
M. R. Frazier,* Raymond B. Huey,† and David Berrigan‡

Department of Biology, Box 351800, University of Washington, Seattle, Washington 98195-1800

Submitted March 17, 2006; Accepted June 12, 2006; Electronically published August 29, 2006

Abstract: Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature-dependent processes (e.g., digestion rate, population growth rate) of cold-adapted species will match those of warm-adapted species when each is measured at its own optimal temperature. Here we show that cold-adapted insect species have much lower maximum rates of population growth than do warm-adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural-equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.

Keywords: intrinsic rate of increase, ectotherm, optimal temperature, thermodynamics, physiological adaptation.

* E-mail: mfrazier@u.washington.edu.
† E-mail: hueyrb@u.washington.edu.
‡ Present address: Applied Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Executive Plaza North MSC 7344 (Room 409S5B), Bethesda, Maryland 20892; e-mail: berrigad@mail.nih.gov.

Body temperature profoundly affects the physiology, performance, and fitness of ectotherms, which include most organisms on earth. Diverse biochemical and physiological adaptations allow different ectotherms to survive and reproduce in temperature regimes ranging from polar oceans to thermal vents (Cossins and Bowler 1987; Hochachka and Somero 2002). Nevertheless, whether such adaptations are able to compensate for the rate-depressing effects of low temperature on biochemical reaction rates of cold-adapted species is debated.

Two opposing hypotheses dominate these debates. The “thermodynamic-constraint” hypothesis argues that low temperature slows rates of biochemical reactions and that adaptation is unable to overcome this fundamental thermodynamic depression (Hamilton 1973; Heinrich 1977). Consequently, cold-adapted species (even at their optimal temperatures) will inevitably have lower rates of locomotion (Garland 1993), metabolism (Gillooly et al. 2001), development (Gillooly et al. 2002; Charnov and Gillooly 2003), and population growth (Savage et al. 2004) than will warm-adapted species at their thermal optimum. This
The hypothesis is sometimes referred to as “warmer is better” (Bennett 1987; Huey and Kingsolver 1989; fig. 1A). The “perfect-compensation” hypothesis (Clarke 2003) counters that a suite of biochemical adaptations (Hochachka and Somero 2002) can circumvent the temperature dependence of reaction kinetics: if these adaptations are fully compensatory, then cold-adapted ectotherms will achieve biological reaction rates that match (Clarke 2003) those of warm-adapted species (fig. 1B) in their respective optimal thermal environments.

Evaluating these competing hypotheses is important to our understanding of the nature of—and constraints on—physiological and biochemical adaptation to temperature. Moreover, these evaluations are relevant to population and community ecology: if warmer is better, then adaptation to warmer (or colder) temperatures will alter maximum rates of population growth as a correlated evolutionary response (Arnold 1987) to selection on thermal sensitivity per se.

To test these competing hypotheses, we compiled and analyzed data from studies that measured the intrinsic rate of population growth \(r \) at several temperatures in the laboratory. The intrinsic rate of population growth describes the exponential population growth rate per day for an individual with unlimited resources (Birch 1948; Charlesworth 1994) and is an important component of fitness (Charlesworth 1994). Rates of population growth— as do many other physiological rates—increase with body temperature \(T_b \) to some optimal temperature \(T_o \) and then rapidly decline with further increases in \(T_b \) (Huey and Berrigan 2001). If thermodynamics constrains physiological adaptation to temperature, then the maximum rate of population growth, \(r_{\text{max}} \) (\(r \) measured at \(T_o \)), of warm-adapted insects will be higher than that of cold-adapted insects (fig. 1A). In contrast, if adaptation circumvents thermodynamics, then \(r_{\text{max}} \) will be independent of temperature adaptation (fig. 1B).

In this study, we find that \(r_{\text{max}} \) increased with \(T_o \); this result is qualitatively consistent with the thermodynamic model (Charnov and Gillooly 2003; Savage et al. 2004). However, this observed correlation might be spurious if both \(r_{\text{max}} \) and \(T_o \) were evolving independently to some common environmental variable. For example, selection in cold environments (e.g., high latitude or altitude) might favor organisms that not only are cold-adapted (i.e., have low \(T_o \)) but also are thermal generalists, as cold terrestrial environments generally have high daily and seasonal temperature variation (Janzen 1967). If so, \(r_{\text{max}} \) might decrease in cold-adapted species not because of thermodynamics but rather as a correlated response to a trade-off between thermal breadth and maximal population growth rate (Levins 1968; Huey and Hertz 1984; Gilchrist 1995; Po¨rtner 2004). Alternatively, the lower \(r_{\text{max}} \) of cold-adapted species may reflect a downregulation of population growth in response to reduced resource availability (e.g., net primary productivity [NPP]) in colder environments (Clarke 1983). To evaluate these alternative hypotheses, we were able to compile data on mean environmental temperatures \(T_{\text{mean}} \), seasonal temperature variation \(T_{\text{season}} \), and NPP for most of the sampled species. Then we used a structural-equation model analysis to evaluate the relationships among \(r_{\text{max}} \), \(T_o \), body mass, NPP, \(T_{\text{mean}} \), and \(T_{\text{season}} \). This additional analysis suggested that \(r_{\text{max}} \) was directly influenced by \(T_o \), but not by NPP or \(T_{\text{season}} \) and thus it supported only the thermodynamic model (Charnov and Gillooly 2003; Savage et al. 2004).

Methods

We compiled data from laboratory studies of insects for which \(r \) was measured at four or more constant body temperatures \((T_o) \) and for which an optimum temperature \((T_o) \) was evident. By surveying the literature for insect species meeting the above criteria, we collected data for 65 insect species from eight orders (25 from Homoptera [includes Hemiptera], 13 from Hymenoptera, four from Lepidoptera, six from Diptera, 13 from Coleoptera, three from Thysanoptera, and one from Collembola). The sampled species were exclusively terrestrial, and most were agricultural pests or control agents. For a few species, multiple data sets were available; to avoid pseudoreplication, we analyzed only the study that provided the most complete data (i.e., the most temperature intervals, specified locations of collection, body size, etc.). Raw data and references are provided in appendix A in the online edition of the American Naturalist.

For each species, we fitted population growth rate \((r(t)) \) to body temperature \((T_o) \) using a Gaussian times a Gompertz function to accommodate the nonlinear nature of this relationship (see fig. 2):

\[
r(t) = r_{\text{max}} e^{-\left[e(t(T_o-T_{\text{opt}})-6)\right] e(t(T_o-T_{\text{opt}}))^2}. \]

From this equation, we estimated the \(r_{\text{max}} \) and \(T_o \) of each species \((\sigma \) represents the increasing part of the population growth rate curve, and \(\rho \) represents the declining part of the curve). This function provided a reliable fit as long as data were relatively monotonic; in some cases, we had to remove \(r \) values that were anomalously lower than predicted based on surrounding values before the curve fitting (van Berkum 1988). We used S-Plus, version 6, to estimate curve fits.

To control for phylogenetic relatedness, we used standardized independent contrasts (Felsenstein 1985) computed with Phenotypic Diversity Analysis Programs (Garland et al. 1993, 1999; Garland and Ives 2000). The
We estimated regression slopes using reduced major axis (RMA), which is less biased than ordinary least squares (OLS) estimates when the independent variable has error variance (McArdle 1988; Garland et al. 1992). Nevertheless, RMA estimates are still likely to be biased because the error variances of the independent and dependent variables are assumed to be proportional to the total variance of each variable. This assumption is likely wrong (McArdle 2003). Nonetheless, the RMA slope estimates should be less biased than OLS estimates, which assume that the independent variable has no error variance, and are also less biased than major-axes estimates, which are inappropriate when variables have different units of measure and thus unequal error variances (Sokal and Rohlf 1995). In any case, we present also the estimates from OLS analyses.

Normally distributed data are an important assumption in regression and in structural-equation model analyses. In all analyses, we used the natural logarithms of \(r_{\text{max}} \) and of dry mass because these transformations not only improved normality but also allowed us to test quantitative predictions of the thermodynamic model (Savage et al. 2004). The variables \(r_{\text{max}} (P > .05), T_{\text{c}} (P > .05) \), and \(\ln(\text{dry mass}) (P = .037) \) did not significantly differ from a normal distribution when these critical \(P \) values were corrected for multiple comparisons (Shapiro-Wilk normality tests). For the structural-equation model, we used AMOS (Arbuckle 2003) to evaluate whether the distributions of our variables of interest had significant skew and kurtosis. The distribution of \(T_{\text{mean}} \) (skew = −1.044, critical ratio = −2.858) was significantly skew (i.e., critical ratio > |2.0|), and those of \(T_{\text{season}} \) (kurtosis = 2.334, critical ratio = 3.197) and \(T_{\text{mean}} \) (kurtosis = 3.356, critical ratio = 4.596) had significant kurtosis (i.e., critical ratio > |2.0|). Because of these significant, though fairly modest, departures from normality, we used bootstrapping to estimate \(P \) values (bias corrected, 2,000 iterations) and to evaluate model fit.

To determine whether evolutionary changes in \(r_{\text{max}} \) were related to net primary productivity (NPP) or seasonal temperature variation (\(T_{\text{season}} \)), we developed a structural-equation model that included these and other variables. Environmental data for NPP, \(T_{\text{season}} \), and mean environmental temperatures (\(T_{\text{mean}} \) from near the collection site were available for a subset of the insect species (\(n = 46 \)). Climate data (New et al. 1999) were based on mean monthly temperatures for 1961–1990. Using these data, we compiled yearly mean temperatures (\(T_{\text{mean}} \), the average of the mean monthly temperatures from all years of data collection) and an index of seasonal temperature variation

![Figure 2: Example of a curve fit of population growth rate (r) to body temperature (°C) estimated from a Gaussian times a Gompertz function (see "Methods") for the aphid Hyadaphis pseudobrassicae (DeLoach 1974). Thermal optimum (\(T_{\text{c}} \)) and maximum rate of population growth (\(r_{\text{max}} \)) are indicated.](image-url)
Thermodynamics and Insect Population Growth Rates

Figure 3: Analysis of maximum intrinsic growth rate \(\left(r_{\text{max}}, \text{female offspring per female per day} \right) \) versus optimal temperature \((T_o, ^\circ C) \) for 65 insect species, using standardized phylogenetically independent contrasts. A, Analysis of body size–corrected residuals of versus \(T_o \) is consistent with the “warmer is better” hypothesis (see also table 1). B, Analysis of body size–corrected residuals of and \(\left(e^{V/kT_{\text{max}}} \right) \) to test the quantitative predictions of the thermodynamic hypothesis (see text for details). The observed slope (solid line; table B1) was significantly steeper than the thermodynamically predicted slope (dashed line).

Table 1: Analyses of \(\ln r_{\text{max}} \) versus \(T_o \)

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Estimate (95% CI)</th>
<th>Standard error</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis 1, traditional analysis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-3.643 (-4.66 to -2.62)</td>
<td>.510</td>
<td>-7.15</td>
<td><.001</td>
</tr>
<tr>
<td>(T_o) ((^\circ C))</td>
<td>.040 (.007 to .073)</td>
<td>.016</td>
<td>2.43</td>
<td>.019</td>
</tr>
<tr>
<td>(\ln (\text{dry mass})) (mg)</td>
<td>-.165 (-.240 to -.090)</td>
<td>.037</td>
<td>-4.40</td>
<td><.001</td>
</tr>
<tr>
<td>Insect order:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera ((n = 13))</td>
<td>.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collembola ((n = 1))</td>
<td>.196 (-.692 to 1.084)</td>
<td>.444</td>
<td>.44</td>
<td>.660</td>
</tr>
<tr>
<td>Diptera ((n = 6))</td>
<td>.859 (.423 to 1.295)</td>
<td>.218</td>
<td>3.95</td>
<td><.001</td>
</tr>
<tr>
<td>Hymenoptera ((n = 25))</td>
<td>.982 (.654 to 1.310)</td>
<td>.164</td>
<td>6.00</td>
<td><.001</td>
</tr>
<tr>
<td>Lepidoptera ((n = 13))</td>
<td>.917 (.567 to 1.266)</td>
<td>.174</td>
<td>5.25</td>
<td><.001</td>
</tr>
<tr>
<td>Lepidoptera ((n = 4))</td>
<td>.774 (.251 to 1.297)</td>
<td>.261</td>
<td>2.96</td>
<td>.004</td>
</tr>
<tr>
<td>Thysanoptera ((n = 3))</td>
<td>-.125 (-.787 to .536)</td>
<td>.330</td>
<td>-.58</td>
<td>.706</td>
</tr>
<tr>
<td>Analysis 2, independent contrasts analysis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A, Ordinary least squares regression:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_o)</td>
<td>.059 (.031 to .086)</td>
<td>.014</td>
<td>4.35</td>
<td><.001</td>
</tr>
<tr>
<td>(\ln (\text{dry mass}))</td>
<td>-.076 (-.147 to -.004)</td>
<td>.036</td>
<td>-2.11</td>
<td>.039</td>
</tr>
<tr>
<td>B, Reduced major axis regression:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_o)</td>
<td>.123 (.099 to .154)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Analysis 1: raw data; analysis 2: phylogenetically independent contrasts, with regression slopes forced through the origin (Garland et al. 1992). CI = confidence interval.

* ANCOVA; \(F = 10.67, \text{df} = 8, 56, P < .001, R^2 = 0.60. \)
* \(F = 11.62, \text{df} = 2, 62, P < .001, R^2 = 0.25. \)
* Performed on residuals from \(\ln r_{\text{max}} \) on \(\ln (\text{dry mass}) \).
and T_o held when we conducted a nonphyletically ordi-

tary least squares analysis that included insect order and

body size as independent effects (table 1, analysis 1).

The positive correlation between contrasts for $\ln r_{\text{max}}$

and for T_o (fig. 3A) qualitatively supports the thermo-

dynamic-constraint hypothesis. Nevertheless, some com-

pensatory evolution of r_{max} could still have occurred and

would be evident if the observed slope of r_{max} on “inverse

body temperature” ($1/kT_o$) was less steep than that pre-

dicted by a recent thermodynamic model (Savage et al.

2004). That model explicitly predicts that body size-

corrected population growth rates (r) scale inversely with

inverse body temperature according to e^{-kT_o}, where k

is Boltzmann’s constant ($eV K^{-1}$), T is absolute temperature

(K), and E is the average activation energy of rate-limiting

biochemical reactions of metabolism (eV). Thus, the slope

of $\ln r_{\text{max}}$ on $1/kT_o$ should equal E, which is estimated to

range between -0.6 and -0.7 eV (Gillooly et al. 2001,

2002; Charnov and Gillooly 2003; Savage et al. 2004).

To estimate the observed slope of $\ln r_{\text{max}}$ on $1/kT_o$ (fig.

3B), we used standardized phylogenetically independent

contrasts and RMA regression (table B1 in the online edi-

tion of the American Naturalist). The estimated RMA slope

(-0.97; fig. 3B, solid line) was steeper than that predicted

by the thermodynamic model (fig. 3B, dashed line). Fur-

thermore, the 95% confidence interval (CI) of the ob-

served slope (-0.78 to -1.20, calculated using the method

of Jolicoeur and Mosimann [McArdle 1988]) did not over-

lap the range predicted by the thermodynamic model

($E = -0.6$ to -0.7). Thus, r_{max} seems even more sensitive
to T_o than is predicted by the thermodynamic model (Sav-

age et al. 2004); this result is the opposite of what would

be expected if compensatory evolution had occurred.

We next considered hypotheses alternative to “warmer

is better” that might underlie the observed correlation be-

tween T_o and r_{max}. As described above (see the introduction
to this article), that correlation could be spurious if both

traits were evolving independently in response to some

common environmental variable, such as seasonal tem-

perature variation (T_{season}) or net primary productivity

(NPP). To evaluate whether these variables were influ-

encing r_{max}, we compiled data on climate and NPP near

the collection sites of a subset ($n = 46$) of the sampled

species. We used a structural-equation model with stan-

dardized independent contrasts (Bauwens et al. 1995) to

evaluate the relationships among six variables (fig. 4; tables

We used the Akaike Information Criterion (AIC) to eval-

uate the proposed models (table 2), to determine which

combination of T_o, T_{mean}, NPP, and T_{season} was most likely
to influence r_{max}.

The overall fit of our final structural-equation model

was good, based on the bootstrap Bollen-Stine statistic for

nonnormal data ($P = .874$; a nonsignificant P value in-

dicates a good fit). Other indexes of model fit were also

positive (likelihood ratio $\chi^2 = 5.594$, df = 10, $P = .848$;

Figure 4: Using a structural-equation model with phylogenetically independent contrasts to test alternative models. The analysis ($n = 45$; contrasts)
shows the relationships between the maximum rate of population increase ($\ln r_{\text{max}}$) and optimal temperature (T_o, °C), mean environmental temperature
(T_{mean}, °C), seasonality (T_{season}, °C), yearly net primary productivity (NPP, g C·year$^{-1}$), and dry body mass (\ln [dry mass], mg). Warm-adapted
insects had significantly higher maximum population growth rates (j), supporting “warmer is better.” Alternative hypotheses, such as seasonal
temperature variation (g) and NPP (h), were not supported. Arrow widths are proportional to the strength of the relationship, and dashed arrows
represent paths that were excluded from the final model because they failed to improve model fit, according to Akaike’s Information Criterion (table
2). Numbers beside arrows are standardized coefficient estimates based on maximum likelihood for correlations (double-headed arrows) or hypothesized
causal relationships (single-headed arrows). Asterisks indicate bootstrapped P values of <.001 (three asterisks), <.01 (two asterisks), or <.05 (one asterisk).
root mean square error of approximation = 0, 90% CI = 0.000–0.092; comparative fit index = 1.000; see Kline 2005 for overview). Nevertheless, because input data had significant departures from normality, these and other goodness-of-fit estimates may be suspect, as normality is an assumption of structural-equation models. However, patterns based on bootstrapped values were very similar to those using nonbootstrapped values, suggesting that our results were robust to the observed departures from normality.

The AIC best-fit model (table 2; fig. 4) supported the thermodynamic hypothesis: maximum population growth rate \(r_{\text{max}} \) was correlated with \(T_o \) (fig. 4, path \(j \)) but not with NPP (fig. 4, path \(h \)) or seasonal climatic variability (fig. 4, \(T_{\text{season}} \), path \(g \)). In fact, the combined probability that the best model for the observed data does not include \(T_o \) is only 4.1%. Overall, this analysis reinforces the view that \(T_o \) affects \(r_{\text{max}} \) and that NPP and \(T_{\text{season}} \) have little, if any, influence.

The structural-equation model analysis also revealed other interesting relationships. For insects, thermal environment (\(T_{\text{mean}} \) and \(T_{\text{season}} \)) positively influenced \(r_{\text{max}} \) indirectly via its effects on \(T_e \) (fig. 4, paths \(e \) and \(f \)). According to the best-fit AIC model, \(T_{\text{mean}} \) negatively influenced \(r_{\text{max}} \) directly (fig. 4, path \(k \)). This effect was modest compared to the indirect effect of \(T_{\text{mean}} \) on \(r_{\text{max}} \) (via \(T_e \)) and was nonsignificant (\(P = .139 \)); nonetheless, it improved the overall model fit according to the AIC, which was the criterion we adopted to determine the final model (Johnson and Omland 2004).

Discussion

Our analyses suggest that an insect’s maximum rate of population growth \(r_{\text{max}} \) is strongly influenced by thermodynamics, a pattern that is consistent with the thermodynamic model (Savage et al. 2004). Specifically, the evolution of a low \(T_o \) (fig. 3; fig. 4, path \(j \)) seems to cause a decrease in \(r_{\text{max}} \) as an evolutionarily correlated response. The magnitude of the response is nontrivial. For every 1°C drop in \(T_o \), \(r_{\text{max}} \) will decline by an average of 8%–12%. (Note that these estimates are approximate and will vary with the starting value of \(T_o \)). Because population growth is exponentially related to \(r_{\text{max}} \), a decline of this magnitude should profoundly influence insect population dynamics.

Savage et al. (2004) previously reported that rates of population growth (corrected for body size) of ectotherms scale negatively with inverse body temperature, as predicted by their thermodynamic model (Gillooly et al. 2001, 2002; Charnov and Gillooly 2003). Our analyses here, which find a similar pattern, are complementary to those in Savage et al. (2004). Nevertheless, our approach is different from theirs in several ways. First, we focused on determining whether \(r_{\text{max}} \) co-varies evolutionarily with \(T_o \).
and thus analyzed only one pair of data (r_{max} and T_o) for each species. In contrast, Savage et al. (2004) examined the general relationship between r (not r_{max}) and body (not optimal) temperature (T_o), and they analyzed multiple estimates for each species (r at various T_o, where all $T_o \leq T_{\text{max}}$). Thus, both analyses focus on complementary but somewhat different issues. Second, we used independent contrasts to control for phylogenetic history, whereas Savage et al. (2004) did not correct for phylogeny. Third, we analyzed data only for insects: Savage et al. (2004) analyzed data for insects ($n = 5$ species) as well as several other ectotherm taxa (see fig. 2 in Savage et al. 2004). Fourth, we considered competing hypotheses to the thermodynamic model (see below).

The positive correlation between $\ln r_{\text{max}}$ and T_o (fig. 3A) and the inverse correlation between $\ln r_{\text{max}}$ and $1/kT_o$ (fig. 3B) support the thermodynamic-constraint hypothesis (Gillooly et al. 2001, 2002; Charnov and Gillooly 2003; Savage et al. 2004) and are inconsistent with the perfect-compensation hypothesis (fig. 1B). Moreover, even a “partial-compensation” hypothesis is seemingly contradicted by the fact that the observed slope of $\ln r_{\text{max}}$ on $1/kT_o$ is steeper than that predicted by the thermodynamic model; as noted above, partial compensation should reduce that slope. Even so, the unexpectedly steep slope of $\ln r_{\text{max}}$ on $1/kT_o$ (fig. 3B) challenges—at least quantitatively—the thermodynamic model (Gillooly et al. 2001, 2002; Charnov and Gillooly 2003; Savage et al. 2004). We can suggest several possible reasons for this discrepancy: first, the model’s estimates of average activation energies of enzymatic reactions might be too low; second, organismal-level processes (e.g., r_{max}), which reflect interactions of many biochemical reactions, might be more sensitive to temperature than are enzymes themselves (contrary to the assumption in Savage et al. 2004); or third, the evolution of processes such as r_{max} is sensitive to many environmental factors and not just to optimal temperature per se.

Although our data and those of Savage et al. (2004) qualitatively support the thermodynamics hypothesis, we were concerned that the correlation between r_{max} and T_o could be spurious if both traits were evolving independently in response to some common environmental factor. Consequently, we used a structural-equation model (fig. 4; table 2) to evaluate two competing hypotheses. First, a lower r_{max} of cold-adapted species is a by-product of selection for thermal generalization in cold, thermally variable terrestrial environments (Levins 1968; Huey and Slatkin 1976; Gilchrist 1995; Pörtner 2004). Second, a lower r_{max} of cold-adapted species reflects selection for the downregulation of population growth in response to reduced resource availability (e.g., net primary productivity [NPP]) in cold environments (Clarke 1983). The structural-equation model analysis supported the crucial role of T_o on r_{max} (fig. 4, path j) and contradicted any involvement of NPP (fig. 4, path h) or seasonal temperature variation (fig. 4, T_{season}, path g). Thus, this analysis supported only the thermodynamic model and not the alternative hypotheses.

The structural-equation model also supported other relationships. Not surprisingly, T_o was positively correlated with mean environmental temperature (fig. 4, path e). Interestingly, T_o was also positively correlated with seasonal temperature variation (fig. 4, path f). (In fact, T_{season} was almost as good a predictor of T_o as T_{mean}.) Perhaps countergradient selection (Levins 1968, 1969; Conover and Schultz 1995) favors a high T_o in relatively seasonal environments, as high-T_o species will potentially have relatively high r_{max} and thus be able to “make hay while the sun shines.” On the other hand, a high T_o in such environments might simultaneously further reduce the activity season, which will already be short.

Overall, our analyses suggest that an insect’s maximum rate of population growth (r_{max}) is strongly influenced by thermodynamics (Hamilton 1973; Heinrich 1977; Bennett 1987; Garland 1993; Savage et al. 2004). Moreover, we find no evidence that physiological compensation ameliorates the effect of thermodynamics on r_{max}. If compensation did occur, the slope of $\ln r_{\text{max}}$ on $1/kT_o$ should be less steep than that predicted by the thermodynamic model; in fact, the observed slope was steeper than predicted. Nevertheless, T_o accounts for only a fraction of the observed variance in r_{max}, and large differences in r_{max} among the insect orders cannot be explained by differences in body size (tables 1, B1); and so perhaps compensatory adaptation accounts for part of this residual variance.

The lack of evidence for compensatory adaptation of r_{max} seems strikingly and paradoxically inconsistent with the wealth of studies that convincingly demonstrate physiological and biochemical adaptation to temperature (Brett 1970; Cossins and Bowler 1987; Huey and Kingsolver 1989; Hochachka and Somero 2002). Can this inconsistency be resolved? We think so. Obviously, physiological and biochemical adaptation to temperature occurs and enables insects and other ectotherms to shift their thermal fitness curves up or down along a temperature axis and thus to invade new thermal environments. Indeed, T_o is strongly correlated with mean environmental temperature for insects (fig. 4, path e). Nevertheless, biochemical adaptation seems unable to overcome the “tyranny” of thermodynamics, at least for r_{max} of insects. In other words, although physiological adaptation to cold allows organisms to invade cold environments, it is seemingly incapable of compensating for reduced rates of maximal population growth.

Several other comparative studies generally support the thermodynamic-constraint hypothesis: field and laboratory growth rates of unicellular algae (Eppley 1972), lo-
comotor stamina of lizards (Garland 1993; Bauwens et al. 1995; Bennett 1997), and growth rates of scallops (Heilmayer et al. 2004) and trees (Rehfeldt et al. 2002). Thus, evidence from diverse taxa demonstrates that adaptation of ectotherms to cold temperatures seemingly reduces maximum performance and maximum population growth rates. Thus, thermal evolution has not fully escaped the “tyranny” of thermodynamics (Barcroft 1934; Clarke and Fraser 2004). For insects, and possibly for other ectotherms, “warmer is better” (Bennett 1987; Huey and Kingsolver 1989; Savage et al. 2004).

Acknowledgments
We thank J. Grace and S. Scheiner for statistical advice, A. Clarke and an anonymous reviewer for constructive comments on the manuscript, and A. F. Bennett, H. D. Bradshaw, T. Garland Jr., and J. G. Kingsolver for discussions. Research was supported by University of Washington Royalty Research Fund grant 2771 and Environmental Protection Agency STAR (Science to Achieve Results) Fellowship FP-91634701 to M.R.E.; National Science Foundation grants DEB 9981598 and IBM 0416843 to R.B.H.; and a Cancer Prevention Fellowship Award from the Division of Cancer Prevention, National Cancer Institute, to D.B.

Literature Cited
Arbuckle, J. L. 2003. Amos 5.0 update to the Amos user’s guide. Small waters, Chicago.

Associate Editor and Editor: Jonathan B. Losos