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CHAPTER 6: AUTOREGRESSION 
 
1. Introduction 
 
 In Chapters 4 and 5, we have introduced regression analysis for time-ordered data.  We 
have learned how to check for the presence of trend effects, periodic effects, special causes, and 
intervention effects.  If we decide that any of these are present, we have learned to estimate their 
magnitude by including them in a regression model for the process.  Understanding of such effects 
is essential both to quality improvement efforts and to holding the gains from past improvements. 
   
 We saw also how to make allowance for the effects of variables other than the series of 
immediate interest, as in the example of severity of illness in the study of mortality in intensive 
care in Chapter 4. 
 
 When there are several possible independent variables, we learned in Chapter 5 how to use 
stepwise regression for a rough screening of the data to find variables that seem to be most useful 
in explaining the variation of the dependent variable of interest. 
 
 The tools developed in Chapters 4 and 5 suffice to provide a good understanding of many 
data sets that you will encounter in practice.  They do not, however, deal with lagged effects, in 
which what has happened in the past helps to predict the future. 
   
 We encountered one example of lagged effects, the monthly closings of the Dow Jones 
Industrial Average.  A given month's closing tended to be relatively close to that of the previous 
month.  Recall the control chart: 
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 We saw that the process was wildly out of control.  Instead of varying unpredictably about 
a fixed level, the points meandered through time, with each month usually closer to the previous 
month than to the earlier readings in general, and with wide swings of the general level with the 
passage of time.  We can call such a relationship a lagged effect because the result of one time 
period tends to spill over into the next period or periods. 
 
 It turned out that the Dow Jones application could be simply analyzed by computing 
changes or differences from month to month and noting that these appeared to be in a state of 
statistical control.1 
  
 There are many applications in which the meandering tendency is much weaker than in the 
Dow Jones application, but in which lagged effects are present and must be contended with.  
Company sales data often provide a good example.  In these applications, however, the lagged 
effects are less strong, and differencing is usually not a good strategy for analysis.   
 
 Instead, we will use earlier values of the dependent variable -- "lagged variables" -- as 
independent variables in our regression models.  The term "autoregression" -- "self regression" 
-- is used for such regression models. 
 
 
2. A Chemical Reactor Process 
 
 For illustration of the idea of autoregression, we shall use an application from chemical 
engineering in which temperature measurements were made on a chemical reactor process at one-
minute time intervals.  (In thinking of this process, you might be helped by the analogy of 
temperature of the water in a shower.  If you could measure temperature every few seconds, you 
would probably find that, in general, the current measurement was closer to the prior reading than 
to earlier measurements.)  The data are contained in the SPSS file called REACTOR.sav.  They 
are taken from an example in Box and Jenkins, Time Series Analysis: Forecasting and Control, 
revised edition, Holden-Day, 1976. 
 

 
Naming the single variable in the data set temp, we open the file and call up Analyze/Descriptive 
Statistics/ Descriptives… 
 

 
 
 
                                                        
1The simple trick of differencing works for a wide variety of price series for organized exchanges.  It is seldom useful in 
applications in quality management.  If you are tempted to try it, here is a simple check on its potential value:  difference the 
data and compare the standard deviation of the differences with the standard deviation of the original data.  Unless the standard 
deviation of the differences is sharply lower than that of the original data, forget the idea of differencing and work with the 
original data. 
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We next examine the control chart for temp: 
 

 
                     

 
 You can easily see the meandering tendency.  Our task will be to model this tendency by 
means of autoregression. 
 
 In case you had any doubt about the meandering tendency, look at the runs count below.  
There are significantly fewer runs than the expected number which you can calculate to be 18.8.  
The data tend to persist above or below the mean longer than we would expect for in-control, or 
random, data. 
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 Our strategy for data analysis begins by lagging, as shown next, to create a new variable 
temp_1 that is simply the immediately preceding value of temp2.  Using the SPSS sequence 
Transform/Compute…, we define 
 
     temp_1= LAG(temp) 
 
Here are the first few rows of the spreadsheet: 
 

 
 
Notice that the column for temp_1 is the same as that for temp except that it is “pushed down” 
one row.  Obviously, the first case of temp_1 is missing because we do not know the lagged 
value of the first observation of temp.  It is good to remember that whenever you lag by k time 
periods the first k rows of the new lagged variable will be missing. 
 
 The key step in understanding "meandering" is to understand the scatter plot of temp on 
temp_1.  "Meandering" means that successive pairs of points more often than not are either both 
below the mean or both above it.  This tendency translates into a scatter plot that displays positive 
correlation: 

                                                        
2We would like to call the lagged variable “temp-1", using a minus sign, but SPSS will not allow the use of mathematical 
symbols in names.  Thus in creating lagged variables (and we will be doing that frequently from now on) we shall indicate the 
lag with the underscore character “_”. 
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 The strategy for data analysis follows from the scatter plot: to help to explain the variation 
of temp, we regress temp on temp_1, the lagged value of temperature.  To get an idea of the 
nature and significance of the lagged effect, we use the procedure Analyze/Regression/Linear…, 
making sure that we save the residuals for further analysis: 
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 The autoregression is clearly significant.  The t-ratio for temp_1 is 3.30, and the Std. 
Error of the Estimate (residual standard error) is 2.928, substantially lower than the standard 
deviation, 3.316, for the original data.  
 
 The regression equation is 
 
   predicted temp = 103 + 0.493 temp_1 , 
 
which is the equation of the line plotted in the scatter diagram above.   
 
 Next, we must plot a control chart and do a runs test for the saved residuals, RES_1: 
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 You should study the above output carefully.  The residuals clearly do not meander; they 
are not obviously out of control.  You might, however, be concerned that the number of runs, 
although not significant at the 0.05 level, is rather close with p = 0.087.  
 
 A new diagnostic check will give further understanding of what is going on.  We begin by 
looking at the correlation between residuals separated by one time period, that is, between RES_1 
and RES_1_1.3  This is called the autocorrelation coefficient of RES_1.  For comparison with 
the result below, recall that the correlation coefficient between temp and temp_1 -- the 
autocorrelation coefficient of temp -- was about 0.50. 
 
 First we must perform the transformation RES_1_1 = LAG(RESIDU). Then we examine 
the correlation between  RES_1 and RES_1_1 and check the scatter plot. 
 

 
 

                                                        
3 This notation is rather unfortunate because SPSS automatically assigns the name RES_1 to the unlagged residuals. Since, 
however, we will not be explicitly naming lagged residuals after this illustrative example, we will continue to use the 
underscore symbol in designating variables as lagged, hoping that the reader can wade through the somewhat confusing 
notation. 
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 If the residuals from regression are in a state of statistical control and the sample size were 
very large, the correlation of RES_1 and RES_1_1 should be virtually zero.  We see that for 
these 35 residuals, the correlation is 0.058, close to zero.  A rough rule-of-thumb for judging 
significance of the departure from zero of any correlation coefficient is the following.  If the 
correlation coefficient is computed from n pairs of observations, the standard error for the sample 
coefficient under the assumption of zero true correlation is  
 

      1
n

 

Since there are 36-2 = 34 pairs of residuals, the standard error is 1 over 34 = 0.171.  Hence the 
t-ratio for judging significance is  
 

(0.058-0)/0.171 = 0.34 
 

which is far less than the conventional requirement of 2 for significance.   
 
 The conclusion is that RES_1 and RES_1_1 are not significantly correlated, which is 
consistent with the assumption that the residuals from regression are in a state of statistical 
control.  This new evidence reduces any suspicion raised by the significance level of the runs 
count. 
 
 Additional information can be obtained by looking at the correlation between RES_1 and 
RES_1_2, that is, the correlation between the current RES_1 and its lagged value two periods 
back.  (We cannot infer this new correlation from what we have already done.)  If the residuals 
from regression are in state of statistical control and the sample were large, this correlation, too, 
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should be virtually zero.  We shall explore in a moment whether the correlation of residuals at lag 
two is significantly different from zero. 
 
 Here is the terminology that we shall be using: 
 

• The correlation between RES_1 and RES_1_1, which we have just seen to be 0.058, is 
called the first order autocorrelation coefficient of residuals. 

 
• The correlation between RES_1 and RES_1_2, which we are about to look at, is called 

the second order autocorrelation coefficient of residuals. 
 
 After defining RES_1_2= LAG(RES_1, 2) in the Transform procedure, we obtain the 
following4: 
 

 
 

                                                        
4Alternatively, we could have executed RES_1_2 = LAG(RES_1).  Do you see why? 
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 Again the autocorrelation coefficient, this time for lag 2, is close to zero, further supporting the 
assumption that the residuals are in statistical control.  Once you get the idea of what we are doing, you 
will see that we could continue this line of analysis.  We could look, for example, at the third 
autocorrelation coefficient of residuals, the correlation between RES_1 and RES_1_3.  
  
 SPSS, however, provides us a shortcut.  We can use the sequence Graphs/Time 
Series/Autocorrelations… to get a whole set of autocorrelation coefficients, one for each lag up to 
some maximum.  This is what we shall normally do from here on.  The explicit computations shown 
above for the first and second autocorrelation coefficients served only to explain the meaning of 
autocorrelation coefficients at varying lags. Autocorrelations… will give the results we need for the first 
12 autocorrelation coefficients.5  Here is the dialog window: 
 

                                                        
5 Note: if you compute autocorrelations by directly lagging residuals, as we did above for lags 1 and 2, you will often get slight 
differences from those printed out in the Autocorrelations…graph.  This stems from the fact that the correct computational formulas to 
compute autocorrelations differ slightly from those used in obtaining the Pearson correlation coefficients that we have seen earlier.  The 
differences are not important for our purposes. 
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Clicking on the Options… button opens this new window: 
 

When you open it you will notice that the default value for the maximum 
number of lags is 16.  We have changed the maximum to 12 to reduce the 
size of the output. 
 
After we click on Continue followed by OK we get the following 
display: 
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 Here is how the output above is interpreted.  On the first line, starting with "1", we read the first-
order autocorrelation coefficient 0.058, which we have already seen above.  We see also its graphical 
location on the scale running across the top of the plot. 
 
 On the second line we see "2    0.046", which indicates the autocorrelation of order two and the 
corresponding computation above.  As we go down the plot, we see the 3rd, 4th, etc., autocorrelations, 
up to the 12th autocorrelation, which is 0.058. 
  
 The dot marks that enclose each bar in the graph above indicate approximate two-standard-error 
limits if the the true autocorrelation coefficient were zero.  Thus they lie a distance above  
and below zero that is about equal to 2 / n , where n is the number of paired observations available for  
calculating the particular autocorrelation coefficient.     
 
 We see that one autocorrelation coefficient, -0.361 at lag 6, is outside the two-standard-error 
warning limits on the plot above.  But recall that roughly 1 in 20 would be expected by chance alone.  
Hence the evidence provided by Autocorrelations… is reasonably consistent with the assumption that 
the residuals from the autoregression of temp on temp_1 are in a state of statistical control. 
 
 Besides this numerical computation, there is a visual check that can be used with ACF6.  It stems 
from the fact that, if the process is in control, the ACF plot -- turned on its side -- should itself look like 
a control chart for an in-control process.  The second display in the output, shown below, enables us to 
perform this visual check: 
 

 
  
                                                        
6 Henceforth we shall from time to time refer to the display as the ACF plot, where ACF stands for autocorrelation function. 
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 We now look briefly at the remaining diagnostic checks, which are satisfactory: 
 

 
 

 
 
 

 
 
 
 It would therefore appear that a simple autoregressive scheme, in which the fitted value of each 
observation is obtained by multiplying the preceding observation by about 0.5 and adding a constant 103 
(see the output  above), explains the autocorrelated behavior of temp.  This means that any observations 
in the control chart for temp that appear to be out of control can be interpreted not as the result of 
special causes but as the result of the simple autoregression relationship that is operating 
throughout the data set.  By capturing this relationship in our autoregression model, we see that the 
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reactor process is stable, by which is meant that the residuals from a regression model that does not 
include trend terms appear to be in a state of statistical control.7 
 

• The autoregression model also provides a tool for predicting and monitoring continued 
observations on the process.  For example: 

 
• The autoregression equation can be used to predict the next temperature reading, given the one 

we have just observed: 
  
   predicted = 103 + 0.493(current temp). 
 
  The standard deviation of residuals, 2.928, provides a rough guide for deciding whether prediction 
errors (actual - predicted) reflect special causes.  For example, 
 
    predicted ± 3*2.928 = predicted ± 8.8  
 
gives approximate upper and lower control limits for the next actual observation.8 
 
 

Have We Overlooked Anything? 
 
 Although we have done a pretty thorough job of diagnostic testing and found no serious blemishes 
on the simple autoregressive model, we may still be uneasy about the possibility that some important 
variables could have been left out.  For example: 
 

• Could lags of temp higher than 1 improve the fit? 
 

• Could we be overlooking a time trend in?  (If you stare hard at the original control chart for 
temp, you may see a faint hint of a downward trend.) 

 
Rather than remain uneasy, we can explore these possibilities by using a regression that tries out, say, not 
only temp_1 but also temp_2 and time as independent variables.  This is shown below.  The added 
variables prove to be insignificant, thus increasing our confidence in the analysis above. 
 

 
                                                        
7Another term for “stable” that we may use from time to time is “stationary”, which conveys the idea of the mean and standard 
deviation “holding still and not shifting”. 

8 If you obtain the exact confidence limits for predicting a new individual observation, you will see that this calculation underestimates 
the interval width slightly, but not to a serious extent. 
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3. A More Complicated Application of Autoregression: History of a Diet 
 
 We next use a simple personal quality improvement project, a diet designed by an MBA student to 
lose weight during the fall quarter at Chicago during the mid-1980s.  The role of statistics here is to check 
on what kind of progress has been made on the key output variable, weight (w).  Information was also 
kept on calories consumed (c) in order to gain a better understanding of how the diet was going.  The 
data to be studied are contained in the file DIET.sav.  The values for weight and calories consumed are 
daily observations, starting on Thursday, September 28th and ending on the day before Thanksgiving—
yielding a set of 56 cases in all. 
 

 
 

 
 

 
 There is no doubt that the time series is terribly out of control.  Note the apparent downward 
trend, which is possibly nonlinear. There is also a strong possibility of autocorrelation. 
 
 Here we interrupt the analysis to mention a mathematical point that is applicable to our next step.  
The equation of a second-degree polynomial, or parabola, is 
 

y  =  a  +  bx  +  cx2 
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Gently curving trends can often be approximated by parabolas, where x is interpreted as the variable we 
have called time. Hence we regress y on two independent variables, time and the square of time, which 
we name tsq:9  
 
 We prepare for the next stage of the analysis by using Transform/Compute to define 
 
    time = $CASENUM   and 
      tsq  = time*time 
 
Then we apply Stepwise Regression to w as the dependent variable, with time and tsq as the candidates 
for the right-hand-side of the equation.  
 

  
 

 
  

 
 We see that there is a significant, nonlinear downward trend with highly significant t-ratios for 
both time and tsq.  The original standard deviation of w was 3.869.  The standard deviation of the 
residuals is only 1.026 – a considerable reduction in uncertainty. 
 

                                                        
9An alternative mathematical representation that can be useful when the curving trend flattens out to become horizontal involves 1/x, the 
reciprocal of x: 

y  =  a'  +  b'x  +  c'(1/x) 

 The regression model is  
 
  predicted w = 136.972 - 0.492 time + 0.005 tsq 
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 We have saved the residuals and the predicted values, but before we look at the residuals, we 
examine the nature of the trend by means of a scatter plot (overlay).  In the image below the predicted 
values are shown by the curved line: 
 

 
  
 It is apparent that weight loss was rapid at first, but then it slowed and actually seemed to stop at 
the end.  The trend is clearly nonlinear.  This information is important, but the diagnostic checks will 
show that there is more to be learned from the data than the existence of a nonlinear trend alone. 
 

 
 
 There are clear indications in the above control chart that the residuals are not in control.  Let’s 
take a look with the autocorrelation plot: 
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 It is apparent from the autocorrelations that the residuals are far from a state of statistical control: 
 

• 3 of 12 coefficients are outside the two-standard-error limits; the first autocorrelation coefficient 
0.454 is 3.5 times its standard error, 0.130. 

 
• If you turn the plot on its side and interpret it as a time series, you will see only two runs of +'s 

and -'s and an overall appearance of nonlinear trend. 
 
 There is obvious room for improvement of the trend model.  We consider lags of w as additional 
independent variables.  Since the first autocorrelation coefficient of residuals is 0.454, you would 
naturally think of trying the first lagged variable, w_1.  This choice will actually work here, but in general, 
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it is hard for a nonspecialist in statistical time series analysis to figure out the useful lags of w solely from 
the autocorrelation function of residuals from an earlier model.10 
 
 We suggest an alternative strategy: start by introducing into the previous regression model, the 
lowest or first lag, w_1.  If w_1 makes a significant contribution to the model, we'll check residuals.  If 
there is evidence of remaining autocorrelation of residuals, we can then try higher lags, such as 
w_2 and w_3.  It turns out in the current application that w_1 does make a significant contribution, and 
that higher lags are not needed: 
 
 After creating the new variable w_1 = LAG(w), we apply Stepwise Regression, clicking on 
Options… to set the entry probability of F at 0.98 and the removal setting at 0.99.  (See page 5-15 if you 
have forgotten why we do this.) 
 

 
 

 
 

                                                        
10There is a potential trap in looking at the autocorrelation function alone, noting that the autocorrelations of residuals are significant at 
lags 1, 11, and 12, and then trying w_1, w_11, and w_12.  Here this would cause loss of data (from lagging up to 12), and would lead to 
an unnecessarily complicated model.  The route actually followed in the text leads to a much simpler model, as we shall see. 
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 We see that w_1 was the most powerful “explainer of the variance” of w and thus entered first.  It 
is interesting that at the second step, of the two remaining variables, time and tsq, neither by itself would 
have a |t-ratio| greater than  2.  Thus, if we had not relaxed the entrance requirement, the stepwise 
regression would have come to a halt.  After time, however, enters the model, the situation is changed, 
and in the final equation, all three of the independent variables have t-ratios greater than 2 in absolute 
value.11 
 
 The regression equation is now 
 
   predicted w = 71.448 -0.265 time + 0.003 tsq +0.478 w_1 
 
Note also that the standard deviation of residuals is now down to 0.92253. 
 
 Of course, we cannot present a four-dimensional graph so that you can see the regression plane 
(technically called a “hyperplane”), but it is instructive to look at a 3-D plot of the data when tsq is 
omitted.  In both of the following plots time is on the X-axis, running along the front edge, and w_1 is on 
the Y-axis.  We have used the spikes to bring out the obvious curvilinear relationship between the two 
independent variables.  

                                                        
11This example shows clearly that it is not always easy to anticipate the best fitting model from the steps that have gone before.  Another 
risk with stepwise regression is that because it is a “hierarchical method”, to some degree committing itself to a chosen path, it can 
occasionally miss a best fitting model entirely.  
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The most important point to note is that when a linear regression is fitted without tsq (see the figure 
above), it looks like time has very little effect, corresponding to its low t-ratio at Step 2 in the stepwise 
regression output above.  When we smooth the points (tops of the spikes), however, with a quadratic fit, 
there is a distinct bend to the surface, indicating that tsq is an important variable.12  
 

                                                                          
   
 We shall now look at the diagnostics for the residuals from the regression: 

                                                        
12Our example illustrates a point that is often a bit mysterious to the uninitiated.  “How can a parabolic curve (quadratic function) , 
which is nonlinear, be fitted with linear regression?”  The answer is that it is nonlinear when depicted in 3-D, but in a higher dimension, 
in our example, 4-D, it becomes linear because we treat time and its square, tsq, as distinct independent variables.  By the way, the two 
graphs shown here were beyond the capability of the student version of SPSS.  As on page 4-52, the plotting routine used was from 
SYSTAT for Windows®, Version 6. 
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      The large positive residual at observation 31 suggests the possibility of a special cause. Our 
subsequent analysis, which will bring c (calories consumed) into the picture, will explain what this special 
cause is.  The remaining diagnostics, shown below, suggest only minor problems with this three-variable 
regression model.  We hope that even these will be alleviated when we bring c into the picture. 
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 Ask your instructor how 
he or she was able to label 
the outlier as Case 31. 
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 Aside from the outlying residual at observation 31, the diagnostic checks are satisfactory. 
 
 There is, however, a loose end.  We considered only the first lag of w, w_1.  Do we need also to 
look at higher lags? The autocorrelation analysis as applied to residuals, however, suggests that this 
would not be necessary, the residuals show no sign of significant autocorrelations.  Had the 
autocorrelation function provided evidence of significant autocorrelations of residuals, we would have 
needed to go back to consider additional lags of w, say w_2 or maybe w_2 and w_3 in addition to w_1.  
(We suggest always working from lower to higher back consecutively rather than trying to guess at 
isolated "hot lags" where there are large autocorrelation coefficients of residuals.) 
 
 An alternative strategy would have been to try both w_1 and w_2, along with trend variables, in 
the first place.  In fact, this would have shown that w_2 did not contribute significantly to the fit, and we 
would have been back to the model actually reached above. 
 
 This illustrates a general strategy choice: 
 

• Include selected promising variables, fit the regression, and then see if further promising 
variables will improve the fit.  This leads to several steps of model building. 

 
 or 
 

• Start with all promising variables, and simplify by dropping out variables that do not contribute 
to the fit. 

 
Ordinarily, the two strategies will lead to the same result.  The second strategy is faster if you know all 
the promising variables at the start.  The first strategy is more intuitive and sometimes leads you to think 
of non-obvious possibilities. 
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 In the above analysis, mainly for pedagogical reasons, we followed the first strategy.  We started 
with only trend variables.  They explained a good deal of the fit, but the diagnostic checks showed 
autocorrelated residuals, a problem that we remedied by introducing the first lag, w_1. 
 
 In the next section, we extend this strategy by introducing c, caloric intake,  and lags of c.  This 
splitting up of the model development was also mainly for pedagogical reasons:  we started in this section 
by seeing how well we can do when we ignore the information provided by c.  Next we see what 
improvement is attainable by use of c.13 
 

What Lies Behind the Regression Model? 
 
 We have established the existence of a nonlinear trend and also an autoregressive relationship.  
What can we say about root causes of these relationships? 
 

• The downward trend appears to be related to caloric reduction achieved by the diet.  The reason 
for the nonlinearity of the trend, however, is not yet apparent. Further light will be shed on this 
question in Sections 4 and 5 below. 

 
• The autoregressive relationship in addition to the trend effect has a possible explanation in 

terms of lagged effects in body fluid balance.  Thus the effects of increased or decreased 
fluid intake (or outgo in exercising) can have carryover effects that affect weight 
measurements for some time into the future.  That is why people who weigh themselves 
frequently are surprised at the extent of variation in measured weights.  Thus they speak 
of "gaining five pounds as a result of large meal", or "losing six pounds in a strenuous 
workout".  Such gains and losses are essentially  short run fluctuations.  One support 
for this position will be seen in the next section, when c is introduced into the picture.  
However, w_1 still contributes to the fit, even when calories are introduced into the fit. 

 
4. Introduction of Information on Calories (c) to Improve the Diet Regression Model 
 
 In studying the progress of the diet, we have thus far considered time trend and lags of w.  The 
time trend turned out to be nonlinear (time and tsq) and the lagged effect of w was captured by w_1.  
The model thus reached at the end of Section 3 represented the best fit we knew how to obtain with the 
available information.  This model represented a great advance in fit: the standard deviation of w was 
3.87 pounds, while the standard deviation of residuals was only 0.93 pounds. 
 
 With additional information, however, it is possible that we could achieve a better fit and also add 
insight into what was happening during the diet.  So now we bring calories consumed (c) into the picture.  
The strategy is just an extension of what we have been doing, and minimal commentary will be provided 
for the data analysis shown next. 
 
 Let’s begin with a multiple sequence plot showing w and c on the same graph.  To make the 
comparison meaningful we have temporarily rescaled w according to 
     ws = 230*w - 26000 . 
 
                                                        
13Once we see the completed analysis so that we understand the strategy, we can consolidate all the model building of the two sections 
into one step in which all promising variables are introduced into one large stepwise regression. 
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All that this does is to make the standard deviation of w about the same as c and to make the means of 
the two variables close enough so that we can see their comovement on the plot.  (We will continue to 
work with the unscaled w after we are finished discussing the multiple time series plot.) 
 

 
 
 
 Careful examination of the time series plot shows a not unexpected relationship between c and w 
(rescaled): Most of the major upward jumps in weight appear to be preceded by an increase in caloric 
intake.  We have labeled in particular the 31st observation of weight where there was a dramatic increase, 
but there are other examples as well of a jump in calories preceding an increase in weight. 
 
 Recall that observation 31 was an outlier in the control chart for residuals in our last 
regression. 
 
 We shall now include c and its one-period lagged value, c_1, along with the other independent 
variables in a new stepwise regression analysis: 
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 Note that at Step 5, although forced into the regression by the specification of “F to enter”, c, the 
contemporaneous caloric intake, contributes nothing to the model.  Thus we will rerun the regression 
analysis without using the stepwise procedure, specifying only the independent variables that are included 
in Step 4 above.  That way we can obtain the correct residuals on which to perform our diagnostics, 
shown as follows: 
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 The behavior of the residuals is much improved over the last regression.  There are no reports of 
possible special causes although there is one very negative residual at time 48 that is close to the LCL.  
The outlier at time 31, however, is no longer present due to the relationship between c_1 and w shown in 
the time series plot above.  All that we can say about point 48 in looking at the time series is that there 
was a moderate drop in w from 47 to 48, but a rise in c from 46 to 47.  This accounts for the negative 
residual but it does not tell us why it happened.  The problem will remain unresolved here, but it would 
invite investigation for a special cause if this study were being done in real time. 
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 If you look carefully at the plot above, you will see that the predicted values fall rapidly at first, 
then slowly, then flatten out, and finally appear to turn up.  It appears that backsliding in the diet has 
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begun to occur.  We will say more about this in the next section.  This plot is one way to look at overall 
fit.  The following plot is another: 
 

 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Recall that the correlation between w and predicted, 0.9848, is the multiple correlation coefficient, and 
note that 0.9848*0.9848 = 0.9698, which is shown in the regression output as R Square. 
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R SQUARE 

 
 Up to now we have talked only about R, not RSQ.  RSQ (R SQUARE), is very commonly used 
as an overall summary of goodness of fit of a regression model.  It is often said to represent the 
"percentage (or proportion) of variance of the dependent variable explained by the regression model".  
Here 97 percent is "explained".  More precisely, RSQ is (to a pretty close approximation) the ratio of the 
variance (squared standard deviation) of the fitted values of the regression to the variance (squared 
standard deviation) of the dependent variable.  The idea is that the larger the variance of fitted values, the 
more the regression "explains". 
 
 However, RSQ is less easy to visualize than is R itself.  Recall that R is simply the slope of the 
regression line on the standardized plot of dependent variable versus fitted. 
 
 Finally, there is a widespread and serious misunderstanding about RSQ that you should be aware 
of:  it is the erroneous belief that a "low" RSQ means a poor statistical analysis and a "high" RSQ means a 
good analysis.  In fact, given competent statistical analysis, the value of RSQ depends on the data set 
being analyzed.  You can't get many calories from a turnip, and you can't avoid getting a lot of calories 
from a pizza.  
 

• A low but significant RSQ may be associated with a model that is highly useful for prediction and 
understanding.  Its low value tells you that there is much room for improvement if you can find 
additional useful independent variables; it does not invalidate the good work you have done with 
the independent variables now available. 

 
• A high and nominally significant RSQ can come from a "rash regression", a disastrous blunder 

that we shall explain at the end of Section 6 below. 
 

• Beware the "RSQ putdown":  "Your RSQ is only 30 percent?  Your results are useless".  People 
who say that often do not really know what they are talking about. 

 
• Finally, for a measure of goodness of fit, rely primarily on the standard deviation of residuals. 

 
  

ADJUSTED R SQUARE versus UNADJUSTED R SQUARE 
 
 In our current application, SPSS also prints out "Adjusted R Square” with the value 
0.967, slightly lower than "R Square”, which equals 0.970.  Our shorthand for “Adjusted R 
Square” is RSQ(ADJ). The adjusted value, RSQ(ADJ), makes allowance for a curious 
shortcoming of RSQ:  As you add variables to a regression model, RSQ can never decline and 
typically increases, even if the variables do not contribute significantly to the fit14.  Hence the 
more variables in the model, the lower is RSQ(ADJ) compared to RSQ. 
 
 We can illustrate this phenomenon with the following very simple example.  The file 
below, named SILLY.sav, consists of only three rows of data on three variables: w, for weight, 
c_1, for calories lagged one day, and tempyaku, the daily temperature in degrees Fahrenheit in 
Yakutsk, Siberia. 
                                                        
14As we show in a moment, we could say “...even if the new variables make no sense whatsoever.” 
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  As ridiculous as this example may seem, we can carry out the mechanics of fitting a linear 
regression model.  Here are the results for the simple linear regression of w on c_1: 
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 We see that R Square is 0.871 and Std. Error of the Estimate, 0.508.  You can see that 
with only three data points, by moving any one of them around we can make RSQ as large or as 
small as we desire.  Now look what happens in three dimensions when we introduce the third 
variable, tempyaku, the temperature in Yakutsk, Siberia: 
 

 
 

 
 
 
 R Square is now equal to one, as high a value as is possible.  The reason for this is simple.  
With only three data points, the fitting of a regression plane in three dimensions is without any 
residual error, as shown in the figures below: 
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 Notice that in the Coefficients table displayed above the standard errors for each of the 
coefficients are zero and the t-ratios and significance levels cannot even be reported (t is infinite, 
and the significance level is zero).  Note also that there is one critical error in the Model 
Summary table:  Adjusted R Square is reported to equal one, the same as R Square.  When you 
see the formulas in the appendix at the end of this chapter you can show that this reported value 
for RSQ(ADJ) cannot be correct.  The Adjusted R Square column in the Model Summary table 
above should be blank, as are the columns for t and Sig. in the other table. (Perhaps SPSS will 
correct this error in future versions.) 
 
 Finally, here is a useful fact that you should remember: 
 
 
 
  
 
 
This point is illustrated in the Model Summary table displayed on page 6-27 above.  We repeat 
the table here, but with the interior cell format changed to show more decimal places for some of 
the reported values: 
 

As an additional variable is added to a regression model, 
Adjusted R Square will increase if and only if the Std.  Error 
of the Estimate (Residual Standard Error) decreases. 
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Observe that R Square increases steadily.  If, for a given number of cases, we had enough 
independent variables, no matter how nonsensical they might be, we could drive R Square to its 
maximum value, one, as in our example using SILLY.sav.  Note also that Adjusted R Square 
increases steadily, but only through Step 4, while, as stated in the shaded box above, the residual 
standard error steadily decreases.  At Step 5, however, Adjusted R Square decreases, consistent 
with the increase in the standard error.  This halt in the increase in RSQ(ADJ) is also consistent 
with the variable c not being significant as it is forced into the model at Step 5. 
 
5. Study of Calories Consumed (c); Lessons Learned 
 
                                                   
 

                         
 
 The variable c has some interest in its own right, so we will apply our standard approach 
to analyzing it.  In the analysis it will turn out that another data transformation will provide a 
useful refinement:  we will work with the logarithm of c rather than c itself.  The reasoning is 
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parallel to the reasoning applied in Section 2 of Chapter 5 in the Medical Audit example, where a 
square root transformation of tonsils -- number of tonsillectomies per month -- made the variance 
more nearly constant.  In the present example, the logarithm of c will make the variance more 
nearly constant through time.  You may wish to review the first part of Medical Audit before 
going ahead.15  The time series for calories, c, is trending upwards with increasing variance 
(vertical dispersion) around the trend.  To try to stabilize the variance, we execute the 
transformation 
 
     logc = LN(c) . 
 
In SPSS, the expression LN stands for “natural logarithm”, as opposed to “common logarithm”.  
It really does not matter which of the log systems you use in transforming, but we will work with 
natural logs in STM.  Before we go any further, you should read the following box and try to 
remember the warning in future analyses: 

 
 Here is the time series after the log transformation has been applied: 
 

                            
 
                                                        
15In Section 2 of Chapter 3, in the example of time intervals between successive cars passing a fixed point, we used a cube 
root transformation.  In this instance it was the normality assumption rather than constant variance that made the 
transformation advantageous. 

The logarithmic transformation is used to stabilize the variance of a process 
with nonconstant variance.  It also can sometimes make data look more 
normal than they do before the transformation. But the transformation can 
never make nonrandom data more random. 
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 If you overlook momentarily the large spike in the middle of the series, the increase in 
relative variability in the early part of the series does make the overall variance about the trend 
line appear more nearly constant. 
 
 We shall now fit a time trend to the logarithmic series using Linear Regression: 
 

 
 

  
 

 
 
 Note the large positive residual at time=30.  We saw the same phenomenon back in the 
multiple time series plot for both w and c, and we have already related it to the large increase in 
W on the following day.  It must have been a real food splurge!  Other diagnostics are shown 
below and they are generally satisfactory: 
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6. Time-Series Regression Strategy and Hazards 
 
 At the end of Section 2, Chapter 5, we offered "Systematic Strategies for Regression 
Analysis".  The aim was to provide quick, direct routes to the selection and fitting of regression 
models, given a list of promising independent variables.  Instead of developing the regression 
model step by step, as we have often done for pedagogical purposes, you can simply use 
Stepwise Regression to screen for the variables that appear to contribute significantly.  Then you 
apply diagnostic checks to the model that emerges.   
 
 Sometimes several models will fit the data about equally well.  If this happens, we give 
weight to simplicity or parsimony: it is advantageous to use a model with fewer 
independent variables if there is modest or zero loss in goodness of fit as measured by the 
standard deviation of residuals. 
 
 However, if the fit is roughly the same for several regression models, the choice is 
unlikely to be critical.  All models are "in the right ballpark". 
 
 The only modification needed in the light of autoregression is that we have to consider 
lags of potential independent variables as well as trends, seasonals, etc.  In the analysis in  Section 
5, for example, we ended up with w_1 and c_1 plus trend variables.  With this choice of model, 
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the diagnostic checks of residuals -- particularly Autocorrelation and Runs test -- were 
satisfactory, and there was no need to consider higher lags -- w_2, w_3, ... , c_2, c_3, ... .  
 
     In developing this model we arbitrarily considered only the first lags of c and w. In general, 
we need to decide how many lags to consider.  Fortunately, this choice is not critical: 
 

• If we try too many lags, the insignificant lags will drop out of the stepwise regression. 
 

• If we try too few lags, the diagnostic checks of the model will suggest that we need to go 
back to try more lags. 

 
"Rash Regression" 

 
 One disastrous error that is often committed by those who are not “statistically savvy” is 
to be unaware of the need to lag when autoregressive effects are present.  For example, someone 
might reason that w obviously depends on c, so the simple regression of w on c should tell the 
story.  Here's where that reasoning leads: 
 

 
 

 
 
 

 There is indeed a significant effect for calories, but it is in the wrong direction!  The 
negative sign for the regression coefficient of c suggests that the more one eats, the less one 
weighs. 
 
 Moreover, the Std. Error of the Estimate is 3.716-- several times larger than the 0.677 
that we got in Section 4. 
 
 Finally, the diagnostic checks for this regression model are terrible, as shown by the 
examples below: 
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The Shapiro-Wilk value of 0.924 for the wiggly line in the normal probability plot above is 
significant at a p-value below 0.05.  Hence we cannot accept the hypothesis that the residuals are 
normally distributed. 
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 The plot of w vs. c shows that the negative slope is caused by a few large values of c.  
The time series showed that this tended to occur later in the diet, when a good deal of weight had 
been lost. 
 
 The kind of statistical blunder illustrated by this example is very common.  Its essence is 
ignoring the time-series aspects of regression when the variables are ordered in time.  If there are 
trends, seasonals, and autoregressive effects in Y and/or X, the simple regression of Y on X is 
almost sure to give nonsensical results.16   We call this type of ill-advised analysis “rash 
regression.” 

                                                        
16G. Udny Yule, considered by many to be the father of time series analysis, published a paper entitled “Why Do We 
Sometimes Get Nonsense-Correlations between Time-Series?” in 1926.  His example showed a high correlation between the 
mortality rate for England and Wales and the proportion of first marriages that are performed in the Church of England. 
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Appendix: Further Remarks on RSQ and RSQ(ADJ) 
 
We have already discussed RSQ and defined it as the sum of squares due to regression divided by 
the total sum of squares.  This statement requires further amplification.  In our discussion of the 
output from a linear regression analysis we have thus far ignored the table entitled ANOVA, 
which stands for “Analysis of Variance”.  For illustrative purposes we repeat the regression 
output shown in the main body of this chapter, but this time we include the ANOVA table. 
 

The ANOVA table shows 
an analysis of the sum of 
squares, the numerator of 
the sample variance of w. 
(You may remember from 
another class in which 
formulas were emphasized 
that the standard deviation 
is the square root of the 
variance and that the 
variance is the sum of 
squared deviations about 
the mean, divided by the 
sample size minus one.  If 
you do not remember this 
or never heard it before, no 
matter.) Recall that we said 
earlier that the method of 
least squares fits a 
regression surface in a way 
that minimizes the residual 
sum of squares.  At any 

rate, the ANOVA table above shows a total sum of squares equal to 759.927.  If you divide this 
figure by 54, the sample size minus one, you get 14.07.  Take the square root of that and you get 
3.75, close to the original standard deviation of w, 3.87, that we obtained back on page 6-15.17  
What the ANOVA table does is to break the total sum of squares into two parts:  The first part 
that is “explained” by the regression, and second or “residual” part that is left over and still 
“unexplained”.  Thus, we can calculate from the table above that R Square, the sum of squares 
due to regression divided by the total sum of squares, is 736.989/759.927 = 0.970, exactly as 
shown in the Model Summary table. 
 
 In the following discussion, for typographical reasons, we are going to write “RSQ” and 
“RSQ(ADJ)” as “ 2R ” and “ 2

adjR ”.  It follows from the paragraph above that 21 R−  is the ratio 
of the residual sum of squares to the total-- i.e., 22.9385/759.927 = .0302 in the example.  We 
might say that 3.02 percent of the sum of squares remains “unexplained”. 

                                                        
17 The reason for a slight numerical discrepancy is that we are using only 55 cases because of lagging as opposed 
to the full 56 cases used on page 6-15. 
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Now, the purpose of the silly example involving the temperature in Yakutsk, Siberia was to show 
graphically that if you have enough independent variables in your regression model, no matter 
how ridiculous they may seem, you can have a perfect fit-- that is, you can force 21 R− all the 
way to zero.  In fitting a regression model with an intercept, the “perfect fit” will happen if the 
number of independent variables is one less than the number of observations.  Since it does not 
seem fair to give a modeler credit for a good fit when the model contains meaningless variables, 
the idea of  2

adjR  was developed.  You will see that with a fixed number of observations, 2
adjR  

gives a handicap to the modeler who rashly includes too many independent variables in the 
regression equation. 
 
Before we proceed, some more notational definitions: 
 
   SST = the total sum of squares 
   SSR = the sum of squares due to regression 
   SSE = the residual (error) sum of squares 
     n   = the number of observations (sample size) 
     k   = the number of independent variables plus one (for the intercept) 
 
Thus we can write 
 

  21 SSER
SST

− =  

 
 
 
and mention again that as k increases, 21 R−  cannot increase-- the more independent variables, 
the closer the fit. 
 
Adjusted R Square, 2

adjR  , is defined by the following relationship: 
 

  2 2( 1) /( )1 (1 )
( ) /( 1)adj
n SSE n kR R
n k SST n

− −− = − =
− −

 

 
Note that the numerator in the expression above, SSE/(n-k), is the formula for the Mean Square 
for Residuals, the square of the Std. Error of the Estimate (Residual Standard Error); and 
the denominator, SST/(n-1), is the formula for the sample variance (the square of the standard 
deviation of the dependent variable, as explained in the first part of the appendix).  Thus, whereas 
we can refer to 21 R−  as “the unexplained proportion of the total sum of squares,” 21 adjR−  is 
“the unexplained proportion of the original sample variance.”  
 
If the sample size, n, is held fixed, then as k, the number of independent variables plus one, 
increases, the SSE (sum of squared residuals) cannot increase-- assume that it decreases.  The 
factor (n - k), however, decreases.  Thus we cannot be sure whether the numerator in the 
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expression above decreases or increases.  If the decrease in (n - k) is less than the decrease in the 
SSE, then 21 adjR−  will decrease.  But if the decrease in (n - k) exceeds the decrease in SSE, then 

21 adjR−  will actually become larger.  As you continue to introduce new variables into your 

model, at some point an increase in 21 adjR−  will indicate that you should stop doing that.  Note 

also that whenever 21 adjR−   decreases you will also see a decrease in the Mean Square for 
Residuals, as equivalently stated in the shaded box on page 6-35 of the textbook, thus another 
stopping rule is to quit adding independent variables when you detect an increase in the standard 
deviation of the residuals. 
 
Unfortunately, this discussion makes the whole procedure of model building seem too 
mechanical.  As we discuss these matters further we will emphasize two points: 
 
(1) It is not a good idea to keep adding independent variables to the regression equation in 
a mindless way, even if the procedure seems to lead to decreases in the standard deviation 
of the residuals.  You should always be guided by theory, if possible, and at least by 
common sense. 
 
(2) If the introduction of an additional independent variable leads to only a slight 
improvement in the fit, back up and retain the simpler model.  This is the “principle of 
parsimony”, which, according to our preachments, will lead to better results in the long 
run. 
 
 
 
 


