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CHAPTER 7:  CROSS-SECTIONAL DATA ANALYSIS AND REGRESSION 
 
1. Introduction 
 
 In all our statistical work to date, we have been dealing with analyses of time-ordered 
data, or time series: the same variable or variables observed and measured at consecutive points of 
time.  Usually but not necessarily, the points of time are equally spaced.  Time-ordered data are 
very often pertinent for total quality; for example, we need to know whether our processes are in 
statistical control or whether they are being affected by, say, trends or special causes.  We need 
also to evaluate the effectiveness of interventions aimed at improving our processes and to assure 
that we are holding the gains from effective interventions from the past. 
 
 But not all data are time-ordered.  There is also a type of data called cross-sectional data, 
where we are dealing with information about different individuals (or aggregates such as work 
teams, sales territories, stores, etc.) at the same point of time or during the same time period.  
For example, we might have data on total accidents per worker over the course of the last 
calendar year for all the workers in a given plant, or we might have questionnaire data on 
customer satisfaction for a sample of customers last month. 
 
 There is also the possibility, to be discussed in Section 6 of this chapter, of a time series of 
cross sections (or, alternatively, a cross section of time series).  For example, we might have 
monthly sales by each of 37 sales territories for the last 60 months. 
 
 We have explained and applied regression tools in the context of time-ordered data.  The 
same tools are directly applicable to cross-sectional data.  In one respect the cross-sectional 
regressions will be simpler: we do not need to check as to whether the data are in statistical 
control through time.  We will not need control charts, time-series sequence plots, or runs 
counts. You can simply skip that part of the analysis, even though by now it has become habitual.1 
 
 To see what can be learned from cross-sectional data, we now consider the illustration of 
accidents per worker.  Here are some of the things we might be interested in: 
 

• Is there evidence that some workers are more prone to accidents than are others? 
 

• If there are accident-prone workers, who are they and what preventive training may be 
helpful for them? 

 
• If there are accident-prone workers, are there systematic factors that are associated with 

higher or lower accident rates? 
 

• If there are systematic factors, can we give them unambiguous causal interpretations? 
 

• Can we do intervention analysis or designed experiments to develop and test accident-
prevention policies?  

 

                                                        
1However, the type of question addressed by the checks for statistical control through time has a counterpart for cross-sectional 
data.  In Section 5 we shall discuss briefly how to deal with it. 
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2. Special Causes and Pareto Analysis 
 
 When we have cross-sectional data bearing on a single variable, the time-series analyses 
are no longer necessary.  Rather, our attention focuses on the histogram.  The histogram, by its 
general shape and/or its apparently outlying observations, offers hints as systematic and special 
causes that may be affecting the data.  The analysis of histograms, however, doesn't lend itself 
quite so easily to a systematic approach to data analysis.  Even statisticians may draw more on 
their knack for detective work than their knowledge of statistical distributions. 
 
 The general aim can be illustrated by applications to counting data, in which the Poisson 
distribution is a first thought for statistical model.  If the Poisson distribution is appropriate, the 
differences between individual measurements are attributable to "chance", and there is neither a 
"Pareto effect" or any way to single out special causes.  This will become clearer if we examine an 
application to error counts by operators. 
 

Operator Errors 
 
 The following study of operator errors gives cross-sectional data on errors in a given 
month by 10 operators who were keying data into a computer.  Even though the data have no 
time ordering, it is useful, purely for display, to look at them with a c-chart.  The reason is this:  
if all operators are equally disposed to make errors, the observed cross-sectional histogram of 
operator errors should be compatible with the Poisson model (see Chapter 4, Section 1).  We can 
get a quick, if rough, check on this assumption by looking for points outside of the control limits 
on c-chart, which are computed on the assumption that the Poisson distribution is applicable. 
 
 Here are the notes for the data, contained in the text file OPERROR.sav: 
 

Variables: 
operator: ID of operator in data processing department 
freq: frequency of data entry errors in December, 1987. 

 
All 10 operators entered about the same amount of data. 
Source: Gitlow, Gitlow, Oppenheim, and Oppenheim, "Telling the 
Quality Story", QUALITY PROGRESS, Sept., 1990, 41-46. 
 

 We name the variables operator and freq as we import the file with SPSS. 
 

  
 
Next, we set up the c-chart as follows: 
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 In the chart below, we see that operators 4 and 9 are far above the UCL, suggesting that they were 
significantly more error prone.  In the actual study, this finding was followed up, and it was found that 
operator 4's problems were correctable by glasses which permitted her to see better the numbers she was 
working with.  (We have no report on operator 9.) 
 

 Checking the reasonableness of the Poisson assumption can help in at least two ways: 
 

• Better understanding of the cause system underlying the data. 
 

• Identification of special causes. 
 

 
 
 As already mentioned above, the exceptions are for Operators 4 and 9. 
 
 Since the Poisson distribution seems inappropriate, there is an apparent "Pareto effect":  a few 
operators account for a major fraction of the accidents.  We now use SPSS to do Pareto analysis.  The 
appropriate procedure is Graphs/Pareto…, which brings up the following dialog box: 
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Notice that operator has been entered as the Category Axis variable. Be sure, also, to check the box for 
Display cumulative line. 
 

 
 
 

 We see that the Pareto Chart is really just a bar chart that has been arranged in a special way.  It 
shows the “defects” from the various sources in descending order of magnitude from left to right.  It also 
shows the cumulative percentage of the each contribution to the total number of defects.  Thus we see 
that Operator 4 was the person who had the most accidents (19 on the left vertical axis) and that her 
contribution to the total was 38 percent (shown on the right vertical axis).  Operator 9 was next with 17 
accidents, so that Operators 4 and 9 by themselves accounted for 72 percent of the total. Pareto analysis 
is one of the most useful of all the elementary statistical tools of quality management.  In Juran's 



 7-5 

expression, it singles out the "vital few" problems from the "useful many", thus setting priorities for 
quality improvement.   
 
 For example, a manufacturer studied failures of parts and discovered that seven of a very large 
number of part types accounted for nearly 80 percent of warranty defects, and that three of a large number 
of branch locations accounted for a large percentage of warranty defects.  Improvement efforts could then 
be concentrated on these parts and branches. 
 
 In most applications this "Pareto effect" is so strong that its statistical significance is obvious.  
However, checking for the assumption of a Poisson distribution, which we have just illustrated by use of 
c-chart in the example of Operator Errors, is useful in cases of doubt.  Also, we can compare the mean 
and the square of the standard deviation (variance), since these two should be roughly equal if the Poisson 
assumption is valid. 
 

Library Book Borrowing 
 
 The statistical approach just illustrated is widely applicable.  The next application concerns book 
borrowing by the "customers" of a library.  (It is also another example of a "lightning data set" -- the data 
contained in LIBRARY.sav took just a few minutes to collect during a visit to the library.)  The 
descriptive notes are: 
 

Number of loans of books in the Morton Arboretum Library, catalog category QK 477, as of 20 
November 1993.  Data collected for 26 different books.  Renewals not counted, but one borrower 
might account for more than one loan of a given book. 
 

 After naming the variable loans, for “number of loans”, we execute Descriptive Statistics: 
 

 
 
Note that 7.28*7.28 = 53.0 is much greater than the mean of 6.77.  Hence, as is also shown by a 
c-chart below, the Poisson assumption is not tenable: some books are borrowed significantly more 
frequently than others. 
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Here is the Pareto chart: 
 

 
 
 Five of the 26 books account for over half of the total loans, and half the books account for 92 
percent of the total.  The Pareto effect is clearly at work here. 
 

Air Delays in October, 1987 
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 We can study histograms to look for systematic and special causes in applications other than those 
entailing counting data. The application below is based on percentages of flights delayed for a cross 
section of airlines, and we can use the normal distribution as a rough reference point for outlier search.  
The data are in the file AIRDELAY.sav:   
 

Percent of airline flights reported arriving on time in October, 
November, and December of 1987.  "On time" means within 15  
minutes of schedule.  From the Wall Street Journal, 9 February 
1988, page 7.  There are two small revisions for November as  
reported in the WSJ of 7 January 1988. 

 
 You see that the variables are named airline, dec87, nov87, and oct87 as we open the data in 
SPSS.  Then we apply Descriptive Statistics to oct87.  (This time in the Descriptives… setup window 
check the little box labeled Save standardized values as variables.) 
 

 
 
 We are no longer working with counts so we will use a control chart to check on the behavior of 
the data.  Remember that these are not time series data, but even when the sequence is irrelevant, the chart 
and its control limits can be useful in detecting outliers.  We observe that Airline #10, Pacific Southwest, 

is right on the LCL.  The histogram for Zoct87 
gives a similar result: 
 
 

 
 
 
 Pacific Southwest is a good candidate for search for an assignable cause since its on-time 
performance is much worse than that of the other thirteen airlines, as is shown by the simple histogram 
above.  If, to the contrary, all fourteen airlines had been a part of the same "system" (to use an expression 
of Deming), it is reasonable that we should see a histogram resembling what would be expected from a 
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normal distribution; or at least that we should not see such a big gap between Pacific Southwest and the 
other thirteen airlines. 
 
 Are there significant differences among these other thirteen?  In Section 6, we shall show a 
methodology for approaching this question; as we shall see, it requires more data than the on-time arrivals 
for one single month.  
 

Performance Differences among Baseball Teams 
 
 The SPSS data file named BASEBALL.sav contains five variables, won, lost, league, division, 
and city.  The first two variables are the numbers of games won and lost at the time that activity ceased 
because of the 1994 players’ strike.  The indicator variable league equals zero for the American League 
and one for the National League.  For division the values are 1 for East, 2 for Central, and 3 for West.  In 
the next few steps we shall look at the percentage of games won for each team.  If the teams were about 
equal in their performances we would expect the distribution of those percentages to have the same shape 
and spread as a binomial distribution where the chance of winning is 0.502. 
 
 Before continuing, we must use Transform/Compute… to define two new variables: 
 
    total = won + lost   and 
 
    pct = 100*won/total 
 
 Here is a partial glimpse of the SPSS worksheet after the transformations above: 
 

 
 
 Next consider this display of Descriptive Statistics: 
 

 
 We see that the average percentage of wins is close to 50 percent, and the mean number of games 
played by each team is about 114.  If the performances of the teams differ only by chance, then we can 
approximate the standard deviation of pct by the formula 
 

   
100*0.5 4.6829

114
SD = =     

                                                        
2 If this is not intuitively obvious, think of each game as a coin toss with the chance of heads equal to the chance of tails (assuming that at 
each game the teams are evenly matched). 
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which comes from the mathematical theory of the binomial distribution.  The actual standard deviation, 
however, is 6.84-- substantially larger than 4.68.  Hence it appears, as we would expect, that the teams 
differ by more than chance, and we must reject the hypothesis that they are from the same general 
“performance process.”  The histogram shows something even more interesting: 
 

 
 
The distribution is bimodal (It has two peaks).  There are too few teams close to 50 percent, the overall 
average.  (Note:  To make your own histogram look that same as that above you will have to go into the 
Chart Editor and fiddle with the number of intervals and their width.) 
 

 For a contrasting example, the 
data set on the left gives no evidence 
that anything other than chance factors 
captured by the binomial distribution 
are at work.  These data are the final 
1994 standings for the International 
League.  You may enjoy working with 
them! 
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3. Simple Cross-Sectional Regressions 
 
 When we have more than a single variable in cross-sectional applications, we can use regression 
tools in much the same way as for time-series data, but we have to be even more cautious about causal 
interpretation.  In this section, we consider two marketing applications to illustrate both the regression 
mechanics and the interpretation of results. 
 

Sales Proposals and Sales 
 
 The first example, contained in SALEPROP.sav, entails data from a cross-sectional sample of 31 
sales representatives.  It leads to a simple regression analysis in which the dependent variable is sales for 
each sales representative and the independent variable is the number of written proposals prepared by the 
sales representative, each for a single month's time.  Note that the data are listed by number of proposals, 
from low to high.  There is no time sequence: there are 31 sales representatives for one single time period. 
 

Study of the relation of sales volume and selling proposals 
prepared by sales representatives in geographical territories of 
the Chicago branch of an office supplies company during one month. 
"Management believed that there is a direct relationship between 
the number of proposals a sales representative prepares and the 
dollar volume of sales achieved in that month.  It is therefore 
company policy to require each person to prepare at least eight 
written proposals per month." 
sales$:  sales in $1000. 
numprop:  number of proposals. 

 
 Here are the results of Descriptive Statistics: 
 

 
 

 We see that mean sales for the 31 salespersons was $55,677 and the mean number of proposals 
written was about 13 and a half. 
 
 Next, we perform a scatter plot with sales$ on the vertical axis and numprop on the other, 
followed by a simple linear regression analysis: 
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 The regression line does not appear to have a very large slope nor is R Square large.  There 
doesn’t seem to be much of a linear relationship between sales$ and numprop. 
 

   
 
 

 
 
 The regression coefficient 0.430 for numprop is not even close to having a p-value that would be 
called significant, although it is positive. (If taken at face value, it would suggest an average increase of 
$430 in sales for each proposal since sales$ is expressed in units of $1000.) 
 
 We have not discussed confidence intervals since Section 14 of Chapter 2, but the concept is 
always useful. In this case we can add and subtract 2*0.78301 from 0.43032 to obtain approximate 95 
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percent confidence limits for the slope at -1.136 and +1.996. Since the confidence interval contains zero, 
our conclusion is the same as that from examining the p-value.  Note from the display above that we called 
for confidence intervals while setting up the regression analysis. The more precise limits for the 
coefficients of numprop are  -1.171 and 2.032, a little wider than the approximation using plus and minus 
two as the multiplier of the standard error. 

 Since the regression does not yield a significant result, we generally would not do diagnostic 
checking.  However, to illustrate the diagnostic checking in cross-sectional regression, we show the two 
checks that are generally applicable in cross-sectional regression:   
 

• A histogram for standardized residuals. 
 

• Scatter Plot for the standardized residuals vs. the standardized predicted values. 
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 There is just a hint of nonlinearity in this scatter plot: the small and large fitted values tend to have 
small residuals and intermediate fitted values tend to have large residuals. Examination of the values of 
ZRE_1 would show that the problem is caused by observation 31 at the lower right of the plot. 
 A point such as 31 is sometimes referred to as an influence point because, as you can see in the 
scatter plots, if it were removed from the plot of sales$ on numprop, the remaining points would be more 
suggestive of positive correlation.  (Imagine moving point 31 even lower and farther to the right-- it 
would really pull the regression line downwards.) 
 
 One way to explore this aspect of the data is to model the possible nonlinearity directly by 
introducing a new variable 
 
    numpropsq = numprop*numprop 
 
and to regress sales$ on both numprop and numpropsq as shown below:3 
 

  
 
 At best, the regression shows borderline significance.  The p-values for the coefficients of 
numprop and numpropsq are on either side of 0.05.  But numprop and numpropsq are themselves 
highly correlated, and this makes the interpretation of the individual coefficients tricky (we'll see more of 
this in Section 5).   
 
 What we need is an assessment of overall significance of the regression model, which now includes 
two independent variables, numprop and numpropsq.  As we have explained earlier, this assessment is 
available from the last part of the output showing sources of the sum of squared deviations.  The key 

                                                        
3As we say in Chapter 6 in connection with fitting a nonlinear time trend in the Diet application, the mathematical basis for this approach 
is as follows: Y = a + bX + cX2 is the equation a second-degree polynomial (parabola).  This equation is often useful in modeling “gently 
curving” nonlinear relationships. 
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number is the p-value of 0.135 on the line for Regression.  This gives a significance assessment for the 
whole regression model.  The number 0.135 does not suggest significance, since 0.135 is substantially 
larger than the rule of thumb, 0.05.  So at best there is only a hint of a relation between proposals and 
sales. 
 
 In one sense the study was disappointing:  management's beliefs about the effectiveness of written 
proposals were not borne out.  However, even if there had been a strong and positive relationship between 
sales and the number of written proposals, there would have been ambiguity about the causal 
interpretation.  For example, it could have been possible that the best sales representatives were also well 
organized and could turn out more written proposals, yet at the same time the proposals themselves might 
have had little or no effect on sales. 
 
 For a cleancut causal interpretation of a regression of Y on X, we would need some assurance that 
the observed relation in the regression would not be substantially altered if other variables affecting sales -
- say X1, X2, and X3 -- had been measured and introduced into the model. 
 
 However, although the study is not conclusive, its results cast some doubt on the advisability of 
management pressure to increase the number of written proposals.  There may be other, better, routes to 
improved sales performance. 
 
 One circumstance that provides greater clarity of causal inference is given by randomized 
experimentation.  Here, for example, the number of proposals to be made by each sales representative 
would be determined at random; remember the time-series application of randomized experimentation in 
Section 3 of Chapter 5.   
 
 Absent randomized experimentation, we must simply make the best judgments about causation 
that we can, given all our knowledge about the application. 
 
 This sales study was done many years ago; at that time the following reservations were expressed 
by the executive MBA student who did it: 
 

• The quality of the proposals was not considered, although records existed. 
 

• It might have been worthwhile to try to directly trace sales that could be attributed to specific 
proposals. 

 
• There may have been a time lag.  For example, proposals made this month might have little effect 

on current sales but substantial effect on sales in succeeding months. 
 

Selling Time and Sales 
 
 Another study made nearly two decades later by another executive MBA student illustrates the 
same points but presents a more challenging statistical challenge.  The student commented as follows 
about the background of his investigation: 
 
 "One of the great commandments of selling is that the more time spent selling, the more orders are 

landed.  My experience has been with a firm that meticulously keeps track of individual selling 
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hours and individual sales.  These are then reported back to each salesman once a month.  Sales 
managers use their copies of such reports to monitor their operations. 

 
      The purpose of my study is to quantify the dependence of sales results on sales efforts.  I 

make simplifying assumptions: accuracy of data, uniformity of sales skills; uniformity of 
competitive pressures; etc.  These assumptions are needed whenever statistics are used for 
comparative ranking of individual performance." 

 The data for this example are contained in SELLTIME.sav.  The variables are: 
 
   sellhrs:  hours spent in selling 
   sales$:    sales in units of $1,000 
   fullyear: an indicator variable equal to 1 if full year spent in sales, 0      

       otherwise. 
 
To display the descriptives we use the sequence Analyze/Compare Means/Means…, with the  
dialog window looking like this 
 

 
 
and selected options as follows: 
 

  Here is the resulting report: 
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Note that mean sellhrs and mean sales$ are both larger for the 32 sales representatives who worked for 
the full year.  Also make a mental note that the standard deviation of sales$ is greater for those who 
worked for a full year; this will have technical consequences that we shall examine later. 
 
 

 
 This scatter plot suggests a positive relation between sales$ and sellhrs, with possibly higher 
variance of sales$ as sellhrs increases.  We see, however, that if we take fullyear into account the 
relationship will change considerably.  We therefore make a new plot, but this time using 
Graphs/Interactive/Scatter Plot… with the following setup: 
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After we use the Chart Editor to insert the regression lines the resulting display looks like this: 

 
 
 The two regression lines appear to be almost parallel, but the values of R Square show that the 
separate linear relationships are much weaker than when the data were combined. 
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 We now pursue the investigation by applying Stepwise Regression with sales$ regressed on both 
sellhrs and fullyear to see which, if either, of these variables contributes to the fit. 
 

 
 

 
 Only fullyear contributes significantly!  We see at the end of the stepwise output that if sellhrs 
were forced into the regression model, it would have a positive coefficient but its t-ratio would only be 
0.968-- not statistically significant.4 
 

                                                        
4The partial correlation, 0.157, for sellhrs is a measure of association with sales$ after the contribution of fullyear is already taken into 
account.  Its positive sign indicates that if sellhrs were also in the regression model its regression coefficient would be positive. 
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 Notice that the variance of the residuals for the full-time sales representatives is larger, reflecting 
what we saw earlier with Descriptive Statistics. 
 

 
 
 The moderate skewness in the right tail of the histogram above suggests the consideration of a 
transformation to natural logarithms.  We shall discuss this possibility a little later. 
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 In the scatter plot above we show how the regression model fits the data.  There are two 
horizontal regression lines formed by the solid dashes, the higher one for the full-year sales 
representatives. 
 
    The student's conclusions: 
 
1. "There is a relatively weak association between selling hours and sales results for the same 
 calendar time period. 
 
2. "Use of selling time and sales has limitations as a managerial tool.  Hours selling is definitely 
 a measure of effort expended; it does not follow that sales will result from this effort. 
 
3. "The use of sales and selling time to rank and compare individuals is not valid based on these 
 data. 
 
4. "The assumption of equal market potential is the most crucial.  My analysis suggests a 
 re-examination of sales force deployment with respect to geographic market potential." 
 
 The first three of these conclusions are well on target.  The fourth is a bit vague, but seems to be 
aiming in the right direction.  What is meant is that skepticism about the value of proposals would be most 
nearly justified if the "potential" of each territory were similar; in statistical terms, variables other than 
numprop would have little effect on sales$.  If this assumption is not tenable, then there is greater reason 
to believe that allowance for differences in these other variables might put the effect of proposals in a 
more accurate perspective. 
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Transformation for Nonconstant Variance 
 
 The model just fitted suffices for practical purposes, but two of the diagnostic checks are ragged:  
the results are somewhat right skewed and the variance of residuals is higher for the full-year sales 
representatives.  Although the practical conclusions will not be affected, we can use this application to 
illustrate transformation to express data on a scale on which the key regression assumptions -- normality 
and constant variance -- may be more nearly satisfied.  The discussion that follows is based on the 
assumption that negative values are impossible.  (For the logarithmic transformation, developed below, 
zero values are ruled out.) 
 
 First, it is helpful to provide a simple check for whether a transformation even needs to be 
considered.  We apply Descriptive Statistics to sales$, this time without grouping: 
 

 
 
 

 
 

 In earlier chapters, we have already made use of two transformations: the square root (for 
counting data that may conform approximately to the Poisson distribution) and the cube root (for data 
that may conform approximately to the exponential distribution).  A third transformation, the logarithmic, 
is also useful -- as we saw in modeling Calories in the diet example of Chapter 6.  We can think of a 
sequence of possible transformations: 
 
 square root  cube root   logarithmic5

 

 

                                                        
5Still another step is the reciprocal, 1/Y, which can be helpful in certain applications.  If, for example, the dependent variable in an 
automobile study is “miles per gallon”, the reciprocal transformation would convert to “gallons per mile”. 

 
 There is a simple rule based on the ratio between the standard deviation and the mean, 
here 170.306/403.33 = 0.42.  If this ratio is greater than 0.10 (10 percent), as it is here, then a 
transformation of SALES may be useful for statistical analysis.  If not, then you need not even 
consider a transformation. 
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The successive transformations are increasingly drastic in altering the pattern of variation.  Most 
applications presenting nonconstant variance, including the present application to sales, show a higher 
variance of the dependent variable at higher levels.  All three transformations will make the variance of the 
fullyear sales reps more nearly equal to that of the other reps, but we must look more closely to see which 
works best in the current application. 
 
 The log transformation works very well to stabilize variance when the standard deviation of the 
variable of interest increases proportionally to variable itself.  For example, this means that if the level of 
sales doubles, the standard deviation of sales will also double.  Often this is approximately true for 
business and economic data, such as company sales, stock prices, or the gross domestic product.  If you 
look back to the original Descriptive Statistics output in the current application, you will see that the 
fullyear sales reps have roughly twice the mean sales$ and twice the standard deviation of sales$ as the 
less-then-full year reps.  (When the log transformation does stabilize variance, we can interpret this to 
mean that the percentage changes of the original series show constant variance through time.) 
 
 It turns out that both the cube root and log transformations are good approximations in the current 
application, and that the cube root is slightly preferable.  You will find it instructive to work through the 
details below, and to see that the diagnostic checks are somewhat better than for the analysis developed 
above. 
 
 The first step is to use Transform/Compute… to create 
 
    curtsales$ = sales$**(1/3) 
 
 

  
 
Note that the standard deviations for the two rep groups are much closer now. 
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Note the improved symmetry of the histogram of standardized residuals and that the spreads of the 
residuals for fullyear and less-than-fullyear are more nearly the same. 
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Lightning Data Set: Predictability of Professional Football 
 
 Another example of cross-sectional regression is provided by the data for the opening week of the 
1994 NFL season contained in BETLINE.sav:  
 

 
 
 
 The outcome of each game is expressed as the visitor's points, vpts, minus the home team's points, hpts.  
One prediction of outcome is provided by betline, the betting line spread. A second is townsend, the 
prediction of a sports writer, Murray Townsend, equal to 1 if he predicts the visitors to win and -1 if he 
predicts the home team to win.  The last variable, betltot, is the betting line prediction of the total points 
for the game.  It turns out that these variables do not come close to statistical significance, as the summary 
analysis below shows.  Of course, the sample consists of only 14 games.  Other studies, using more data, 
have shown that the betting line spreads do have some predictive power, but it is surprisingly low.  There 
is a lot of uncertainty in NFL games! 
 
 Before we can begin the analysis we must transform as follows: 
 
   vhspread = vpts - hpts 
 

   totpts = vpts + hpts 
 

 
Here is what the Data Editor looks like now: 
 

 



 7-25 

The actual regressions are not shown, but you can see from this plot that there is no clear relationship 
between betline and vhspread.   
 

 
 
 There is also a betting line on total points -- betltot -- and here we finding borderline significance 
with actual total points by the two teams in each game: 
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4. Paired-sample Experiment for Cross-Sectional Data: BOYSHOES 
 
 The next application illustrates how randomized experiments can be performed with cross-
sectional data.  This is a cross-sectional analog to the paired sample design in Section 4 of Chapter 5, 
which was used in the study of the possible effect of hyperventilation on blood pressure readings.  You 
may wish to review that section quickly before reading ahead. 
 
 In the current application (taken from Box, Hunter, and Hunter, Statistics for Experimenters, 
Wiley, 1978), the objective was to find out whether sole material B, a less expensive substitute for the 
standard sole material A, would result in greater wear for boys shoes.  Since there is apt to be enormous 
variation between boys in the amount of wear, but little variation for a given boy between the right and 
left shoe, material A was used for one shoe and material B for the other.  The "pair" in this randomized 
pair experiment was therefore the two shoes of a given boy.  The assignment of material A or B to right or 
left foot was done randomly. 
 
 It is necessary to use an indicator variable for the type of material assigned.  There is a slight 
advantage to expressing this variable not as 0 and 1, but -1 and +1.  As we have been doing, we include all 
relevant variables in a stepwise regression to identify the significant ones, then examine the selected model 
in detail.  We begin by looking at the contents of the file BOYSHOES.sav: 
 

The variable wear is of principal interest—it is the amount of wear on the 
shoe identified by mat (-1 for Material A, 1 for Material B).The next step 
is use Transform/Compute… to create indicator variables for each boy, 
naming the 0-1 variables 
 
 boy1 boy2 boy3 boy4 boy5 boy6 boy7 boy8 boy9  boy10  
  
similar to our setup of the hyperventilation example on page 5-48. 
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    If you have the time and the inclination it will be very instructive for you to continue the direct 
linear regression analysis, following the setup and the approach that we used back in Chapter 5.  We shall 
not, however, illustrate that analysis here  You will recall that Paired-Samples T Test was demonstrated 
in Appendix 2 of Chapter 5.  In the blood pressure example we changed the data set into the form that is 
required for the Paired-Samples T Test by means of some rather complicated sorting.  To avoid that 
complication with the present example, we have created the file BOYSHOE2.sav:   
 

Each row of BOYSHOE2.sav consists of two readings, the first for 
Material A and the second for Material B.  This layout enables us to make 
the following scatter plot.  Notice how close to each other are the 
readings for the two shoes worn by each individual boy.  This confirms 
the realism of the assumption that the differences between boys would be 
more substantial than the differences between the two shoes of individual 
boys.  
 
 
 
 

 

 
 
 We can also see that for most of the pairs Material B shows more wear than Material A.  We shall 
have to wait until our analysis is complete, however, to see whether the difference between B and A is due 
to more than chance variation.  Here is the full output from that analysis after applying the SPSS 
procedure Analyze/Compare Means/Paired-Samples T Test…: 
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  The results show that the estimated difference between the mean wear for Material A and Material 
B is -0.41.  In other words, on average, Material A shows -0.41 units less wear than B.  The finding is 
highly statistically significant as shown by a t-ratio of -3.349 and a p-value equal to 0.009. 
 
 Note also (in the second table above) the very high correlation, 0.988, between the measurements 
for each foot on the ten boys.  This confirms the superiority of the paired-sample design, i.e., because 
there is much less variability within a boy than among the various boys.  Suppose that instead of pairing 
the experimenters had assigned Material A to one sample of ten boys and Material B to a separate and 
independent sample of ten other boys, and that they had applied Analyze/CompareMeans/Independent-
Samples T Test….  If, by chance, one sample of boys were less active than the boys in the other sample, 
the difference in materials could have been obscured.  We might say, then, that pairing has controlled for 
the unseen variable, “activity level”.  
 
5. Car Gas Mileage, Studied by Cross-Sectional Regression 
 
 Our next application, from the file MPGCARS.sav,  is a rather typical example of a study designed 
to tease causal inference from cross-sectional data.  The data set below is an extract made from a much 
larger data set collected by a University of Chicago MBA student, Edmund Muth, during the fall of 1980.  
From a larger number of cars studied, the extract includes only non-diesel sedans listing at less than 
$13,000 in 1980, and it includes only selected variables from a larger list.  Muth obtained most of the data 
from Car and Driver magazine, a well-respected publication that had established standardized testing 
procedures and methods for each of the variables used in the study.  Do not be put off by the fact that 
these data were obtained almost twenty-five years ago, before some of you were born. The basic statistical 
analysis shown below follows familiar lines and is still relevant.  The variables are defined as follows: 
 
 auto:  Name and model of automobile 
 mpg:  EPA estimates of mile per gallon 
 V_engine: Indicator, =1 for V6 or V8 engine, 0 otherwise 
 hp:  Horsepower 



 7-30 

 weight: Weight in pounds 
 numcyl: Number of cylinders 
 japan:  Indicator, =1 for Japan, 0 for U.S. or Europe 
 age:  Age of design in years 
 
Here are the basic descriptive statistics: 
 

 
   
 In studies such as this one, it often a good preliminary step to obtain the correlations among the 
variables: 
 

 
   
In the first row we see a significant positive correlation of the dependent variable, mpg, with japan. 
There are significant negative correlations with V_engine, hp, weight, and numcyl.   
From the remainder of the display we see that there are significant correlations between most pairs of  
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independent variables.  We have already seen examples of the way in which this phenomenon, sometimes  
called “multicollinearity” can obscure important relationships among variables.  We will suggest a new  
way of dealing with it in a moment. 
 
We now perform Stepwise Regression with mpg as the dependent variable and all of the others (except 
auto) as candidates for inclusion on the right-hand-side of the equation: 
 

 

 
 
 
 
 

 Only two of the candidate variables, weight and japan, contribute significantly to the multiple 
regression.  Let’s look at the plot of mpg against weight: 
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 The relationship appears to be nonlinear! 
 
 We repeat the approach involving Graphs/Intervactive/Scatterplot…that we used earlier in this 
chapter to show which of the points above are Japanese automobiles and which are not. In the setup we 
make japan a panel variable which results in this dual plot: 
 

 
 
 The separate regression lines for japan equal to 0 or 1 are quite different.  Note that the hint of 
curvilinearity remains in the scatter for non-Japanese cars. 
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The plot of standardized residuals vs. standardized predicted looks very bad indeed!  We have to do 
something about the nonlinearity.  With Transform/Compute… we create: 
 
    weightsq = weight*weight 
 
Then we run the multiple regression again, this time including weightsq. 
 

 

  
 
All three of the independent variables, weight, weightsq, and japan have regression coefficients that are 
significantly different from zero.  
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We still have a problem, however.  The plot above shows that the variance of the residuals is not constant.  
We must keep in mind the possibility of a logarithmic transformation.  The histogram and normal 
probability plot for the residuals are satisfactory, however, and we will put off transforming for the time 
being. 
 
 Before reporting that the residuals look pretty good (with the exception of nonconstant variance) it 
is always a wise procedure to check for possible further nonlinear relationships with the variables that are 
already in the model, as well as relationships (both linear and nonlinear) with those that have been left out.  
We will only show two examples here, but the residuals should be plotted against all of the potential 
independent variables.  
 

  
 
 There is no evidence of higher order nonlinearity with respect to weight, nor does there appear to 
be any interesting relationship with numcyl.  Both plots, however, confirm the previous indication of 
nonconstant variance. 

Note also that the standard deviation is 2.33, considerably smaller than 6.23, the std. dev. of 
mpg before the regression.  This tells us that if we want to predict the mpg of another automobile 
with a weight that is not too far from those in the sample we are likely to be within plus or minus 
5 miles per gallon of the correct figure. 
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 Finally, here is an interactive 3-D plot of predicted vs. weight, controlling for japan: 
 

We have added spikes running vertically 
from the points to the floor of the plot to 
emphasize that the predicted values of mpg 
for the Japanese autos are uniformly higher 
than those for the non-Japanese vehicles.  
The Japan effect is quite dramatic. (We 
leave it to readers to speculate over whether 
we would see the same phenomenon with 
2004 vehicles.) Also we see that the pattern 
of points for the non-Japanese cars exhibits 
a greater degree of curvilinearity. 
 
 
  
 
 
 
 

 
 Let's return to the question of correlation among the potential independent variables.  Statistically, 
our main objective is to find a simple or "parsimonious" model (few independent variables) that fits the 
data well.  We saw before we began the regression modeling that some pairs of potential independent 
variables had high correlation coefficients.  We did not create weightsq until after that check on 
correlation, but now we can see that weightsq and weight are also very highly correlated.  
 

 
  
 
 
 
 
 
 
 When such a high degree of multicollinearity is present it often happens that the estimated 
coefficients for both variables (in this case weight and weightsq) are rendered insignificant, a strong 
argument for going to a more parsimonious model. In this instance, however, as shown by the regression 
analysis above, retaining both variables yields a better linear fit. The problem, if any, comes in trying to 
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interpret the two coefficients separately.  Because of the correlation, the coefficient of weight changes 
drastically according to whether or not weightsq is included; and vice versa.  
 
 We saw above that there was some evidence of nonconstant variance of residuals.  Now we 
explore that issue further, both to make a small refinement in the model and to follow up on the discussion 
of transformations in Section 3.  With Transform/Compute… we create 
 
    logmpg = LN(mpg) 
 
and repeat the regression analysis using this new dependent variable. 
 

 

 
 

Note that in order to display significant digits for the coefficients and std. errors for weightsq we had to 
increase the number of decimal places for those columns from three to eight.  The regression equation is 
thus 
 
 predicted logmpg = 4.9028 + 0.11277380 japan – 0.00100759 weight + 0.00000011 weightsq  . 
 
 Let’s see if the residuals are improved: 
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The answer is “Yes”, the variance now appears to be constant. 
 
 Looking at the regression output above, you might wonder if the variable weightsq is really 
needed.  Although its regression coefficient is statistically significant, it is of such small magnitude that 
perhaps it is not of practical importance.  Let’s run the regression without it: 
 

 

 
 

 With a few numerical examples you can verify through the two regression equations that the effect 
of an increase in automobile weight of 1,000 pounds has about the same effect on logmpg under both 
models.6  If, however, we were to plot the residuals vs. weightsq for this last model with weightsq 
omitted, we would still see the curvilinearity that led us to include it in the first place.  Hence it is best to 
work with the less parsimonious model. 
 
 Two more comments are in order with respect to comparing the logmpg model with that using 
mpg: 

                                                        
6Are you really up to verifying this statement?  Try it. 
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• The logmpg model is no longer linear in the mpg scale.  It says that 

 
  4.90 0.001 0.113 0.0000001134− + −= weight japan weightsqpredicted mpg e  
 
 Recall that xe is the exponential function.  The mathematical form of the equation doesn’t matter if 
our aim is primarily to predict, but if we are trying to understand the causal mechanism behind fuel 
efficiency it may be important. 
 

• The model in logmpg has an Adjusted R Square  equal to 0.871, slightly higher than that for the 
mpg model, 0.860.  Does that mean that the log model gives a closer fit than the original model?  
Not necessarily, because we must remember that the scales of measurement for the two models 
are different.  To answer the question, it is necessary to transform the fitted values for one model 
back into the scale of the other model, and compare the residual sums of squares in the common 
metric.  In the present case, regardless of which model is slightly superior in fit, the better 
behavior of the residuals recommends the log model. 

 
 

Time-Series Checks Are Not Applicable 
 
 Finally, a word on the absence of time-series checks in our analyses of cross-sectional data.  The 
time-series checks, by definition, are based on the time-ordering of data.  With time-series data, we can 
check easily for trends, autocorrelation, and other patterns that cause deviation from the assumption of 
statistical control for the variable or variables of interest. 
 
 Technically, the assumption of statistical control can be expressed by saying that it is assumed that 
the data -- or residuals from regression models -- arise randomly.7 
 
 There is no easy way to check on this assumption in cross-sectional data, where the sequence of 
listing is often arbitrary, as in the present application.8  Hence in most cross-sectional applications, you can 
forget about the time-series checks, even though, by now, you are in the habit of doing them routinely. 
 
 To get at the randomness assumption in cross-sectional studies, we have to take a different tack, 
which we now illustrate.  Cars 63 and 64 in the data set just analyzed were both Chrysler "K" cars.  Car 64 
had a slightly larger engine and slightly poorer mileage.  Hence we do not really have two independent 
pieces of information.  Fortunately, that is the only such problem in the data set.  However, if we were 
dealing with a data set with just a few distinctly different car models and many slight variations on the 
models included, the effective sample size would be much smaller than it appears to be on the surface. 
 

                                                        
7Still more technically, the expression is "independent and identically distributed". 
 
8In some cross-sectional applications, the sequence of listing of data may not be arbitrary.  For example, in a study of accidents for 
employees in a plant, the data file might list employees from low to high seniority.  Then a "time-series check" becomes a "seniority 
check", and it would be worth doing. 
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 Similarly, in the sales examples of Section 3, there is the possibility that efforts of a sales 
representative in one territory may spill over into another.  This is the cross-sectional analogue of 
autocorrelation in time series.  Unfortunately, it is usually very hard to detect such problems in cross-
sectional data.  The simple statistical tools of time-series analysis do not do the job.  The best we can do is 
to try to get to know our cross-sectional data better: to note, for example, when two cars are slight 
variations of each other or two adjacent territories might have spillover sales effects. 
 
 
6. Successive Cross Sections and Performance Assessment 
 
 When we have cross-sectional performance measures for two successive cross sections (or in 
general, for more than two), we stand to learn much more than can be learned from a single cross section.  
At the end of Section 2, we studied Air Delays in October, 1987, for 14 airlines.  One airline, Pacific 
Southwest, had a much poorer on-time record than the others.  In a histogram of percent on-time for all 
airlines, Pacific Southwest stood out nearly three standard deviations below the mean, suggesting the 
possibility of a special cause, and the desirability of further investigation of its precise nature. 
 
 But how about the other 13 airlines?  Are there real differences between them, or are we just 
seeing chance variations?  There is  little that we can do to answer this question when we have data from 
only a single cross section.  But if we have data on successive cross sections, we can make important 
progress.  To illustrate, we shall use data on the same 14 airlines for the next two months, November and 
December of 1987, as shown below in the contents of AIRDELAY.sav: 
 

 
 
Recalling that the variable under study is the percentage of flights that were on time, we apply Descriptive 
Statistics to dec87 and nov87.  Be sure to check the little box for Save standardized values as 
variables: 
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Note that the mean delay is lower in December, but the standard deviation is greater.  Can that be due to 
poorer weather in December?  For our present purposes, however, we are not interested in the average 
on-time performance of all 14 airlines, but in how the airlines perform relative to each other.  We pursue 
that question now, looking at the standardized versions of dec87 and nov87: 
 

 
 

(For the purpose of this application, we shall treat 0.411 as 
if it were deemed statistically significant, but its 
significance is in fact borderline: the standard error is 
1/ 14 0.267= .) 
 
The correlation 0.411 between the successive cross 
sections is the key to our analysis of, say, the December 
on-time percentages.  To see intuitively why this is so, 
consider two extremes: 

 
 
 

• If the correlation were zero, it would appear that the performance measures for both months are 
the result of independent chance factors that have nothing to do with the "long-run" on-time 
capability.  Then the best estimate of individual airline performance in December would put all 14 
airlines at  the December mean of 67.007 percent. 
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• If the correlation were +1, it would appear that each month's performance measures reflect 
nothing but consistent "long-run" performance capability.  The December readings would then be 
accepted at face value: all differences between airlines would be taken as "real". 

 
 Of course, neither extreme assumption is correct.  However, under reasonable statistical 
assumptions we can adjust the observed measures by the following procedure for each airlines: 
 

• Calculate the airline's deviation from the December mean of 67.007. 
 

• Multiply this deviation by the correlation coefficient, 0.411. 
 

• Add the result to the overall mean of 67.007 
 
  
Now we are ready to apply Transform/Compute… and make the desired adjustment to the data: 
 
   adjdec87 = 67.007 + 0.411*(dec87 - 67.007) 
  
 After clicking on OK to carry out the adjustment, we then use Data/Sort Cases… to rank the data 
from highest to lowest on the dec87 performance measure, making sure that we carry adjdec87 along in 
the sort.  With some judicious reordering of variables in the spreadsheet, we can display the following: 
 

 For example, Pan American (listed #1 on the sorted 
array above) had 77.3 percent on time, the best of the 14 
airlines in December.  The above computation "shrinks" 
that number toward the mean, yielding 71.2 percent as the 
adjusted performance.  Pan American is still rated "best" 
but the margin of difference is much less.  Similarly, PSA 
(listed #14 on the sorted array) had 57.6 percent on time, 
the worst of the 14 airlines in December.  This is shrunk 
upward towards the mean, to 63.1 percent.  We can 
visualize the results of this shrinkage by the following Box 
Plot and Descriptive Statistics: 
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There is an important general lesson here.  The example is not atypical. Observed performance measures 
reflect both "long-run" performance capability and chance, in varying mixtures.  The natural tendency is to 
assume away the role of chance, to regard each difference in performance as a reflection of a special cause 
that distinguishes one individual from another.  The airline example is relatively typical in that there is 
moderate (albeit at best only borderline-significant) correlation between one month and another.  When 
data on two time periods are available, we can use the simple "shrinkage" approach above to make 
allowance for the role of chance factors. 
 
 Sports teams are an interesting example when we compare standings, based on winning 
percentages, from one season to another.  In professional baseball the correlations from season to season 
have been so low in recent years that shrinkage brings all teams close to 0.500.  In professional football the 
correlation from season to season is much higher -- on the order of 0.600 -- but shrinkage shows that the 
disparities between teams are still substantial.  Luck plays an important role! 


