example, the drops are 1.87C and
2.27C, respectively, for the two generalist cases (fig. 4A, 4B)
and 0.77C and 0.97C, respectively, for the specialist cases
(fig. 4C, 4D).
To explore in brief the impact of bimodal Tb distribu-

tion, we ran the model with two modes set at 147C and
247C of the mean Tb (standard deviations of 1 and 2, re-
spectively). The resultant growth curves (not shown) are
very similar qualitatively to those of the unimodal cases
in figure 4 but have reduced growth (reflecting time at
5.104.109 on September 24, 2019 16:03:48 PM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



E000 The American Naturalist
low Tb) and slightly left-shifted Topt and upper threshold
temperatures. Also, differences in maximum growth rates
between generalists and specialists are reduced relative to
the unimodal cases.

Fourth, ectotherms live in communities, and the associ-
ated exploitative competition and predation can result in
reduced food intake (Huey and Slatkin 1976; Gilman et al.
2010; Thakur et al. 2017). Moreover, microenvironments
are often heterogeneous such that individuals may differ
in exposure to food intake and to heat stress, even on a local
scale (Denny et al. 2011; Sears et al. 2011; Potter et al. 2013).
Modeling such complexities will be challenging, given that
the responses of interacting ectotherms to climate change
may be species specific and context dependent.

Fifth, our model considers the effects of food (resource)
quantity on ingestion and net growth rates but assumes
that resource quality (as reflected in assimilation efficiency;
see eq. [1]) is constant and independent of environmental
conditions. However, climate change can reduce resource
quality. For example, increasing atmospheric CO2 reduces
protein content and protein-to-carbohydrate ratios and in-
creases concentrations of secondary defense chemicals in
leaves of most terrestrial plants (Mooney 1972; Chapin
1980). Numerous studies demonstrate that these effects re-
duce rates of growth, development, and fitness in insect and
other herbivores as well as alter plant defenses against insect
herbivores (Lincoln et al. 1993). In addition, increasing tem-
peratures during development reduces final (adult) body
size in most ectotherms, and reductions in mean body size
during climate warming during recent decades has been
widely (but not universally) reported (Atkinson 1994; King-
solver and Huey 2008; Daufresne et al. 2009; Gardner et al.
2011) in ectotherms. If smaller prey size reduces the effi-
ciency of search, handling, or assimilation by predators, this
will decrease net energy gain. Reductions in food quality or
conversion efficiency with climate warming should have
similar consequences for the thermal dependence of growth,
as modeled here for declining food levels (see eq. [1]).

Sixth, we assumed a Gompertz#Gaussian function to
describe the thermal growth curve (eq. [2]) and a simple ex-
ponential for metabolic rate versus temperature. Other func-
tional relationships are reasonable (Izem and Kingsolver
2005; Angilletta 2006; Sheth and Angert 2014); substitution
of biologically reasonable functional forms is unlikely to
change the qualitative patterns described here.

In summary, our conceptual extensions of Brett’s pioneer-
ing experiments (Brett et al. 1969; Brett 1971) and a recent
model of Thomas et al. (2017) suggest that the combination
of climate warming plus food decline will exaggerate the neg-
ative consequences of climate change alone or of food decline
alone—at least in areas that are already warm. If only the en-
vironment warms, ectotherms may need to accept activity
at supraoptimal Tb to maintain sufficient activity time, poten-
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tially at a cost of stress. If only food levels decline, ectotherms
should accept active at suboptimal Tb, which are energetically
favorable but reduce maximal growth. But if both occur to-
gether, ectotherms face antagonistic thermoregulatory pres-
sures and thus will be in an ecological double bind or
catch-22. Accepting high Tb will maintain activity time but
greatly reduce net energetic gain. Accepting lowTb will be en-
ergetically advantageous but will greatly reduce activity time,
further lowering food intake and further lowering growth.
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