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■ Abstract Evolutionary physiology represents an explicit fusion of two com-
plementary approaches: evolution and physiology. Stimulated by four major intel-
lectual and methodological developments (explicit consideration of diverse evolu-
tionary mechanisms, phylogenetic approaches, incorporation of the perspectives and
tools of evolutionary genetics and selection studies, and generalization of molecu-
lar techniques to exotic organisms), this field achieved prominence during the past
decade. It addresses three major questions regarding physiological evolution: (a) What
are the historical, ecological, and phylogenetic patterns of physiological evolution?
(b) How important are and were each of the known evolutionary processes (natural
selection, sexual selection, drift, constraint, genetic coupling/hitchhiking, and oth-
ers) in engendering or limiting physiological evolution? and (c) How do the genotype,
phenotype, physiological performance, and fitness interact in influencing one another’s
future values? To answer these questions, evolutionary physiology examines extant
and historical variation and diversity, standing genetic and phenotypic variability in
populations, and past and ongoing natural selection in the wild. Also, it manipulates
genotypes, phenotypes, and environments of evolving populations in the laboratory and
field. Thus, evolutionary physiology represents the infusion of paradigms, techniques,
and approaches of evolutionary biology, genetics, and systematics into physiology.
The reciprocal infusion of physiological approaches into evolutionary biology and
systematics can likewise have great value and is a future goal.

...each level [of biological integration] offers unique problems and insights,
and .... each level finds its explanations of mechanism in the levels below,
and its significance in the levels above.

George A. Bartholomew (7, p. 8)

1Dedicated to George Bartholomew on the occasion of his 80th birthday.
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INTRODUCTION

Evolutionary physiology represents an explicit fusion of two complementary ap-
proaches: evolution and physiology. This field has been the subject of several
recent reviews and symposia (18, 25, 53, 72, and papers following 72). Rather
than recapitulating those here, we focus on how perspectives and approaches in-
fused from evolutionary biology, genetics, and systematics are changing the scope
and nature of physiological studies and how, in turn, physiological perspectives
and approaches may contribute to evolutionary biology.

HOW EVOLUTIONARY BIOLOGY, EVOLUTIONARY
AND POPULATION GENETICS, AND SYSTEMATICS
HAVE INFORMED PHYSIOLOGY

Physiology has often incorporated both ecological and evolutionary perspectives.
Since the field’s inception, many physiologists have sought to understand how
the environment affects function and how function has undergone evolutionary
modification. The field’s principal focus, however, has been on the mechanisms
of function and description of their variation in cells, species, and environments.
Beginning in the 1980s, a complementary focus, “evolutionary physiology,”
achieved prominence. Evolutionary physiology investigates (a) the evolutionary
mechanisms underlying or constraining diversification of physiological mecha-
nisms and (b) the discrete historical patterns of physiological evolution (104).
While physiology has always readily borrowed from other disciplines, evolution-
ary physiology represents a novel importation of theory, paradigms, techniques,
and questions from genetics, population biology, evolutionary biology, and sys-
tematics. The variables examined, such as metabolic rate, locomotor speed, ther-
moregulatory performance, and the physiological mechanisms that underlie them,
are those that comparative physiology and physiological ecology have measured
for decades. What is new is the analytical context of these studies.

Attributing evolutionary thinking in physiology (and vice versa) exclusively
to evolutionary physiology is clearly erroneous. Evolutionary biologists such as
Sewall Wright, Theodosius Dobzhansky, and Richard Goldschmidt had major re-
search foci on “physiological genetics” (115, 144, 168). Large numbers of Russian
physiologists contributed to a field that they had entitled, in 1914, “evolutionary
physiology” (3, 155, 186) and that continues to flourish largely independent of
the evolutionary physiology reviewed here. Moreover, many classical studies of
comparative and environmental physiology (e.g. 7, 10, 167, 181, 182,) interpreted
patterns as the outcome of adaptive evolution (138). Also, physiologists have
long exploited the results of evolution in choosing the most appropriate species
for investigation of physiological problems (116, 123, 208). Still other investiga-
tions, either in advance of or independent of evolutionary physiology, included an
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explicit evolutionary analysis of the physiological impact of specific gene alleles
(28, 29, 79, 114, 124, 135–137, 211). Nonetheless, physiology and evolutionary bi-
ology often remained isolated from one another in the past. For example, standard
textbooks on evolutionary biology (67) had little or no discussion of the evolution
of physiological traits (more recent editions of this textbook discuss physiological
evolution).

But in the late 1970s and early 1980s, several developments (both conceptual
and methodological) elicited a substantially increased infusion of evolutionary
thinking into the physiological sciences. Undoubtedly the most influential of these
was an unwillingness to assume that all patterns of biological traits result from
adaptation (174)—a development that achieved its greatest notoriety in a paper by
Gould & Lewontin (82). This polemic not only criticized prevailing standards of
evidence of adaptation, but also challenged comparative biologists to scrutinize
their assumptions about the operation of evolution. One outcome was physiolo-
gists’ explicit consideration of evolutionary hypotheses alternative to adaptation
(e.g. nonadaptive forces such as drift or constraint) (15, 36), which in turn,
necessitated explicit examinations of evolution in physiological studies.

A second, contemporaneous intellectual development was the recognition of the
nonindependence of species as analytical units for comparative studies. Because of
their phylogenetic relatedness, species share common ancestry and common genes
to greater or lesser degrees. Consequently, conclusions based on traditional statis-
tical methodologies became suspect. This recognition came first from behavioral
ecologists undertaking comparative studies of behavior (e.g. 35). This awareness
began to spread to other fields of comparative biology through the primary stimulus
of Felsenstein’s 1985 paper (62), which not only clearly described the problem but
also provided a robust analytical solution (phylogenetically independent contrasts)
for the analysis of comparative data. Indeed, immediately studies in evolutionary
physiology began to incorporate a phylogenetic perspective. This new perspective
not only influenced how investigators compare species, but also motivated com-
parative biologists to analyze evolutionary patterns from an ancestor-descendent
perspective (103, 104). Thus it was a conceptual—and not merely a statistical—
advance.

A third factor was the incorporation of the perspectives and tools of evolutionary
genetics and selection studies (both field and laboratory (1–2, 125)). The impact
here was fundamental. Evolutionary genetics contributed explicit expectations of
the patterns of genetic and phenotypic variation that were necessary and/or suf-
ficient conditions for physiological evolution by natural selection. Physiologists
could then sample populations to ascertain whether these conditions were met.
Also, whereas most previous evolutionary studies (at least those in physiology and
morphology) investigated the results of past evolution, evolutionary genetics and
selection studies enabled the monitoring of evolution in contemporary populations
(i.e. in real time) and prediction of future evolutionary trajectories. In addition,
these approaches permitted the design and execution of rigorous evolutionary ex-
periments in which the experimentalist could manipulate putative selective forces,
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replicate treatments, and observe outcomes. Thus many assertions and hypotheses
concerning physiological evolution, which had previously been only speculative,
became falsifiable.

Finally, the techniques of molecular biology and genetic engineering escaped
the constraints of standard laboratory model organisms and became broadly ap-
plicable to many of the diverse species of interest to evolutionary physiologists
(55). While this development is only now yielding information of genomic and
proteomic scope, even at the beginning it provided information with either deeper
insights or far greater ease than had previously been possible.

The field of evolutionary physiology was greatly influenced by all of these
developments and quickly exploited them. The first formative steps in the emer-
gence of the field came from a workshop sponsored by the U.S. National Science
Foundation, held in Washington, DC, in 1986, which resulted in an edited volume
(53). Pough (163) first used the term “evolutionary physiology” to entitle a review
of that volume, Diamond (39, 40) rechristened the field, and Garland & Carter
(72) soon codified the term to designate the entire emerging area. In 1994, the
U.S. National Science Foundation established a formal Program in Ecological and
Evolutionary Physiology. The growth since that time, in both number and breadth
of the studies encompassed, has been impressive. We provide only a few examples
of relevant studies, and refer readers to successive reviews of this growing field
(18, 25, 53, 72).

Major Questions in Evolutionary Physiology

By “physiological evolution,” we mean change (or stasis) through time in traits
and characters that are typically the subject of physiological studies. These traits
may be at diverse levels of biological organization (molecular through organismal,
as well as colonial and symbiotic) and may be biochemical, morphological, and/or
behavioral as well as strictly physiological (1, 7–10, 50, 72, 74).

Pattern: What Transformations Has Physiology Undergone as Organisms Have
Evolved and Diversified and as Their Environments Have Changed?Organ-
isms inhabit a great range of environments, some seemingly inimical to life, and
vary extensively in their physiological processes and capacities, morphology, and
behavior. Explaininghowan organism’s phenotype enables it to exploit its envi-
ronment was a central heuristic of pre-evolutionary physiology (10) and remains
important. The resultant explanations are typically environment- or taxon-specific
and post hoc (e.g. seasonal changes in insulation in arctic mammals, increas-
ing cutaneous Na+ influx and expression of Na+ channels by amphibians in ex-
tremely hyposmotic media, and facultative anaerobiosis in animals undergoing
temporary hypoxia or anoxia). [Vogel (205) likened such research programs to
“shooting at a wall and drawing targets around the bullet holes.”] Evolutionary
physiology, by contrast, more often focuses on the discrete transformations occur-
ring during physiological evolution; for example, how and why did endothermic
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vertebrates arise from ectothermic ancestors (19, 23, 95, 176, 177)? Alternatively,
evolutionary physiology often proceeds from a priori hypotheses or predictions
about the distribution of phenotypes in relationship to specific ecological, evolu-
tionary, or genetic regimes and uses taxon-independence (i.e. convergent and/or
parallel evolution) and meta-analyses to test the robustness of these predictions.
For example, a large body of theory predicts that phenotypic plasticity should be
greater in variable than in constant environments (180). This theory would be sup-
ported if, in all three of the foregoing examples (arctic mammals, amphibians, and
facultative anaerobes), the magnitude of physiological plasticity were correlated
with the magnitude of environmental variation. If the theory were supported, then
subsidiary predictions would arise concerning the cost of phenotypic plasticity and
the magnitude of genetic variability underlying it. Similar issues concern the rate
of physiological evolution and how this rate differs in stressful vs benign environ-
ments and central vs peripheral populations of a species (99), physiological niche
breadth in specialized vs generalized species (78), and the closeness of the match
between organismal phenotypes and environment.

Evolutionary physiology and other aspects of physiology are clearly not separate
endeavors, but may examine identical phenomena with similar techniques from
their different starting points. Mechanistic physiology often makes predictions
from principles of physics and/or engineering regarding distributions of pheno-
types. These might concern, for example, the nature and diversity of respiratory
gas and ion exchangers in air vs water (38), the general features of the design of gas
exchangers (162), morphologies of organisms living in high vs low flow regimes
(205), and the maximum body temperatures of animals (91, 96, 195). Evolution-
ary and other physiological approaches perhaps most closely coalesce in studies
of physiological optimality. Evolutionary optimality models have a long heritage
(184), but within the past 20 years, physiologists have undertaken explicit exam-
inations of whether physiological supply and demand are in fact closely matched
(“symmorphosis”) or whether overdesign and safety margins are commonplace
(39, 40, 219). This issue is still contentious (43, 219).

Process: How Important Have the Known Evolutionary Processes (Natural
Selection, Sexual Selection, Drift, Constraint, Genetic Coupling/Hitchhiking,
and Others) Been in Engendering or Limiting Physiological Evolution?The
Modern Evolutionary Synthesis has long recognized the multiplicity of processes
that result in or constrain evolution. Nonetheless, the footprint of one of these
(adaptation as the outcome of natural selection) upon physiological diversity has
been so manifest that many physiological investigators have understandably fo-
cused on it to the near or total exclusion of the others. Stepping back from this
focus, evolutionary physiology ideally asks, How much of physiological diver-
sity (or its lack) is due to each of the known evolutionary processes (15)? At a
more basic level, can we rigorously deduce the evolutionary processes that led
to and/or maintain the extant array of physiological phenotypes? One approach
to these questions has been to take from evolutionary theory the conditions that

A
nn

u.
 R

ev
. E

co
l. 

Sy
st

. 2
00

0.
31

:3
15

-3
41

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
N

IV
E

R
SI

T
Y

 O
F 

W
A

SH
IN

G
T

O
N

 o
n 

04
/1

2/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



P1: FXY

September 25, 2000 10:15 Annual Reviews AR113-14

320 FEDER ¥ BENNETT ¥ HUEY

are necessary and/or sufficient for each evolutionary process to occur (effective
population size, genotypic and phenotypic variability, heritability, differential sur-
vival/reproduction, and so on) and to survey these conditions in natural or ex-
perimental populations with reference to physiological traits. The rigor of this
approach will only increase with time as the genetic basis of complex physiolog-
ical traits becomes better understood with the advent of functional genomics and
proteomics.

Another approach is to survey the rate of physiological diversification in taxa
separated naturally or experimentally in different environments for known lengths
of time. Both approaches, however, are tempered with the realization that the
outcomes of evolution are heavily contingent on the genetic and demographic
conditions prevailing at its outset.

As explained below, laboratory and experimental evolution studies (77, 173,
175) are especially promising in that the experimentalist can manipulate these
starting conditions, run multiple replicated evolutionary trials, and determine
the probability of specific evolutionary outcomes directly. Moreover, modern
techniques of genetic engineering allow this manipulation to occur at the level
of the single gene or even nucleotide, with all other factors controlled. Obvi-
ously such work is still not feasible for every species of interest to physiologists.
Nonetheless, it permits evolutionary physiologists to address still more significant
questions.

First, within the range of feasible evolutionary outcomes, does physiological
evolution generally follow only one, a few, or perhaps a multitude of these? If
the evolution of a biological lineage were to occur again, would it result in the
same, similar, or entirely different results (81)? In other words, are evolutionary
trajectories predictable, given similar starting conditions?

Second, what is the importance of neutral evolution, specifically the neutral
fixation of traits or genes? Such work collectively may reveal the relative impor-
tance of history, adaptation, and chance in the formation of physiological diversity
(36, 199–202).

Components: How Do the Genotype, Phenotype, Physiological Performance,
and Fitness Interact in Influencing One Another’s Future Values? Physiolo-
gists have long studied the detailed chain of events that ensue between the reception
of a physiological stimulus and the manifestation of its corresponding physiologi-
cal response, the molecular and cellular components of these events, and the impact
of each component on each subsequent element of the chain. The elucidations of
signal transduction, homeostatic mechanisms, and neurotransmission, for exam-
ple, are only a few of the success stories of mechanistic physiology. By contrast,
we know much less about the detailed events that ensue between the reception
of an ecological or evolutionary stimulus (e.g. stress) by a natural population and
the manifestation of the corresponding response (selection, response to selection,
extinction, and so on) in terms of physiological traits. Evolutionary physiology
strives to discover these connections. The general paradigm is that genes encode
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the phenotype, the phenotype determines the performance of organisms in natural
environments in response to ecological or evolutionary stimuli, the performance
determines the evolutionary fitness of alternative genotypes, and the fitness de-
termines the frequency of genotypes in the next generation, in recursive fashion
(1, 7, 61, 72, 74, 102). Determining the details of each step is an ongoing challenge
for evolutionary physiologists (61). For genotype to phenotype, for example, what
is the genetic basis of complex physiological traits, what is the importance of epi-
genetic and nongenetic factors in determining physiological phenotypes, and how
is the genotypic specification of the phenotype manifested during ontogeny? For
phenotype to performance, what exactly is the impact of phenotypic variation
on the performance of unrestrained organisms in nature? Mechanistic physiol-
ogists are routinely successful in explaining the impact of phenotypic variation
on proxies of performance in the laboratory; are these explanations extensible to
nature (16)? Similar questions apply to the other links as well. That evolutionary
physiologists have one foot in mechanistic physiology and another in evolutionary
biology prospectively poises them to make major contributions in this area, where
multidisciplinary work is clearly needed.

Analytical Approaches in Evolutionary Physiology

Evolutionary physiology currently exploits two major approaches. The first is to
analyze the outcome of “natural experiments”; that is, the extant and paleonto-
logical genotypes and phenotypes of evolved organisms, with environment and/or
phylogeny (i.e. the genes and traits present at the start of evolution) as variables
that have differed in the past. This approach, then, is one of historically based
comparison and correlation, and usually best suits (by necessity) studies of phys-
iological evolution among species or higher-level taxa. The second approach is
to manipulate genotype, phenotype, and/or environment directly and to observe
subsequent evolutionary outcomes.

Phylogenetically Based Comparisons: Examining Extant and Historical
Variation and Diversity to Test HypothesesThe statistical analysis of physi-
ological evolution within an explicit phylogenetic framework began only in the
mid-1980s but has already become a central paradigm in evolutionary physiology
and other comparative fields (76, 94, 104, 133, 141, 206). Phylogenetically based
comparative studies analyze physiological and/or ecological variation and covari-
ation against an independently derived phylogeny of the taxa involved. The first
of two primary motivations for developing this approach was the realization that
the best way to choose species for comparison was with respect to phylogenetic
relatedness (104, 206). Many early studies compared very distantly related species
(e.g. a hibernating marsupial and a white rat), undoubtedly to increase signal-to-
noise ratio, but the results of such studies were inherently ambiguous in the sense
that one was comparing apples with oranges (103). The second motivation was
a growing awareness that species data are nonindependent, such that conclusions
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based on standard statistical models (e.g. regression) were at least suspect and
potentially misleading (35, 62). Because of these realizations, comparative biolo-
gists and systematists have developed and are developing a variety of new analytical
procedures (26, 62, 73, 76, 94, 141) that are leading both to more robust answers
to pre-existing research questions and to entirely new questions for physiologists.

In evolutionary physiology, a comparative approach can reveal whether a par-
ticular character state (e.g. stenothermy or eurythermy) is ancestral or derived
(103, 104), the most likely ancestral condition of a discrete or quantitative trait
(75, 104), rates of evolutionary change (103), whether prior evolution of a trait has
been necessary and/or sufficient for an ecological or evolutionary outcome, and
whether evolution of one trait has evolved in advance of, simultaneously with, or
after another (see 26, 62, 76, 84, 94, 133, for a discussion of methods and inter-
pretations). Analyses may concern populations, species, genera, or even higher
levels of biological organization or may encompass a combination of organiza-
tional levels. Any such analysis requires a minimum of three taxa, in part because
of the necessity of incorporating a more distantly related “outgroup” into any
comparison (69, 103). Examples of the use of phylogenetic approaches to study
the evolution of physiological characters are now very diverse and include ther-
moregulatory patterns in fish (23, 24), evolution of locomotion in lizards (11, 30),
locomotor performance in lizards (132), salinity tolerance in mosquitoes (85),
diving physiology of pinnipeds (98, 153), metabolic rate in amphibians (207), di-
etary modulation in omnivorous birds (140), development in Antarctic birds (48),
expression of glycolytic enzymes in fish (161), plasma osmotic concentration in
amniotes (75), anaerobic metabolic end products in chordates (178), and noctur-
nality in geckos (4). These have revealed novel insights. For example, Mottishaw
et al (153) showed that “diving bradycardia,” long assumed to have evolved in
mammals to facilitate diving, likely arose long before the evolution of diving
habits. Block et al (24) showed that endothermy has evolved multiple times in
fishes (as opposed to evolving only once in a common ancestor of endothermic
fishes).

Rigorous phylogenetic approaches to physiological comparisons are not with-
out drawbacks. They require physiological data on multiple species, which can
be a formidable barrier for sophisticated mechanistic studies (138), as well as
nonphysiological data (i.e. a phylogenetic topology with branch lengths and large
numbers of taxa) that may be difficult or even impossible to obtain (e.g. too few
taxa may exist for adequate statistical power). In addition, the robustness of any
phylogenetic interpretation depends on the hypothesized phylogenetic relation-
ships as well as on the model of evolution underlying the formal statistics (62).
Moreover, phylogenetic approaches can establish only correlation and not causa-
tion (69, 104, 129); unfortunately, historical patterns can seldom be tested by direct
and replicated experimental manipulation (104). A different kind of drawback as-
sociated with phylogenetic approaches has been their unfortunate tendency to im-
pede, if not to stifle, comparative studies that employ traditional, nonphylogenetic
approaches [“phylogenetic correctness” (73, p. 279)]. We advocate both greater
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tolerance when investigators eschew phylogenetic approaches with good reason,
and explicit discussion of the rationale for “phylogenetic incorrectness” when it is
warranted.

Despite difficulties of implementation, the incorporation of phylogenetic ap-
proaches appears positive for evolutionary physiology. Such approaches have im-
proved the choice of species, even when evolutionary considerations are not of
primary concern. Moreover, phylogentic considerations enhance the reliability of
statistical inference, the kinds of evolutionary questions asked of physiological
data, and the evolutionary relevance and robustness of comparative physiological
studies.

Although comparative methods often infer ancestral physiological states from
those of extant organisms, paleobiological studies may infer the physiological
states of long-dead organisms from fossil anatomy (176, 177). Sometimes the es-
sential features of such analyses (e.g. shared characters and parsimony) are implicit
rather than explicit, and a phylogeny with appropriate character mapping may or
may not be available. The form of the argument, however, is essentially parsimo-
nious and phylogenetic (19). An excellent example of this approach is Hillenius’
study of endothermy in the mammalian lineage (97), in which evidence of nasal
turbinates in fossil skulls suggests endothermy in therocephalian therapsids. This
result indicates that endothermy probably evolved before the emergence of mam-
mals as a group and was therefore an inheritance rather than a novel evolutionary
development in Mammalia.

Dormant stages of organisms can sometimes be resuscitated so that physiolog-
ical states of recent “ancestors” can be determined directly. Many organisms in
nature have dispausing or dormant eggs (87, 88) or seeds (130, 146) that persist in
the environment for long periods (90). When resurrected, such time travelers can
be compared with contemporary individuals in a common garden. Thus, ancestral
and derived stocks from nature are compared directly, much the same way as with
laboratory stocks with certain species [e.g.Escherichia coli, Caenorhabditis ele-
gans, and Drosophila melanogaster(18)]. A fascinating example comes from a
time-series analysis ofDaphniaspp. from a lake that experienced eutrophication
(and associated increases in cyanobacteria) in the 1960s and 1970s. After hatch-
ing dormant eggs ofDaphniaspp. from sequential time periods, Hairston et al
(89) found thatDaphniaspp. rapidly evolved increased resistance to cyanobacteria
in their diets during eutrophication. Future physiological studies can potentially
explore the evolved mechanisms underlying such increased resistance.

Standing Genetic and Phenotypic Variability in PopulationsEvolutionary biol-
ogy has established that the modes, rates, and outcomes of physiological evolution
will depend critically on the pre-existing variation within the evolving population
(or higher taxon), its heritability, and its relation to fitness. Because compara-
tive studies are not sufficient to address these issues (129), evolutionary phys-
iologists have increasingly attempted to characterize variation, heritability, and
fitness consequences directly. These studies have used two types of approach. In
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the physiology-to-genetics approach (2), evolutionary physiologists assume that
physiological traits of interest have a genetic basis and seek to establish the ge-
netic properties of this basis without ascertaining the identities and natures of the
actual underlying genes. At the simplest level, an evolutionary physiologist might
ask whether sprint speed varies or is invariant within a lizard population, with the
outcome having implications for the evolutionary malleability of sprint speed in
the population. This approach differs from that of typical physiology, in which
an investigator might regard exceptionally fast or slow individuals as atypical and
therefore exclude them from analysis (14). At a more complex level, evolution-
ary physiologists have applied the techniques and insights of quantitative genetics
(see 49, 137) to estimate the heritability of diverse functional characters (both
organismal and suborgansimal), characterize phenotypic vs genotypic variation in
traits, establish the relationship between traits and fitness, and quantify evolution.
Locomotor performance (e.g. 42, 197, 203) and its mechanistic basis (e.g. 70, 71)
have received particular attention.

A second approach, that of gene to physiology (2), examines the performance
and fitness implications of discrete genes (or the products they encode) on or-
ganismal characters (114, 145, 212, 213): for example, lactate dehydrogenase on
locomotor performance (164–166, 183) and temperature adaptation (63, 101, 196);
hemoglobin on oxygen transport capacity (194); aminopeptidase on osmoregula-
tory ability (113, 114); alcohol dehydrogenase on ethanol tolerance (64–66); and
phosphoglucose isomerase (31, 215–218), glycerol-3-phosphate dehydrogenase
(6, 37, 126, 127), juvenile hormone esterase (86, 222–226), and troponin expres-
sion (139) on flight capacity.

Perhaps the initial motivation of these studies was from the discovery of un-
expectedly large amounts of genetic variation in natural populations and attempts
to test subsequent theory that most such variation was selectively neutral (114,
212, 213). This motivation continues as a debate on how allelic variation in genes of
large effect can persist in populations without selection eliminating them (212, 213)
and has its counterpart in the functional genomics of human disease. A repeated
finding of gene-to-physiology studies, that the genes under investigation are often
nonneutral, continues to provoke much interest. An additional goal, coincident
with the emergence of evolutionary physiology, has been to rigorously explore the
recursive relationships of genes to traits to organismal performance to fitness to
genes against the background that these relationships can be nonstraightforward
and nonobvious (61).

From its inception, a criticism of the gene-to-physiology approach has been
that it is not sufficient to explain variation in complex physiological traits, which
must be the product of numerous interacting genes. One response has been the
exploitation of metabolic network theory to explain how single-gene variation can
affect complex metabolic pathways and entire physiologies (212). Another is that
advances in developmental biology, cell biology, and molecular physiology of
model systems are revealing precisely how single gene changes can be manifested
in whole-organism variation and how such variations have evolved (204).
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The physiology-to-gene and gene-to-physiology approaches obviously con-
verge with one another and with scientific progress in general. Already, the in-
creasing technical sophistication of DNA arrays permits simultaneous screen-
ing of all genes of an organism or tissue for changes in expression in response
to physiological change (33, 142, 198). Another development is increasing ease
of precise genetic mapping, facilitating the description of quantitative trait loci.
Quantitative trait loci, in turn, can establish or reject the polygeny of traits, permit
the formal genetic analysis of quantitative traits, and facilitate the direct sequenc-
ing of the genes at the quantitative trait loci. On a more theoretical level, the two
approaches bear on global genetic issues concerning organismal performance, such
as pleiotropic effects on the evolution of physiological characters (41, 83, 185), the
role of overall heterozygosity in influencing performance and fitness (112, 150),
the effects of genetic correlation on rates of evolutionary change (2), and the rela-
tionship between numbers of deleterious mutations and overall viability and fitness
(46, 154).

Past and Ongoing Natural Selection in the Wild Evolutionary biologists have
developed a variety of methods to study the presence, intensity, and directionality
of natural selection on character traits in wild populations (reviewed in 47, 151).
Such studies of selection on physiological traits would be enormously valuable to
our understanding of their evolution and current ecological importance. To date,
however, relatively few such studies have been attempted (47), partly because of
the difficulty of measuring physiological variables on very large numbers of ani-
mals. Available studies have concentrated on locomotor capacities (e.g. 16, 106,
148, 149, 209) and have sometimes demonstrated, through differential survival,
that traits such as maximal speed and endurance contribute to fitness in natural
populations. Such work forms an important bridge between the many laboratory
studies on activity capacity and its mechanistic bases and its actual ecological
and evolutionary significance. Future field selection studies may involve manip-
ulation of such putative selective factors as predator density to test evolutionary
hypotheses experimentally.

Although the above studies document patterns of selection on traits, they must be
repeated over time to document actual evolutionary responses to selection. An al-
ternative way to document short-term evolutionary responses involves monitoring
shifts in species recently introduced into novel environments (159). An example
is Drosophila subobscura, which was introduced from the Old World into North
and South America in the late 1970s and spread rapidly on both continents (5).
In only one to two decades, the North American populations have evolved a
latitudinal wing-length cline, which parallels that in native Old World popula-
tions (105).

Experimental Approaches: Manipulating Variation and Diversity to Test
Hypotheses Although natural experiments most clearly reflect the actual past
and ongoing processes of physiological evolution as they occur in the wild, they
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have limitations. They can be poorly controlled, their sampling of organisms and
environmental factors can be biased, they are often nonreplicated and unrepeat-
able, and the signal-to-noise ratio of the trait under investigation can be insub-
stantial. Most importantly, genetic, epigenetic, and phenotypic linkages among
traits mean that seldom will a gene, trait, or suite of genes/traits of interest vary
in isolation without covariation of interacting elements, thereby confounding the
interpretation of natural experiments. Therefore, as in most other areas of the
life sciences, evolutionary physiology includes a strong component of intentional
manipulation or engineering of genes or traits of interest, but with outcomes typ-
ically characterized in relation to performance and/or fitness. A long heritage of
experimental physiology has provided a wealth of surgical and pharmacological
techniques to manipulate the traits themselves as well as diverse means of ma-
nipulating specific internal or external environmental variables. Joining these are
laboratory and field techniques from experimental ecology for manipulating the
number and variety of interacting organisms and their environments, experimen-
tal evolution approaches, and genetic engineering of allelic series, knock-outs,
knock-ins, complementation, rescue, etc. Most of these techniques themselves
have the drawback of manifesting processes that seldom, if ever, occur in nature
and thus, by themselves, can reveal little about the likelihood or potential for
physiological evolution in nature. For this reason, the complementary analysis of
natural and deliberate experiments may yield the greatest insights (59). Thus, for
example, whereas the analysis ofLdh-B genotype in natural populations of the
fish Funduluscan implicateLdh-B genotype as a likely component of fitness, it
can neither establish thatLdh-Bgenotype is sufficient for variation in fitness nor
exclude the influence of linked genes (165). Such demonstrations require ma-
nipulations such as the replacement of a genotype’s allozyme with an alternative
allozyme via microinjection (165). Whether evolution is likely to achieve compa-
rable manipulations, however, can emerge only from study of the naturalFundulus
populations.

Phenotypic Engineering A powerful approach to studying the mechanistic and
adaptive significance of phenotypic characters is to manipulate them directly and
subsequently study the performance and/or fitness consequences in the laboratory
or the field (190). Such approaches have been termed “allometric engineering”
when involving manipulations of body size (192) or as “phenotypic engineer-
ing” for more general manipulations (107, 108). An example of the latter involves
manipulating butterfly wing color (by altering developmental temperature or by
painting) and then monitoring field-released individuals for heat balance, mating
success, and survival (e.g. 109–111). Other investigators have engineered intesti-
nal transport capacity (27, 92), milk production capacity (93), hormone status
(107, 108), and total body size (187, 191, 221). Performance consequences of
such changes can be examined either in staged encounters in the laboratory or in
animals released into natural populations. These latter studies then become a type
of natural selection study, as discussed below.
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Phenotypic engineering permits direct experimental tests of the significance of
a character and is thus a valuable tool to expand upon comparative studies. It can
not only expand the magnitude of variation in traits beyond that occurring in nature
(188, 193), but also verify causal, mechanistic links between traits [e.g. between
body size and performance (192)].

A complementary approach involves manipulating the environment rather than
the phenotype. The classical methods involve reciprocal transplants (34, 157) and
common gardens (189). The latter are widely used to factor out environmental
effects in studies of geographic or interspecies variation (68, 69).

Genetic Engineering An evolutionary physiologist may choose to manipulate
the gene(s) encoding a trait rather than manipulating the trait directly (51, 169).
Such manipulations have long been possible, if not simple, in genetically tractable
organisms such as yeast,Drosophila, and many bacteria. A few examples for bac-
teria concern the consequences of excess tryptophan synthesis for growth (44), the
effects of lactose permease and beta-galactosidase expression on metabolic flux
(45), and interactions between structural and regulatory genes that control expres-
sion of an efflux protein and their effects on growth in the presence and absence
of an antibiotic (128, 156). Advances in molecular biology already (or will soon)
make such manipulations feasible at any level down to the individual nucleotide,
and in an expanding diversity of experimental species.

One example concerns the heat-shock genes, whose expression was correlated
with inducible stress tolerance and thus were implicated as a mechanism of stress
tolerance (52, 57). In yeast, this implication was first confirmed for the single-
copy geneHSP104when deleting the gene abolished a significant component of
inducible thermotolerance, and reintroducing the gene restored inducible thermo-
tolerance to control levels (179). Moreover, site-directed mutagenesis of a single
nucleotide in a critical region of this gene was sufficient to abolish inducible
thermotolerance, whereas control mutagenesis had no effect (158). For other heat-
shock genes and in more complex multicellular eukaryotes (where multiple copies
of some heat-shock genes have evolved), more complex techniques are necessary
(e.g. 220). Increasing the haploid copy number of thehsp70gene from 5 to 11 in
Drosophila, for example, dramatically increases the resistance of whole larvae and
pupae to natural thermal stress (56, 171, 172), and gut-specific expression of the
hsp70gene off a heterologous promoter protects the gut against heat-induced dam-
age during feeding (60). Many additional transgenic manipulations of heat-shock
genes are now available and confirm the suspected consequences of these genes
for fitness (52, 57). Similar genetic manipulations will undoubtedly be one of the
most exciting and productive areas in future studies of evolutionary physiology.

Selection Studies Selection experiments on populations of organisms in the labo-
ratory, long a mainstay of geneticists and evolutionary biologists, have also been in-
corporated into evolutionary physiology (18, 77). These permit the direct observa-
tion of evolutionary change resulting from an alteration in the selective environment
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and allow physiologists to experiment on physiological evolution itself. Labora-
tory experimentation facilitates control of the environment and selective factors,
maintenance of nonselected populations, and replication of experimental groups,
permitting a rigorous statistical evaluation of the evolutionary response.

Experimental selection studies follow three designs: natural selection in the
laboratory, artificial truncation selection, and laboratory culling (173). The first
manipulates an environmental variable (e.g. temperature or water or nutrient avail-
ability) and monitors the consequent changes in replicated experimental popula-
tions for many generations. In laboratory natural selection, the experimenter does
not directly choose which organisms possessing which characters will be permitted
to breed: those that are fittest in the new experimental environment will produce
more offspring, irrespective of which characters result in higher fitness. In con-
trast, artificial truncation selection permits only organisms possessing certain traits
to breed. This type of selection is familiar from plant and animal breeding. It re-
quires the a priori establishment of the traits to be selected and the screening of
individual organisms prior to reproduction. Laboratory culling creates a selective
environment that permits only a small portion of each population to survive to
reproduce. Choice of the type of selection experiment depends on the principal
experimental goal. Testing of hypotheses concerning environmental adaptation
would probably employ either natural selection in the laboratory or laboratory
culling, while the production of organisms with certain combinations of physio-
logical traits might be done through artificial truncation selection.

Perhaps the greatest utility of selection experiments in evolutionary physiol-
ogy is their ability to test general predictions concerning physiological evolution,
specifically in regard to patterns and consequences of evolutionary adaptation
(12, 13, 18). Many formal and informal models of environmental adaptation begin
with assumptions concerning evolutionary constraints and patterns. For example,
in regard to adaptation to the thermal environment, most models (e.g. 78, 131)
assume that adaptation to one thermal environment requires loss of fitness in other
environments (trade-off ) and consequent changes in the range of temperatures
tolerated (niche shift). The ability to do direct experiments changes these assump-
tions into testable hypotheses, subject to falsification. In regard to these particular
assumptions, experimental studies on evolutionary adaptation of bacterial popu-
lations to different temperatures in general fail to support them (17, 152). While
the expected pattern of fitness trade-off and niche shift occured in one thermal en-
vironment, it was completely absent in four others. Some studies ofDrosophila,
however, are consistent with these assumptions (32, 160). Such results ques-
tion facile assertions and assumptions concerning the course that evolution will
or must take and require revision of evolutionary models that incorporate such
assumptions.

Conclusion: On Finding the Right Organism for Study Although we present
the foregoing analytical approaches individually, they clearly have the greatest
power when used in complementary fashion (59). Each approach is best suited to
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reveal certain aspects of physiological evolution but may ignore or obscure others.
To return to the example of heat-shock proteins inDrosophila, genetic engineering
can unambiguously establish the phenotypic and fitness consequences of variation
in Hsp70 protein expression (56, 58, 60, 117, 119–121, 171–172), but it can estab-
lish neither the likelihood that such variation will evolve, persist, or even occur in
natural populations nor the ecological relevance of such variation (59). That goal
requires direct studies of variation (20, 118, 122) and its ecology (54, 171, 172) in
natural populations, but these, in turn, cannot unambiguously establish the physio-
logical phenotypes of the genes under study. Similarly, comparative studies of past
physiological evolution (e.g. the evolution of endothermy or diving bradycardia;
see above), descriptive studies of contemporary physiological or morphological
evolution (e.g. 105, 134), and experimental or laboratory evolution (see above)
each provides special insights. The latter suite of approaches, however, may be
most powerful when each approach is applied to a common species or popula-
tion of interest and/or when new techniques are deployed. For the moment, the
joint requirements of these approaches and techniques may be so restrictive as
to exclude problems (e.g. the evolution of endothermy or diving bradycardia)
and species (e.g. endothermic tuna) of traditional interest to physiologists. Thus,
an increasingly common practice in evolutionary physiology has been to study
nontraditional (at least for physiologists) models such asDrosophila, E. coli, and
C. eleganseither alongside or in place of the more traditional exotic subjects
of ecological and comparative physiologists. “Choosing the right organism” for
study is a hallowed tradition in physiology (116, 123, 208) and is yielding truly
surprising outcomes. For example, genomic screens ofE. coli undergoing experi-
mental evolution at high temperatures suggest that the same genes are evolving in
independent evolutionary trials (170). In pursuing such models, approaches, and
techniques and in searching for insights from allied fields, evolutionary physiol-
ogists are continuing a long tradition of multidisciplinary physiology but in new
directions.

HOW EVOLUTIONARY PHYSIOLOGY CAN INFORM
EVOLUTIONARY BIOLOGY, EVOLUTIONARY
AND POPULATION GENETICS, AND SYSTEMATICS

Much current research in evolutionary biology proceeds without explicit or de-
tailed reference to the mechanisms encoded by the genes. Amechanistic (214)
evolutionary biology has several bases, some of which are pragmatic: Statistical
analyses of the genotype alone can yield considerable insights into evolution, as
can the amechanistic scoring of traits to phylogenetic relationships. Also, incor-
porating functional analyses into evolutionary studies can be both logistically and
intellectually challenging. But other bases of amechanistic evolutionary biology
are ideological, stemming from a belief that detailed understanding of the pheno-
type is irrelevant or insufficient for understanding of evolution, or it can contribute
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little. Thus Mayr (143, p. 115) has written: “...the mechanistic approach, although
quite indispensable in the study of proximate causations, is usually quite meaning-
less in the analysis of evolutionary causations,” and Gould (80, p. 101) has written
“...the flowering of [functional studies of evolution] has yielded a panoply of ele-
gant individual examples and few principles beyond the unenlightening conclusion
that animals work well.” Watt (214) has analyzed these ideological bases in detail.
Clearly, amechanistic approaches will continue to reward evolutionary biologists
for years to come. We disagree, however, with the premise that functional and/or
integrative studies have little to offer evolutionary biology. Our purpose here (as
also stated in 72, 104, 138, 214) is to emphasize the value that mechanistic ap-
proaches can add to the research programs of evolutionary biologists.

The inclusion of mechanistic perspectives is becoming increasingly important
and, indeed, necessary in the following areas of evolutionary biology:

1. Understanding the implications of genetic diversity. As evolutionary
biologists increasingly examine the actual nucleotide sequences of genes
under study and their variation, their principal challenge will be to explain
the origin and consequences of such variation. Foreseeably, demonstrating
that a given nucleotide is/isn’t under selection or comparing a sequence to
a null model may no longer represent an acceptable level of proof. Instead,
meeting this challenge may require tests of hypotheses of the functional
significance of variants, which in turn will require detailed understanding
of the function these genes’ products perform in intact organisms in natural
environments (i.e. an evolutionary and ecological functional genomics).

2. Practical implications of evolutionary theory. While evolutionary biology
has historically been the most curiosity-driven of the biological sciences,
its bearing is increasing on applied issues of great significance to the
national research agenda (147). These include the origin and spread of
disease, conservation of biodiversity, global climate change, impact of
genetically modified and exotic organisms, and evolutionary paradigms in
engineering of drugs, biomaterials, and organisms. The devising of
meaningful solutions to such problems will require detailed understanding
of mechanisms underlying organismal function (e.g. 22).

3. Environmental influences on evolutionary diversification. Much
evolutionary research and interpretation occur in an environmental context.
Environmental stress, for example, is a recurrent motif in evolutionary
studies (21, 99, 100). Theoretical models and laboratory studies of the role
of the environment in evolution, however, are now far in advance of
rigorous characterizations of natural environments and their impact on
organisms. These disparate aspects must be brought into register.

Clearly, interaction with evolutionary (and nonevolutionary) physiologists
could provide the mechanistic expertise for which the foregoing three examples call
and could therefore substantially enhance the research programs of evolutionary
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biologists. In the past, the different goals and research foci of evolutionary biolo-
gists and physiologists have tended to isolate these two communities. The growth
of evolutionary physiology, in which these communities focus on common prob-
lems and speak a common language, therefore represents a novel opportunity for
evolutionary biologists to partner with mechanistic biologists and for physiologists
to reciprocate to further the influx of evolutionary thought into their discipline.
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