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CHAPTER 4: INTRODUCTION TO REGRESSION 
 
1.  Fitting Trends by Regression: the Running Example 
 
 In Chapter 3, Section 5, we discussed two applications in which out-of-control data sets 
displayed apparent trends -- systematic level shifts through time -- a running application and the 
data on mortality in intensive care.   
 

• In the running example, slowing down during the workout showed up on a control chart 
as a clear tendency for the split times to move upward through time, a tendency that was 
easily seen in spite of substantial variation from point to point. 

 
• In the intensive care application, a downtrend in mortality rates was barely visible on the  

control chart since the point-to-point variation was very large.  In fact, you may have 
thought that we were claiming too much when we asserted that a trend was present. 

 
 If there is a trend, the process cannot be in statistical control.  Trends, when they are 
present, are of great practical importance.  We cannot be content simply to monitor the process, 
looking for special causes.  Systematic change is taking place.   
 
 This systematic change may be either favorable or unfavorable.  If the change is 
unfavorable, there is need for action to stop or reverse the trend.  If the change is favorable, there 
is need for action to ensure that whatever is causing the favorable change is maintained.   
 
 Here are important ideas concerning trends: 
 

• Although trends do not tell why systematic change is taking place, they provide a signal 
to look for root causes of this change. 

 
• They may also provide hints as to where and how to look for root causes. 

 
• Trends are useful in forecasting, at least for short periods into the future.  Professor 

Walter Fackler of the University of Chicago, whose one-year-ahead macroeconomic 
forecasting accuracy was unmatched, said that awareness of underlying economic trends 
was essential for his forecasting methodology. 

 
• Trends furnish a basis for performance comparisons.  If the general trend of health care 

costs is upward, a company or hospital that holds these costs constant is doing well. 
 
 We need statistical tools to detect and confirm the presence of trend, and to fit trends that 
are confirmed.  By fitting a trend, we mean a procedure that estimates how rapidly the systematic 
change of process level is occurring as time passes. One way to do this is by regression, a tool 
that also has many other statistical applications besides trend fitting. 
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 In this section and the next, we shall introduce regression concepts by showing how they 
can be applied, using SPSS, to fit trends in the two examples of trend from Chapter 3-- the 
running data and the intensive care mortality data.  
 
 The SPSS command sequence for linear regression will give more computer output than 
we have immediate need for.  Consistent with the policy of explaining only what you need to 
know when you need to know it, we shall explain only those aspects of the output that are 
relevant at the moment.  (If you are impatient about information in the output that we deliberately 
pass over, you may wish to read ahead.  We will cover almost all of it somewhere in STM.) 
 
     The running example (see LAPSPLIT.sav) has a trend that is easy to spot visually on a control 
chart, so we will start with that, beginning with a brief review of background. 
 

Data from a running workout around a block that is approximately 
3/8 miles, divided by markers into approximately three 1/8 mile 
segments.  Timed with a Casio Lap Memory 30 digital watch to 
obtain timings for each of 30 1/8 mile segments (3 3/4 miles in 
total).  Attempted to run at constant (and easy) perceived effort, 
without looking at the splits at each 1/8 mile marker. 
Afternoon of 19 September 93. Data are in seconds. 

 

 
 

 The upward trend is clearly visible.   
 
 We can also think of this control chart as a scatter plot, that is, a plot that relates a 
vertical variable Y to a horizontal variable X in the standard graphical display with coordinate 
axes.  
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 For example, just imagine the label "TIME" for the horizontal axis of the time series plot 
above.  "SPLITIME" is the label for the vertical axis.  Then the plot can be interpreted as a 
scatter plot of splitime against another variable, time. 
 
 We can make a scatter plot directly, using the SPSS plotting routine, as shown below.  
First, we create the variable time explicitly.  The way to do it is to click on Transform/ 
Compute… and type in “time = $casenum”.  $CASENUM is a built-in SPSS function that 
assigns the numbers of each row in the spreadsheet to the new variable time.  If you look at Data 
Editor after the transformation you will see that there is now a second column in the interior of 
the spreadsheet containing the case numbers under the heading, time. 
 
 At the next step we execute Graphs/Scatter…, which brings up the following dialog box: 
 

We then highlight the icon for Simple and click on the Define 
button.  We have selected splitime (read values on the Y Axis) to 
be plotted against time (on the X Axis).   
  

 
 
Here is the scatter plot that appears after we click on OK: 
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 Before moving ahead, compare this scatter plot with the control chart. There is a close 
relationship between the two graphs.   Both show essentially the same information.  For example, 
for any time-ordered data, we can plot the variable of interest on the vertical axis of a scatter plot 
and the variable time on the horizontal axis of the scatter plot to obtain a run chart.  We admit 
that the scatter plot is a bit more difficult to digest because the points are not connected by lines 
to emphasize their sequential occurrence, but that is a problem of aesthetics that we can fix later. 
 
 For now, we shall think of regression as a tool that will fit a line to provide a quantitative 
description of the upward trend that can be seen on the scatter plot as a general tendency of the 
points to move upward as we move from left to right.  For any given time, this line gives the 
trend value -- that is, the "predicted" value -- of splitime.  It is assumed (later we'll learn to 
check the reasonableness of the assumption) that for the various values of time the expected 
values of splitime trace out a straight line. 
   
 It is useful to recall that the mathematical equation of a straight line is of the form 
 Y = a + bX, where: 
 

• Y is the vertical variable, often called the "dependent variable". 
 

• X is the horizontal variable, often called the "independent variable". 
 

• b is the slope of the line, that is, the change of Y for a unit increase of X.  If b is positive, 
the line slopes  upwards; if b is negative, the line slopes downwards. 

 
• a is the "constant".  If the origin of the horizontal and vertical axes is at zero, a is also the 

"intercept", that is, the fitted Y value given by the line when X = 0. 
 
 Go back to your scatter plot that we have shown above and, placing your pointer within 
the plot,  double click on the left mouse button.  You should immediately get a window entitled 
Chart Editor.  The top section looks like this: 
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Then, placing your pointer tip 
on one of the points—any one 
will do—double click again.  
You will get another window 
showing a color palette, but 
you can quickly close that.  
The important result is that 
your action will also cause 
some additional icons on the 
toolbar that were previously 
grayed out to become active.  
We are especially interested in 
the one that looks 
like this:  
 

If you double click on that icon you will get the following Properties window in which you should 
mark the little circle next to Linear: 
 

 
Finally, when you click on the Apply 
button, a straight line appears in the plot. 
It appears to pass roughly through the 
center of the mass of points—the precise 
method of fitting will be discussed later.  
For now just think of it as the “line of 
best fit” in the plot of splitime against 
time.  (Note also the annotation in the 
plot that says “RSq Linear = 0.591”.  
That also will be explained eventually in 
this chapter.) 
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We now need to show the way in which the regression line is determined by SPSS via the 
sequence Analyze/Regression/Linear…, and explain the essentials of the output from the 
command.
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The Basic Regression Command: 
 
 The sequence of clicks on  Analyze/Regression/Linear… brings up the following dialog 
box: 
 

 
 
 
We have indicated the variable to place on the left-hand-side of the equation Y = a + bX, called 
the dependent variable.  It is splitime.  Also we must tell SPSS the name(s) of the independent 
variable(s), i.e., the variable(s) on the right-hand side, in this case time.  The variable called  time 
plays the role of X in the straight line equation.  Note that the box for Method:, just under the 
one for Independent(s), is set at Enter.  Finally, click on the button labeled Statistics…at the 
bottom of the window and when a new window appears make sure that only two boxes are 
checked for now—Estimates and Model Fit.  
 
 Don’t worry now about the other boxes or settings.  We will discuss some of them as they 
are required; others need not be discussed for the level of this course.  So all that is necessary now 
is to press OK, and we obtain the following displays: 
 

This first exhibit merely summarizes the 
operations that have been performed. We 
may not even show it in subsequent 
discussions unless it is absolutely necessary 
to make a point.  
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Do not be daunted by all these confusing numbers.  We will review the key parts of the output, 
one step at a time. 
 

The Key Result: the Fitted Line 
 
 In the last table image shown above the mouse pointer indicates the two numbers under 
the column heading “B”.  These are the estimated parameters1, for the regression line determined 
by a = 66.802, called the “constant” or “intercept”, and b = 0.130, the “slope”.  The official 
statistical term for these numbers is “regression coefficients.”  With these two numbers we can 
write an expression for the straight line 
 

splitime = 66.802 + 0.130 time 
 

                                                        
1The parameters of our statistical model, Y=a + bX, are a and b.  Y and X are variables.  Thus, when the parameters are given 
specific values such as 66.802 and 0.130, the line is made concrete and, for example,  it may be drawn on the graph.  We call 
the parameters “estimated” because if we took another sample of data they would come out to be similar (we hope), but slightly 
different. 
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and you should do this in your notes-- perhaps right under the title in the regression output display 
above.  We prefer to write it this way: 
 

predicted splitime = 66.802 + 0.130 time 
 
to emphasize that the line does not represent a deterministic relationship between actual splitime 
and time.  Rather the line is a description of the expected relationship of splitime to time, 
abstracting from chance variation, just as the center line on a control chart describes the expected 
level of the data for a process that is in a state of statistical control and varying unpredictably 
above and below the line. 
 
 This relationship says: 
 

• On average, for an increase of one unit in time, the regression line rises 0.13 seconds, the 
value of the slope coefficient or regression coefficient.   

 
• The regression coefficient with numerical value 0.13 describes the runner’s tendency to 

slow down in this running workout at constant perceived effort.  The pace tends to slow 
by 0.13 seconds per 1/8 mile, or by 8*0.13 = 1.04 seconds per mile. 

 
 

• For time = 0 (at the start of the workout), the height of the line is 66.8 seconds.  
Technically, this is the constant or intercept.  The constant is not directly relevant in this 
particular application because the first actual reading is at time = 1.  At time = 1, the 
height of the regression line is 66.8 + 0.13 = 66.9. 

 
Making the Plot Look Pretty 

 
This is perhaps as good a place as any to discuss how to make our graphic of the regression line 
representing trend somewhat fancier and more like a control chart.  This time instead of executing 
Graphs/Scatter…, we follow a different route via Graphs/Interactive/Scatterplot… 
This brings up the following dialog window in which we have dragged the variable names 
splitime and time into the boxes for the Y and X axes respectively. 
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Before clicking on the OK button, however, we touch the Fit tab.  This produces the following 
image: 
 

From the pull-down menu under 
Method we choose Regression, 
and we make sure that we have 
checked the box for Include 
constant in equation.  Also the 
box for Total under Fit lines for 
must be checked. 
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After we click OK on the Fit page we get this new scatter plot: 
 

 
 

You see that this time the equation for the linear regression line is nicely displayed.  We are not 
done yet, however, in dressing up the display.  The next step is to double-click on the image to 
bring up some new tools displayed along the left and the top borders of the plot: 

 

 
 

If we click once with our pointer within the annotation showing the linear equation, a dotted blue 
outline of the text box will appear.  We can then drag the box to the right of the plot to avoid 
obscuring the data points.  After you have the box in the desired position then click on the tool in 
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the upper left that looks like this .  This is the Insert Element tool.  The mouse click causes a 

long menu of various gadgets to drop down.  Second in the list is this one: . Just a 
single click on that icon and--Voila!-- our plot now looks like this: 
 

 
 
There is just one more final touch that is necessary.  Double click on the annotation that says 
“Dot/Lines show Means” and in the Dots and Lines window that appears uncheck the Display 
Key box.  That causes the mysterious note to disappear and now we have an image that looks just 
like the control chart, but with the trend line and its equation clearly shown. 
 
We have shown how powerful the graphics features of SPSS can be and how, with some effort, 
we can produce some very elegant displays.  We shall show more of these “little niceties” as we 
continue, and some of you may discover others that are even more fancy and illuminating.  We 
repeat, however, that you should not take valuable time away from learning the 
fundamentals just to make more beautiful plots.  For almost all purposes in your homework and 
in the final project you will not need to go beyond the simplest of graphic displays. To annotate a 
graph, for example, you can just as easily type a nearby description in your word processing 
document rather than inserting and properly placing a text box in the plot itself. 
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The Save Feature in SPSS Regression 
 
 Flip back to the page above where we first displayed the window for setting up the 
regression model that we wanted to fit and recall that we discussed the button at the bottom for 
Statistics…  Note that there are three other buttons in the same location.  If we click on the one 
labeled Save…, we get the following new window: 
 

 
 
Later we will use some of the other features offered in this menu, but for now we need only check 
the boxes for Unstandardized under Predicted Values and those for both Unstandardized and 
Standardized under Residuals.  Look now at the Data Editor and you see that three additional 
variables are created when the regression is executed.  The variables are named PRE_1, RES_1, 
and ZRE_1.2 
 

 
 
 

                                                        
2 The addition to each variable name of “_1” is to indicate that these are the first predicted and residual values to be saved.  
Later on we may want to fit another model of a different form and save predicted and residual values from that model to 
compare with those from the first.  Those new variables will carry the label “_2”.  If confusing now, this will all become clearer 
after we have discussed multiple regression models. 
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PRE_1 stands for predicted, i.e., the height of the regression line for any given value of time.  
To show this graphically, let’s return to the sequence Graphs/Scatter…  This time, however, in 
the window below, instead of highlighting the icon for Simple we highlight Overlay. 
 

 
 
Next, we set up the dialog window as follows.  Note that because of an idiosyncracy of SPSS you 
will have to use the button for Swap Pair to make the setup just right: 
 

 
 
Here is our new scatter plot: 
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 At first, when you create the plot above on your own PC, the little circles showing the 
predicted line will not be filled, and except for having a different color they may be difficult to 
distinguish from the regular data points.  We have filled them in with the color black by right-
clicking on the chart, and then left-clicking on SPSS Chart Object followed by Open.  This 
action opens the Chart Editor, which makes available many options for “dressing up” the chart 
that we shall illustrate from time-to-time in class. 
 

 
  

Residuals 
 
 Next, let us consider the deviations or residuals, labeled RES_1, of actual splitime from 
the values of PRE_1 given by the regression line.  The basic relationship is: 
 

RESIDUAL = ACTUAL SPLITIME – PREDICTED SPLITIME  , 
 

RES_1 = splitime – PRE_1 
 
or, in general: 
 
                                                  RESIDUAL=ACTUAL - PREDICTED 
 

Be sure to read the Appendix after you have finished this chapter for further 
important discussion of the predicted values and their meaning.
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To clarify this point we repeat the abbreviated image of Data Editor from above: 
 

 
 
You should verify with your hand calculator that for time = 1, RES_1 is given by 
 

65.35 – 66.93 = -1.58   . 
 

 The first 1/8 mile segment was timed in 65.35 seconds, which was 1.58 seconds faster 
than the fitted value, 66.93.  Hence this residual is negative, reflecting the fact that the actual time 
was below the regression line. 
 
 Similarly, the third value of RES_1 is 67.38 – 67.19 = 0.51,  a positive value because 
splitime is above the regression line.  By the way, an interesting fact resulting from the method of 
fitting the line is that the sum of all of the residuals is zero. 
 

Geometric Interpretation of Residuals 
 
 Let us now make a scatter plot with both splitime and PRE_1 plotted against time to 
show the geometrical meaning of these residuals.  Each residual can be represented by the 
signed length of a vertical line segment connecting the values of splitime and of PRE_1.  We 
have drawn a few of these line segments in the plot below: 
 

 It follows from the above definition of RESIDUAL that we can write 
 

ACTUAL = PREDICTED + RESIDUAL  
 
 This statement that the actual value of a variable of interest is made up of two parts-- the 
first fitted through statistical modelling, and the second part a residual that is left over and, 
so to speak, “unexplained” by the model fitting-- can well serve as a slogan for this course.  
Indeed, almost all that we shall be doing in the rest of STM can be thought of as involving the 
analysis of a variable into a fitted and a residual part, with the aim of reducing our uncertainty 
about “the way that the process works.” 
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The Principle of Fitting the Line 

 
 Now we turn to the principle of fitting the regression line. The parameters of our 
particular line are computed so that the sum of squared residuals over all the data points is 
minimized.  For this reason, the standard regression fitting approach used by SPSS is called the 
method of least squares.  There are many different straight lines that could be passed through the 
points in the plot above, but there is only one that minimizes the sum of squared residuals, and the 
calculation of its parameters, a and b, i.e., the intercept and slope, is a straightforward calculus 
problem. 
 
 The method of least squares is not the only method that could have been used to obtain 
the fitted line.  It is, however, the most widely used method, and it works well in a wide variety of 
applications.  (Even if you know more sophisticated methods of fitting, least squares is a good 
place to start in almost any practical application.)  If the residuals behave like in-control 
observations that are also normally distributed, the method of least squares is especially attractive. 
 

Diagnostic Checking 
 
 If the regression assumptions are satisfied, then the residuals should behave like any other 
random, normally distributed, data.  Hence we can look at the residuals from our regression from 
the same perspectives used in looking at the original observations in the applications in Chapter 2 
and 3: 
 
 We shall refer to this residual analysis as "diagnostic checking", because data analysis of 
residuals is designed to check whether the actual data conform to the regression assumptions: 
 
 (1) The regression relationship is a straight line. 
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 (2) The residuals about the line should behave as a process in statistical control with an 
 approximately normal histogram3. 
 
 We'll begin with a control chart for individuals, using the default version in which SPSS 
bases control limits on the moving range method of estimating the standard deviation. 
 

  
 
Observe that the center line is located at zero.  The mean value of the residuals is always zero.  
The method of least squares estimation makes it turn out that way.  Note also that when we 
specify RES_1 to be plotted, SPSS knows that it is the residuals from regression and it therefore 
adds horizontal lines at plus and minus two standard deviations—a kind of alarm feature. 
 

 
 
The results of the runs test also look very good. 
 
 
 
 

 
 

                                                        
3Students may legitimately ask at this point, “Why do these regression assumptions have to be satisfied?”  One answer is that 
the residuals represent that part of the process that we are still uncertain about.  A common way of talking about statistical 
modeling is that the fitted values “explain” the dependent variable, and the residuals are “unexplained.”  If the residuals were 
always zero there would be no uncertainty about splitime, for example.  We would be able to predict its value perfectly by just 
plugging time into the regression equation.  Since the residuals stand for the unexplained part of the process, and hence are 
fraught with uncertainty, we are interested in getting a statistical handle on that uncertainty by means of probability statements.  
We might, for example, need to answer questions such as, “When time = 35, what is the chance that the splitime will be 
greater than 75 seconds?”  This is really a question about how big the residual is likely to be.  Having residuals that are in 
statistical control, that is, random with constant mean and standard deviation, and approximately normally distributed, makes it 
easier to answer such questions.   
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Standardized Residuals for Checking Normality 

 
 Now we must explain one other aspect of the regression output.  When we called for the 
computation and storage of PRE_1 and RES_1 after the regression parameter estimates were 
calculated, we also asked for the standardized residuals, which were named ZRE_1.   
 
 We can think of ZRE_1 (approximately, but not exactly) as the kind of standardized 
residuals that would be produced if we had asked for z-scores to be saved in the dialog window 
for Analyze/Descriptive Statistics/ Descriptive…  Hence we can proceed with our usual 
graphical check for approximate normality of residuals, using the histogram command in the 
usual way: 
 

 
 
Although 1 of 30 values of ZRE_1 is outside plus or minus two standard deviations, there is little 
reason to suspect the occurrence of special causes since 1/30 is only about 3 percent.  Here are 
the Q-Q plot  and the Shapiro-Wilk test results: 
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 We have now seen that residual behavior is roughly consistent with an in-control process 
and a normal distribution.  There is therefore no evidence of special causes at work.   
 
 In summary, we have found one systematic cause -- the fatigue effect associated with 
time -- but no special causes.  The analysis illustrates our general regression strategy:  
 

• To explore for systematic causes that affect all observations.  These systematic causes are 
represented by independent variables in the regression.   

 
• Then to look for special causes, affecting only individual observations or groups of 

observations.  For this purpose, we study the behavior of residuals from the regression. 
 

Interpretation of Trend 
 
 The systematic cause isolated in this application is called a "trend".  Here the trend is so 
obvious that we haven't discussed its statistical significance; the procedure for doing that is given 
in Section 2.   
 
 The presence of trend does not tell why the trend is there.  To decide about "why", we 
have to draw on other knowledge and, in many applications, further investigation.  In the running 
example, it is reasonable to ascribe the trend effect to "fatigue": constant effort seems to result in 
gradually slowing performance as fatigue accumulates. 
 
 In running races, there is evidence to suggest that an even pace is the best strategy.  For 
example, most world records in distance running were run at nearly an even pace.  Our study 
suggests, therefore, that to run an even pace, one must start easily and gradually increase effort.   
 

Diagnostic Checking for Linearity 
 
 For diagnostic checking of the regression assumptions, there is another useful residual 
analysis based on a plot-- the scatter plot of ZRE_1 versus the standardized values of PRE_1.  
This plot is obtained through the original setup of the regression model.  Recall that in the dialog 
window for linear regression there are four buttons at the bottom: 
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Clicking on Plots…opens this window: 
 

 
 
We have moved two variables from the list on the left-hand side to plot Y = *ZRESID against X 
= *ZPRED.  (Do not be disturbed by the slightly different naming used by SPSS in this feature.) 
 

 
 
 This plot serves as a check on the assumption that the trend is linear.  If that assumption is 
tenable, as it is here, the visual impression should be what you would see on a control chart of an 
in-control process with normally distributed deviations from the center line.  Here the horizontal 
line at height zero, the mean of all residuals, is analogous to the center line. If RES_1 is regressed 
on PRE_1 in any regression model, no matter how complex, the fitted line will always be 
horizontal (i.e., the slope is zero), which is another way of showing that the method of least 
squares does not allow a linear relationship between the residuals and the predicted values.  A 
perfectly horizontal regression line, however, does not prevent there being some residuals that 
appear to be seriously out of control.  It is evidence of such out-of-control residuals that we are 
looking for here. 
 
 Back in Chapter 2 when we were discussing histograms and  plots to check on normality, 
we said that to decide what is acceptable or not it is good to keep a picture in your mind of plots 
where the assumptions are clearly violated.  Here, for example, is a case of some data created by 
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us through simulation that are much better described as a quadratic (curvilinear) function of time 
rather than simple linear.  Suppose that we try the simple linear model nevertheless, and plot 
*ZRESID vs. *ZPREDID: 
 

  
 
 This plot ought to convince you that the plot of residuals against fitted values can be 
useful in regression diagnostics4 
 

Regression and Prediction 
 
 Before leaving this application, there is another aspect of regression that can be developed.  
Here we were primarily interested in the trend for its value in better understanding the process.  
But the trend is also a tool for predicting the dependent variable given any particular value of the 
independent variable. 
 
 To see how this works, think back again to simple control chart analysis.  We can always 
interpret the center line as a "best guess" as to what the next observation will be.  The uncertainty 
about that best guess can be expressed in terms of upper and lower control limits, each three 
standard deviations removed from the center line.  
  
 If, contrary to fact, splitime had been in a state of statistical control, we would have 
predicted the next splitime with the overall mean as a "best guess" and the control limits around 
the best guess based on the standard deviation of all observations.  The numbers we need come 
from the Analyze/ Descriptive Statistics/Descriptive… sequence executed in Section 5 of 
Chapter 3: 
 

                                                        
4Experienced statisticians (including you at the end of this course) would comment that the simple linear model never should 
have made it to the post-regression diagnostic stage, because a simple scatter plot of the dependent variable vs. time would 
have shown the quadratic nature of the relationship. Moral: Always look at your data before you leap into an 
analysis. 
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Thus, a prediction of the next point, for segment 31, (assuming continuation of the workout) 
would have been 68.81 seconds plus or minus 3*1.484 = 4.45 seconds.  This would not have been 
a good prediction because the process was not in a state of statistical control.  By the end of the 
workout, the runner was running slower than his average for the whole workout.  Regression 
offers a prediction that is better in two respects: 
 

• The regression "best guess" takes the trend into account: substitute time = 31 into the 
regression equation 66.8 + 0.130 time to get 66.8 + 4.0 = 70.8 seconds.  Given the 
runner’s tendency to slow down, this is a more realistic best guess than the overall mean 
of 68.8. 

 
• The standard deviation 1.484 of splitime is too large to serve as the basis for realistic 

control limits, because it reflects the variation attributable to the trend effect.  The 
appropriate computation for constructing control limits around the prediction of 70.8 is 
not 3 times 1.484, or 4.45, but 3 times the standard deviation of residuals (called by 
SPSS the “ Std. Error of the Estimate”).  We will refer to it and to its equivalent in 
more complex regression models as the residual standard error.   This very important 
number is found in the second table that is produced by the linear regression output: 

 

 
 

 The key figure shown above is 0.96588.  Hence for a better prediction, we have 70.8 plus 
or minus 3 times 0.9659, or 70.8 plus or minus 2.90. 

  
 The fact that the residual standard error is lower than the original standard deviation of 
the dependent variable is often expressed by saying that the regression equation has explained 
some of the variation originally present in the data.  Another way to say it is that the residual 
standard error is a measure of the uncertainty in predicting splitime after the trend is removed. 
 

• We defer until later an explanation of R Square.  R is the correlation coefficient, and R-Square 
is its square.  At the end of this chapter, we shall explain the correlation coefficient R. 



4-24 

  
2. Trend Fitting by Regression: the Intensive Care Example 
 
 We turn now to the data on mortality in intensive care in INTCARE.sav, where a trend 
appears to be present, but is much less obvious visually.    We didn’t explain this back then, but 
when we were done with the session we saved the spreadsheet containing three variables: mort, 
the number of deaths; n, the sample size for each group; and mortrate, the mortality rate formed 
by dividing mort by n.  The data are found in the file called INTCAREa.sav.  You will find the 
ability to save the contents of Data Editor especially convenient if, in the course of your own 
project, you create many new variables through data transformations.  If you do not save your 
work before you quit a session, when you return to the project you will have to start all over again 
repeating all of the necessary transformations. 
 
 We will tentatively assume that approximate normality is applicable here (even though the 
binomial distribution might have been slightly more accurate), and then check the normality 
assumption later in the analysis.  The steps that follow are mainly a review of the approach shown 
in Section 1, but we shall make a few special comments as needed.  Otherwise, you should follow 
the output closely to be sure that you understand it. 
 
 Here is the graph obtained from the SPSS procedure Graphs/Sequence applied to 
mortrate.  The title, TSPLOT, stands for Time Series Plot, one of several useful tools for 
visualizing sequential data.  If you picture the trend line, running from the beginning to the end of 
the plot, you can see that it is downward: 
 

 
 
 Now we turn to the regression fitting of trend.  We first must create the new variable 
time=$CASENUM.  We then apply the Analyze/Regression/Linear…sequence, using mortrate 
as the dependent variable and time as the independent variable. As shown in the previous 
example, we also save RES_1, PRE_1, and ZRE_1 for diagnostic tests.  
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 The first thing that we note is the equation for the fitted line: 
 

predicted mortrate = 0.275 - 0.002 time 
 
This says that starting from a height of 0.275 (27.5 percent) at time =  0 (just before the first 
observation), the line trended down by 0.002 units for each observation, or about 0.12 units (12 
percentage points) over the course of the 60 observations, that is:  -0.002 * 60 = -0.12. 
 
 At face value, this translates to two extra survivors per each successive group of 20 
patients.  This would be obviously gratifying, but there are two important questions that we will 
investigate in a moment:   
 

• Is the downtrend statistically significant, or could it reasonably be ascribed to the effects 
of chance variation in a sample of 60? 

 
• If the trend is significant, what root causes lie behind it? 
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Before considering these questions, we go through the main outlines of the statistical analysis with 
only minimal commentary.  We shall not explain which SPSS sequences were necessary to obtain 
these results.  As a self-quiz, see if you can duplicate them. 
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 Tests of Normality 
 

Kolmogorov-Smirnov(a) Shapiro-Wilk 
  Statistic df Sig. Statistic df Sig. 
Standardized Residual .123 60 .024 .972 60 .178

a  Lilliefors Significance Correction 
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Overall, the fit looks good, and no special causes appear to be at work. 
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Statistical Significance of the Apparent Trend 
 
 We now return to the question of statistical significance of the downward trend.  For that 
purpose, we display again some of the output from the simple linear regression: 
 
 Coefficients(a) 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant
) .275 .025  10.893 .000 1 

time -.002 .001 -.325 -2.616 .011 
a  Dependent Variable: mortrate 
 
 

 The bottom row of the table above gives important information about the independent 
variable, time: 
 

• The value -0.002 is the regression coefficient itself. 
 

• The “Std. Error” -- 0.001 -- is a measure of uncertainty about the slope coefficient 
attributable to the fact that we are working with a sample of only 60 observations, and 
there is considerable variability even in the residuals from regression.  

  
This measure is a special kind of standard deviation.  All of the statistical measures that we 
shall calculate from data analyses are estimates of model parameters and therefore have 
theoretical sampling distributions with a mean and a standard deviation.  That is, we 
realize that from sample to sample the particular value of the estimate is likely to change.  
It is common to use the term “standard error” when referring to the standard deviation of 
the sampling distribution of any statistic of interest.  Be careful, however, not to confuse 
this particular standard error of a coefficient with the residual standard error of the 
regression that we discussed above.  They are related but not the same. 
 

The numbers that are displayed in the coefficient table above are expressed with three decimal 
places.  Thus the values -.002 and .001 for the slope and its standard error are rounded up from 
more precise figures.  In order to clearly explain another important number in the output above, 
we must take advantage of one of the more sophisticated features of SPSS – the ability to 
reformat the table: 
 

• Placing the mouse pointer within the table above, we double click and a border appears to 
indicate that we are in editing mode. 

 
• We then click once with the left button on the slope coefficient, -.002, causing that cell to 

be encased in a heavy black border.   
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• Continuing, we place the pointer within the highlighted cell and right-click one time.  This 

action produces the following menu.  (We only show the center section here.) 
 

  
  

• When we left-click on the highlighted selection, Cell Properties…, the window below 
appears: 

 

  
 

• Finally, we change the number of decimals from 3 to 7 -- note the arrow in the image 
above. 

 
After we have repeated the same reformatting operation for the Std. Error the coefficient table 
now looks like this: 
 
 Coefficients(a) 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant
) .275 .025  10.893 .000 1 

time -.0018825 .0007195 -.325 -2.616 .011 
a  Dependent Variable: mortrate 
 
We see that the slope and its standard error are more precisely expressed as -.0018825 and 
.0007195. 
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Now we can show with greater clarity the reasoning behind the concept of statistical 
significance:  
 

• Suppose that there were in fact no trend at all: the "true slope" is assumed to be zero.   
 

• Then the slope coefficient, -0.0018825 for this sample, is less than zero by a distance of  
2.616 standard errors.   

 
 That is, 
 

(-0.0018825 - 0)/0.0007195 = -2.616 
 
 
The number -2.616 is shown in the table above under the column heading “t”.  We will often refer 
to this figure as the “t-ratio”.5  
 

 
 
 
 
 
 
 
 This requirement is more than satisfied by our coefficient (rounded) of -0.002.  Hence by 
this rule-of-thumb, the negative slope of mortality rates would be judged statistically significant; 
the regression coefficient would be said to be "significantly less than zero".  
 

"Significance" or "p-value"  
 
 A similar rule of thumb can be based on the final number, 0.011, which is in the column 
labeled "Sig.".  (The term "p-value" means exactly the same thing as "significance".  We have 
already used it in our discussion of the runs count, explained in Chapter 2.)   
 
 In this application, Sig. = 0.011 means: 
 

• If the true slope were 0 and we were looking only at sampling variation, we would 
get a sample slope coefficient at least as far from zero as is 0.002 only about 11 times in 
a thousand. 

 
• 11 times in a thousand would be considered “relatively unusual” if the true slope were 

zero (in this application, no real trend). 
 
                                                        
5 There is no need to permanently change the number of decimals shown in your table settings.  We have only done it here to 
better illustrate the calculation of the t-ratio.  You see that the value of t is correct even though the other displayed figures are 
rounded. 

The most common rule-of-thumb guide is that the slope 
coefficient is judged “statistically significant” if the 
absolute value of the t-ratio exceeds 2.   
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• Hence the significance level, or p-value, can be thought of as a measure of unusualness: 
the smaller the p-value, the more unusual the result. 

 
 How unusual is the result for it to be judged statistically significant?  Again, there is a 
conventional rule of thumb: 
 

 
 
 
 
 
 
 
 This rule of thumb comes to much the same thing as the conventional rule of thumb that 
requires that the absolute value of t exceed 2 for statistical significance. 
 
 Both rules of thumb are just that-- rules of thumb.  Neither an absolute t-ratio greater than 
2 nor a p-value less than 0.05 is so sacred an occurrence that the rule must apply without 
exception.  As you gain experience with data analysis, you may wish to modify these rules of 
thumb with judgment.  The rule of thumb gives rough guidance, however, and we recommend its 
use, especially by those who are just learning basic statistical techniques. 
 

Significance of Trend in the Running Data 
  
 In the running data of Section 1, the t-ratio was 6.358, and the p-value as rounded to three 
decimal places, was 0.000, which means less than 5 in 10,000.  Hence significance was 
overwhelming, so much so that we did not discuss it explicitly at the time, saying only that the 
visual evidence was strong. 
 

Practical Interpretation of "Significance" 
 
 Three important ideas about the word "significance" merit discussion:   
 

• In the context of our current application, "statistical significance" means only that we 
judge the difference between -0.002 and 0 as too large to be written off as a chance fluke.  
We conclude that the decline of mortality rates in intensive care is real.   

 
• A statistically significant trend is not necessarily a practically important trend.  

Practical importance must be judged in the context of the application.  In the intensive-
care application, the downtrend of mortality rates, if real, would surely be of practical 
importance because two additional survivors for each group of 20 patients is clearly 
important (see the discussion above immediately following the first regression printout). 

 
In the running application of Section 1, the uptrend of running times in a constant-effort 
workout is surely worth knowing about, and is in that sense important.  

 

If Sig. is less than 0.05, the observed coefficient is 
deemed sufficiently unusual to be judged a significant 
departure from zero. 
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• A statistically significant trend does not prove a particular causal mechanism.  
Mortality rates in the intensive care unit were improving, and that is an important fact.  
What lies behind the improvement, however, is not clear from the finding that the trend is 
significant.  It could be better medical care, but it could be some factor that has nothing to 
do with medical care.  For example, as time passed during the period of this study, 
perhaps the patients who were coming to the intensive care unit were, on average, less 
seriously ill. 

 
This last possibility can be investigated by further statistical analysis since there is 
additional information about the average severity of illness for each group of 20 patients.  
In Section 5 we present an analysis that takes this information into account.  That analysis 
will rule out the possibility that the improvement is an artifact of changes in the seriousness 
of illness of the patients coming to the intensive care unit.  

 
 But the root cause of the improvement is not known, and further study of the intensive-

care process remains an important task for future research. 
 
3. Fitting Periodic Effects by Regression: the Ishikawa data 
  
 Recall the data set contained in ISHIKAWA.sav, discussed in Section 6 of Chapter 3: 
 

First 50 observations from Ishikawa, Guide to Quality Control, 
Table 7.2, page 66.  Each successive five observations represent 
measures taken at successive times on the same data: 6:00, 10:00, 
14:00, 18:00, and 22:00.  Thus the 50 observations represent 10 
days, which we shall assume to be consecutive working days. 
The original data set has 75 further observations for another 25 
working days; to save space we will not look at these at this 
time. 

  
When first examined, this data set initially appeared to be in a state of statistical control and 
approximately normally distributed.  Then, after more detailed analysis, we discovered that the 
first period of each day tended to be higher than the observations for the subsequent four periods: 
 

"Indicator" Independent Variables for Periodic Effects 
 
 Now we come to the critical step.  In our modeling of possible time trends, we have 
created an independent variable time -- 1, 2, 3, ... -- that permits us to use regression to estimate 
the trend and test its significance.  We need to do a parallel step to create an independent variable 
for a possible first-period effect.  We begin by typing in by hand the values of a new variable, 
period-- 1,2,3,4,5,1,2,3,4,5,1,…,etc.-- just as we did back in Chapter 3:  
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The next step is to set up an indicator variable named period1 that takes just two possible 
values, 0 and 1.  For an observation taken at the first period of the day, period1 = 1; for 
observations taken at any of the four other periods, period1 = 0. 
 
We accomplish this via Transform/Compute…: 
 

• At the first step define period1 = 0 for all cases. 
 

• Then repeat Transform/Compute… as shown below: 
 

 
 

• Note that we are resetting period1 to the value 1.  Before we click on OK, however, we 
must instead click on the If… button (see arrow).  That action opens this window: 

 

 
 

• Note carefully that we have done two things here.  First, we marked the little circle for 
Include if case satisfies condition:.  Then we typed in the condition, period=1.  Recall 
that the new variable period1 is already set to zero for all cases.  With the two windows 
above set up as displayed, period1 will be changed to the value 1, but only if period=1. 

 
After we hit Continue and the subsequent OK button the Data Editor looks like this: 
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Note that we have hit the Variable View tab and changed 
the number of decimal places for period and period1 to 
0. 
  
 
 
 
 
 
 
 
 
 

 
Here are the descriptive statistics for y that we ran back in Chapter 3: 
 

 
 
Next, we execute the SPSS sequence Analyze/Compare Means/Means…which opens this 
window: 
 

 
  
 Specifying y as the dependent and period1 as the independent variable, we obtain this 
display: 
 

 
 
 

• When period1 = 1, the mean of y is 13.63 
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• When period1 = 0, the mean of y is 12.73.  

 
Thus the mean readings are higher for period1 by 13.6300 - 12.7325 = 0.8975 which can be 
rounded up to 0.90.  
 
 We can get the same information, and more, from regression analysis.  We begin with an 
interactive scatter plot of y against the indicator variable period1 in which we also ask for the 
regression line to be plotted: 
 

Linear Regression

0.00 0.25 0.50 0.75 1.00

period1

12.00

12.50

13.00

13.50

14.00

y

y = 12.73 + 0.90 * period1
R-Square = 0.40

 
There are just two vertical columns of observations.  
 

• At the left are the 40 observations at periods 2, 3, 4, 5 (period1 = 0), which extend from 
about 12.0 to 13.60 

 
• At the right are the 10 observations at period 1 (period1 = 1), which extend from 13 to 

14.4.  
  
 There is only a partial overlap between the y values corresponding to the two columns.  
Intuitively, that suggests that the difference between the first period average and the average of 
the other four periods is going to be significant. 
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Here is the key result from the display above: 
 
The regression equation is 
 
    predicted y = 12.732 + 0.898 period1  , 
 
which agrees with the note in the scatter plot above. 
 
 The salient conclusions are: 
 

• In the regression equation, the constant 12.732 is just the mean of y when period1 = 0. 
  

• The regression coefficient, 0.898, is the difference of means between period1 = 0 and 
period1 = 1.   

 
• The t-ratio 5.674 is much greater than 2.  

 
• The regression coefficient is clearly significant by the rule of thumb for t introduced 

above. 
 

• "Sig. = 0.000" means that the actual p-value rounds to 0.000 when only three decimal 
places can be shown; that is, the actual value must be less than 0.0005.  If there were no 
true period1 effect, there would be fewer than five chances in 10,000 of a difference 
between the actual regression coefficient and zero that is at least as large as 0.898.    
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• 0.0005 is much less than 0.05, so that by this rule of thumb as well, the first period 
difference is statistically significant.   

 
  We can't tell whether the difference is practically important, since we have no descriptive 
 background on the example from our source, but it is may well be so. 

 
     Diagnostic Checking 
 
 Next we look at the behavior of regression residuals as a means of checking diagnostically 
whether the assumptions of the regression model appear to hold in this application.  (We will 
always try to follow more or less the same sequence in doing these checks, so that you will 
become familiar with them.  When more checks are added later, we'll fit those in.) 
 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

-4

-2

0

2

4
Standardized 
Residual
UCL = 3.0690682
Average = .0000000
LCL = -3.0690682

Sigma level:          3

Control Chart: Standardized Residual

 
 
 
 
 
 
 
  
 
 
 

 Notice in the plot on the previous page that the regression line passes through the 
means for each group.  Since the distance between the two values of period1 is one unit, 
the slope of the line is equal to the difference between the means. 
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Runs Test 
 

  
Standardized 

Residual 
Test Value(a) .0000000 
Cases < Test Value 26 
Cases >= Test Value 24 
Total Cases 50 
Number of Runs 27 
Z .298 
Asymp. Sig. (2-tailed) .766 

a  Mean 
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 Tests of Normality 
 

Kolmogorov-Smirnov(a) Shapiro-Wilk 
  Statistic df Sig. Statistic df Sig. 
Standardized Residual .132 50 .030 .953 50 .045

a  Lilliefors Significance Correction 
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Although the residuals appear to be random, they fail the Shapiro-Wilk test for normality. (See 
highlighted value of Sig.)  We shall consider this to be a minor problem, however, and continue 
on to the next example. 
 
4. Fitting Intervention Effects by Regression: the Putting Data 
 
 Recall the example from Section 7 of Chapter 3: 
 

Indoor putting experiment.  Putts sunk per 100 trials from fixed 
distance. At the end of the first 10 groups of 100, it was 
noticed that 136 of 443 misses were left misses and 307 were 
right misses.  It was reasoned that the position of the ball 
relative to the putting stance was a problem.  "I concluded that 
the ball was too far "back" (too much in the middle) of my 
putting stance.  I moved the ball several inches forward in my 
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stance, keeping just inside my left toe."  The final 10 
observations were made with the modified stance. 

 
The variable of interest is puttmade, the percentage of successful shots out of each group of 100.  
We now need to create an indicator variable that shows if the putts were shot before or after the 
change in stance.  We will call the new variable interven, for “intervention”.  We want the 
variable to have the value “0" for the first ten groups of putts, and “1" for the last ten groups. 
 
 As in the last example, we begin by setting the new variable equal to zero for all cases: 
 

interven = 0 
 

Then we repeat the sequence Transform/Compute…, but this time setting interven = 1 subject 
to the  If…condition shown below: 
 

 
 
After we execute the transformation and change the number of decimal places for interven to 
zero the Data Editor looks like this: 
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 Here are the means and standard deviations for each set of putts-- before vs. after the 
intervention: 
 
 
 
 
 
 
 Report 
 
puttmade  
interven Mean N Std. Deviation 
0 55.700 10 5.9824
1 64.800 10 5.5737
Total 60.250 20 7.3117

 
 The following displays, in the same spirit as our analysis of the ISHIKAWA.sav data, are 
presented without comment until the end: 
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Linear Regression
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 Runs Test 
 

  
Standardized 

Residual 
Test Value(a) .0000000 
Cases < Test Value 8 
Cases >= Test Value 12 
Total Cases 20 
Number of Runs 12 
Z .432 
Asymp. Sig. (2-tailed) .666 

a  Mean 
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 Tests of Normality 
 

Kolmogorov-Smirnov(a) Shapiro-Wilk 
  Statistic df Sig. Statistic df Sig. 
Standardized Residual .134 20 .200(*) .980 20 .932

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 
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 The increase of 9.1 points in the percentage of putts sunk after the intervention is clearly 
statistically significant, and nowhere in the above displays do we see anything to make us doubt 
the validity of the regression assumptions. 
 
 We have noted the similarity between this analysis and the previous, but one essential 
difference is that in the Ishikawa data, the effect that was studied was a periodic phenomenon, that 
is, it occurred in every first observation out of successive groups of five.  We really do not have 
any good “causal” explanation for the phenomenon-- it is merely there.  In the present putting 
example we have estimated an intervention effect that is a before and after phenomenon with 
respect to the imposition on the process of a possible cause, the change in stance.  This raises the 
question of whether or not a regression analysis of the putting data would show evidence of a time 
trend, which would support the alternative hypothesis that the improvement is due to practice (i.e., 
a learning effect): 
 
 Model Summary(b) 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .591(a) .349 .313 6.0613
a  Predictors: (Constant), time 
b  Dependent Variable: puttmade 
 
 
                                                                   Coefficients(a) 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant
) 52.584 2.816  18.676 .000 1 

time .730 .235 .591 3.106 .006 
a  Dependent Variable: puttmade 
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 We leave it for you to carry out the diagnostics for this regression to confirm that the 
necessary assumptions appear to be met.  It looks like time is also a significant “explainer” of the 
behavior of the dependent variable puttmade.  How can we decide which model is better? 
 
We can compare the goodness of fit of the two regression models by comparing the residual 
standard errors, where smaller is better: 
 
Std. Error of the Estimate    5.7817     (Intervention model)    
Std. Error of the Estimate    6.0613     (Time trend model) 
 
Hence the data support the idea that the improvement can be attributed to the change of stance, 
not to a steady improvement with practice.  (It may occur to you that we might do better using 
both interven and time in a multiple regression, an approach that will be introduced in the next 
section of this chapter.  The answer, however, is that multiple regression does not significantly 
improve the fit.) 
 
 Where do we stand, then, on causal interpretation? 

• The successful-intervention interpretation fits somewhat better than the improvement-
with-practice interpretation. 

 
• The background data, including especially the line of reasoning that led to the intervention 

in the first place, supports the intervention argument. 
   

 These two facts are helpful but not decisive.  In the actual study, the student went ahead 
with further experimentation to confirm the causal interpretation: further data showed continued 
performance at the higher level attained during the final 10 trials above.  (A confirmatory study 
like this is always desirable when statistical analysis of past data suggests that a quality 
improvement has been achieved.) 
 
5. Introduction to Multiple Regression:  Allowance for Severity in the Intensive Care  
 Application 
 
 As we pointed out at the end of Section 4, regression need not be confined to use of a 
single independent variable.  The intensive care application of Section 2 can be used to illustrate 
how we can proceed when there is more than one independent variable.   
 
 Recall that there was a significant downtrend in mortality, that is, the regression of 
mortrate on time produced a significantly negative regression coefficient for time.  In reaching a 
causal inference, however, we would like to know about the severity of illness of the patients.  If, 
through time, the intensive care patients were on average less sick, we could get a downtrend in 
mortality without any change in the treatment process.   
 
 For the same data previously analyzed, information was actually available on severity.  We 
have it incorporated in the file that is named INTCAREb.sav. 
  
 The measures of severity for each case are average values of an index of mortality risk 
called the APACHE II score.  When a patient is admitted to the intensive care unit, an assessment 
is made by the examining staff and an APACHE II score based on a set of basic indicators is 
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assigned.  The values for the variable named severity in the data set are averages over the patients 
in each group of 20.   
 
 The scatter plot of mortrate on severity is sloping upward from the lower-left to the 
upper-right  corner, suggesting a positive association between the two variables, which is 
confirmed by the regression output below: 
 
 
 

Linear Regression
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m ortrate = -0.15 + 0.02 * severity
R-Square = 0.17

 
 Model Summary 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .409(a) .168 .153 .09311
a  Predictors: (Constant), severity 
 
 ANOVA(b) 
 

Model   
Sum of 
Squares df Mean Square F Sig. 

Regressio
n .101 1 .101 11.681 .001(a) 

Residual .503 58 .009    

1 

Total .604 59     
a  Predictors: (Constant), severity 
b  Dependent Variable: mortrate 
 
 
 Coefficients(a) 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant
) -.150 .108  -1.384 .172 1 

severity .022 .006 .409 3.418 .001 
a  Dependent Variable: mortrate 
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 Keep a mental note of the residual standard error, 0.09311, in boldface above.  We are 
going to use it for comparison purposes.  Recall also that the regression on time showed a 
residual standard error equal to 0.09652, so the two simple linear regression models are about 
equally successful in reducing the uncertainty surrounding mortrate (with the regression on 
severity just a hair better). 
 

Multiple Regression of Mortrate on both Time and Severity 
 
 The multiple regression is carried out via the same SPSS sequence, 
Analyze/Regression/Linear…, as before.   The only change is that, where asked to specify the 
independent variables in the dialog box, we type in the names of both variables, time and severity.  
Here are the results: 
 
 Model Summary(b) 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .511(a) .261 .235 .08849
a  Predictors: (Constant), severity, time 
b  Dependent Variable: mortrate 
 
 ANOVA(b) 
 

Model   
Sum of 
Squares df Mean Square F Sig. 

Regressio
n .158 2 .079 10.073 .000(a) 

Residual .446 57 .008    

1 

Total .604 59     
a  Predictors: (Constant), severity, time 
b  Dependent Variable: mortrate 
 
 Coefficients(a) 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant
) -.082 .106  -.779 .439 

time -.002 .001 -.306 -2.686 .009 

1 

severity .021 .006 .395 3.465 .001 
a  Dependent Variable: mortrate 
 
 

 The fitted regression equation is: 
 
 predicted mortrate = - 0.082 - 0.002 time + 0.021 severity 
 
The regression or slope coefficient of time is -0.002, which is the same when rounded as the result 
of -0.002 in the simple regression of mortrate on time.  The interpretation of -0.002 is this:   
 

• for a unit increase in time, fitted mortrate decreases by 0.002 unit, for any level of 
severity.   
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 This, in turn, suggests that the trend found in the original simple regression was not just a 
reflection of changing severity of illness. 
 

 Similarly for severity, where the regression coefficient is 0.021:  
 
• for a unit increase on the severity scale (Apache II scale), fitted mortrate increases 0.021 

units, for any value of time. 
 
 This, in turn, suggests that there is a severity effect as well as a trend effect. 
 
 Assessment of statistical significance of these two coefficients is done as before:  for both 
coefficients we see by the highlighting in the regression output above that the absolute t-ratios 
were substantially greater than 2, and the p-values (or significance levels) were much less than 
0.05: 
 
 Note also that the residual standard error, equal to 0.08849,  is less than it was for either 
simple regression (that is, for mortrate regressed on severity or for mortrate on time).  Thus the 
multiple regression model promises better predictability. 
 

 
Analysis of Variance 

 
 So far we have not commented on the SPSS regression output in the second table of the 
display, i.e., the ANOVA display.  The term “ANOVA” stands for “Analysis of Variance”.   It is 
called the “Analysis of Variance” because it analyzes, i.e., “breaks down” a measure of variability 
of the dependent variable into two parts-- (1) the part “explained” by the fitted model, and (2) the 
residual part.  We shall not try to give a detailed explanation here because that would take us 
beyond the theoretical scope of STM.  However, there is one key number, the significance level, 
shown in bold below: 
 
 ANOVA(b) 
 

Model   
Sum of 
Squares df Mean Square F Sig. 

Regressio
n .158 2 .079 10.073 .000(a) 

Residual .446 57 .008    

1 

Total .604 59     
a  Predictors: (Constant), severity, time 
b  Dependent Variable: mortrate 
 
 This p-value is less than 0.0005, which can be interpreted as a p-value or level of 
significance for the model as a whole, including both independent variables, time and severity.  
That is, if neither independent variable really contributed to the fit except by chance, there would 
be fewer than 5 chances in 10,000 of getting coefficients at least this far from 0. 
 
 By contrast, the p-values were 0.011 for time and 0.001 for severity in the regressions on 
a single independent variable, so the significance is clearer for the model as a whole than for either 
of the component variables.  This will not always be so, and you would do well always to check 
the overall significance level for the analysis of variance as well as the individual p-values (and/or 
t-ratios) for the coefficients of the individual variables of the multiple regression. 
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Graphical Display of Multiple Regression 

 
 After running the multiple regression above, we click on Graphs/Interactive/ 
Scatterplot… again.   This time, however, we choose the 3-D Coordinate form and set up the 
dialog window as follows: 
 

 
 
 As you might expect, the fitted linear model for the regression of a dependent variable on 
two independent variables is a plane.  The point of origin for all three of the axes is the corner that 
appears to be closest to you when looking straight at the plot.  If you follow the orientation of the 
edges of the plane shown below, you can see that as time increases, for a fixed value of  severity, 
the fitted value of mortrate decreases-- corresponding to the negative coefficient of time.  
Similarly, you can see by following the edge of the plane along the severity axis that mortrate 
increases as severity increases, holding the value of time fixed.6  
 

                                                        
6Actually, the fitted regression plane should extend infinitely in all directions.  The “edges” here are really the lines of 
intersection of the plane with the front, back, and side walls of the cube defined by the three coordinate axes of the plot.  When 
the linear regression involves more than one independent variable, the regression coefficients for the variables are called 
“partial slopes”.  (Technically, they are the first-order partial derivatives of the linear function.)  
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There is another nice feature of  SPSS with respect to 3-D plots that may provide some 
amusement as well as education when you examine the image above, or a similar one, on your 
own PC.  If you double-click and enter the chart editor you will see the window below: 

 
This display shows a feature that enables you to rotate the 3-D plot 
shown above about any of the three axes.  Try it out just for fun.  Just 
place your mouse pointer on one of the wheels and then, pressing the 
left button, move it.  In all seriousness, this feature sometimes enables 
an analyst to detect indications of special causes that might not be 
evident in the first image is produced.  Sometimes the detection just 
requires looking at the picture from a slightly different perspective.  We 
mention this point here for future reference. 
 

 
 

Diagnostic Checking of Multiple Regression 
 
 Now, just as in simple regression, we check the multiple-regression assumptions by 
"diagnostic checks" of residual behavior.  These parallel the checks used in simple regression.  All 
are satisfactory, as you should confirm. 
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 Tests of Normality 
 

Kolmogorov-Smirnov(a) Shapiro-Wilk 
  Statistic df Sig. Statistic df Sig. 
Standardized Residual .081 60 .200(*) .987 60 .763

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 
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Before continuing our main discussion let’s take a few moments to visualize in three dimensions 
the three levels of linear regression that we have been considering.  The first of the three, although 
it may not seem at first to be a case of regression, is where we used no independent variables at 
all.  We have said that if mortrate were in control (which it is not), and without considering its 
possible relationship with other variables, our best estimate for the next, as yet unobserved, value 
is just the sample mean.  Think about this for a moment. That is the same thing as fitting a linear 
regression model with just the constant, no other parameters. 
Here is the representation of this very, very simple linear model in 3-D7: 
 

 
    predicted mortrate = 0.2175 
 
Note that the fitted plane in this example is completely horizontal, i.e., the partial slopes for time 
and severity are set at zero, and the plane intercepts the vertical axis at the mean value.  It is a fact 
                                                        
7 Most of the plots shown here and on the following pages were made using another statistical software package, SYSTAT for 
Windows®, Version 6, a product of SYSTAT Products, SPSS, Inc., of Evanston, IL.  We do not expect you to reproduce them. 
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that if you could measure the vertical distances of the various points from the plane, square the 
distances, and sum up the squares, you would just get the same sum of squared deviations that is 
used in the calculation of the standard deviation of mortrate. 

 
 Next we show the 3-D plot for the simple (one independent variable) of mortrate on time: 
 

 
   predicted mortrate = 0.275 - 0.002 time 
 
 Now the plane is still horizontal with respect to the omitted variable severity.  Along the 
time axis, however, it is lifted up a bit, intercepting the vertical axis at 0.275,  and it is tilted 
downward, displaying the negative partial slope for time, -0.002.  With the ability to move the 
plane from a totally horizontal position by regressing mortrate on time, we have made the 
residual standard error smaller than the original value, i.e., the plane is closer to the individual data 
points.   
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 Finally we display the 3-D picture of the full model with both time and severity on the 
right-hand side of the regression equation: 
 

 
 predicted mortrate = -0.082 -0.002 time + 0.021 severity  
 
 
 Now the plane is tilted upward along the severity axis and the intercept is decreased in 
value.  When rounded to three decimal places, the partial slope for time is the same as before. 
You see that with freedom to adjust the orientation of the plane more than before by regressing on 
both variables instead of just one we have succeeded in placing the linear surface closer than ever 
to the swarm of points.  Although we could not show a picture, you can imagine that if we could 
identify additional independent variables that are related in some way to mortrate, we could fit a 
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plane (called a hyperplane when greater than three dimensions) that gets closer and closer to the 
points with each increase in dimension, approaching a perfect fit8. 
 

Relationship between Independent Variables 
 

 One other aspect of the data is of interest, the relationship between the two independent 
variables time and severity.  We see from the scatter plot below that the relationship appears to 
be weak or nonexistent. 
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 We repeat the 3-D scatter plot, but this time with “spikes” connecting the data points with 
the floor, that is, the plane with time and severity for axes.  The scatter plot above is what you 
would see if you were in a helicopter hovering directly above and looking straight down at the 
floor. 

    
     

     
  
 
 
 
 
 
 
 
 
 
 
 

                                                        
8 Later we shall discuss the danger and the folly of “overfitting” a regression model. 

YOU ARE HERE,
LOOKING DOWN



4-57 

  
 
At the next step we invoke the SPSS sequence Analyze/Descriptive Statistics/ Descriptive… 
for the sole purpose of producing standardized values of time and severity.  (See the checked 
box.) 
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 The plot of standardized severity against standardized time (above and to the right) is 
very similar to the previous one, but now the overall horizontal and vertical dispersions are the 
same. (The standard deviation of any standardized variable is 1.)  Note that this time we called for 
the regression line to be drawn.  It is almost horizontal (with only a slight negative slope), 
indicating virtually no linear association between the variables.  Here is the output for zseverity 
regressed on ztime: 
 

 

 
 
The results confirm that the regression coefficient is close to zero-- the low t-ratio and high p-
value show that we cannot reject the hypothesis that there is no linear relationship between the 
two variables. 
  



4-58 

 Next, we run the other regression-- ztime regressed on zseverity: 
 
 

 
 

 
 
 Perhaps surprisingly to you, the displays for zseverity regressed on ztime and ztime 
regressed on zseverity are exactly the same except for the labeling of the dependent and the 
independent variables.  Note especially that the regression coefficient is -0.047 in both cases.  In 
general when we compare the regression of Y on X with the regression of X on Y, the two 
regression coefficients will not, as they are here, be equal.  We are working here, however, with 
standardized variables ZX and ZY, and with standardized variables it does not matter which is 
the dependent or the independent variable--the coefficients for the two alternative regression 
lines must be equal. 
 
 The regression coefficient of ZY on ZX, or of ZX on ZY, can be interpreted as the 
correlation coefficient between X and Y.9  
 
 In discussing the scatter plot for zseverity vs. ztime above we observed that the regression 
line was nearly horizontal--- hence its slope is near zero, meaning nearly zero correlation.  If, on 
the other hand all the points lie exactly on an upward sloping line it will have a slope of 1 (with 
standardized ZX and ZY) and the correlation coefficient is +1.  If all the points lie on a downward 
sloping line with slope -1, then the correlation is -1, indicating perfectly negative linear 
association.  The correlation coefficient can never be less than -1 or greater than +1.  In the real 
world most data sets yield correlations that lie between these extremes. 
 

                                                        
9 This is but one of several definitions of the correlation coefficient--- that is, the slope of the regression line when one 
standardized variable is regressed on another standardized variable.  We may mention some of the other interpretations later. 

The correlation coefficient, R, is routinely displayed in the output from linear regression along with 
its squared value, R Square.  (See the tables above entitled Model Summary.) The square of -0.047 
is 0.002 (or 0.2%) when rounded to three decimal places. We shall later give another interpretation 
of R Square in terms of the "percentage of variance explained by the regression". 
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 If you would like SPSS to compute the correlation coefficient for you without running a 
regression involving standardized variables use the sequence Analyze/Correlate/Bivariate…: 
 

The correlation is called “bivariate” because it 
is a measure of association involving two 
variables.  Note that in the window at left we 
have checked the box for Pearson.  Karl 
Pearson (b.1857-d.1936) was one of the 
founders of modern statistical science.  There 
are many measures of association that use the 
name “correlation”.  Pearson’s is just one of 
them, but arguably the most widely used. 
 
 
 
 

 
Here is the table that results when we 
click OK in the window above: 
 
You see the number -.047, the same as 
the slope of the two regression lines 
involving the standardized variables. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Just to give you something to think about we have specified five variables to have correlations 
calculated.  That implies that there will be 10 distinct correlations relating each pair of variables.  See 
if you can figure out how to read the output in the “correlation matrix” displayed below: 
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Note first the correlation between time and severity that we have been discussing.  It is lightly 
shaded. 
 
 Next, observe that the correlation between mortrate and predicted is 0.511.  The predicted 
variable here is from the multiple regression of mortrate on both time and severity.  If you thumb 
back a few pages to the display of that regression you see that R Square was 0.261.  You can verify 
that it is the square of 0.511.  This value is the highest correlation that you can achieve with 
mortrate by choosing coefficients for a linear function of time and severity.   
 
Thus predicted (PRE_1) can be called that linear function of time and severity that has the 
maximum correlation with the dependent variable, mortrate.  The method of least squares leads to 
that achievement. 
 
 Notice also that the correlations between residual (RES_1) and each of the variables PRE_1, 
time, and severity are all zero.  This is another feature of the least squares method: 

 
 
 
 
 

The residuals must be uncorrelated with the predicted (fitted) values in linear 
regression.  Similarly, they are uncorrelated with any of the independent variables 
that were used in the model.  
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Effects of Correlation between Independent Variables 
 
 In this first application of multiple regression, then, the correlation between independent 
variables severity and time turns out to be very low.  An important consequence of this fact is that 
the regression coefficients in the multiple regression are close to those in either of the simple 
regressions, mortrate on severity or mortrate on time. 
 

If, on the other hand, we regress Y on X1 and X2, and X1 and X2 are highly correlated, the 
coefficients in the multiple regression can differ greatly, even in sign, from the coefficients in the 

simple regressions of Y on X1 and Y on X2.    If the correlation between X1 and X2 is extremely 
high the coefficients for each of the variables may appear to be close to zero, whereas if one of the 
independent variables were omitted, that remaining would have a significant association with the 
dependent variable. We will say more later about the complications entailed by this phenomenon, 

which is sometimes given the ominous name "multicollinearity". 
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APPENDIX: MORE ABOUT PREDICTED VALUES 
 

 
 Let’s consider again the data file LAPSPLIT.sav.  We shall rerun the regression of splitime 
on time, but this time, in addition to saving the unstandardized predicted values, PRE_1, we also 
save the prediction intervals (both mean and individual, as shown by the arrow below). 
 
 

 
 
 
The first few rows of the Data Editor now look like this: 
 
 

 
Next, we set up a scatter plot with overlay as follows: 
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The result (after editing)  is the graph below: 
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 In addition to showing the regression line (the line of predicted values), there are two sets of 
lines enclosing the fitted line that must be explained.  Consider first the pair of new lines indicated by 
plus signs.  These lines are fairly close to the regression line and are bowed in shape—that is, the 
interval between them becomes wider as the value of time moves farther from its mean, 15.5.  The 
lines are the upper and lower confidence limits for the predicted value itself.  They reflect the fact 
that the regression line is only an estimate based on the present sample, and that if another sample 
had been drawn, under the same process conditions, we would have seen a different result, 
although one would hope that under conditions of control there would not be much variation from 
the line shown here.  To put it in other terms, if you believe that there is a “true” linear relationship 
between splitime and time, before we even selected the sample there was a 95 percent chance that 
the resulting limits shown by pluses would enclose the correct line.  That is why they are called 95% 
confidence limits. 
 
 Although the confidence bounds for the regression line shown by pluses deserve mention, in 
this course we are more interested in the outer 95% upper and lower confidence limits shown by 
dashes.  Focus, for example, on the vertical grid line at time = 20.  If you go back to the Data 
Editor you will see the following for that case: 
 

 

 
 
Now consider this problem:  Suppose that we want to repeat the process under exactly the same 
conditions as those that were in effect when we made our observations of splitime, and we ask this 
question:  “What will our new observation of splitime be when time equals 20?”  The answer is that 
we expect it to be the same as our predicted value (the height of the regression line) which is 69.39. 
(See the image above for time=20.)  We also must ask, however, about our uncertainty concerning 
that prediction for an individual new observation.  The lower and upper confidence limits, LICI_1 
and UICI_1 tell us that with 95% confidence, although we expect the new observation to fall right 
on the line, it may be as low as 67.37 or as high as 71.41.  Another way to look at the problem is to 
remember that in asking for a prediction of a new observation of splitime we are not only uncertain 
about the regression line, but we are also uncertain about the residual from the line, i.e., the amount 
by which the actual splitime will fall above or below the line.  Our uncertainty about the residual is 
expressed by the residual standard error which, you may recall, was reported as 0.96588.  (See the 
original regression analysis early in this chapter.)  You can verify that the intervals between LICI_1 
and UICI_1 for all rows in the Data Editor extend approximately from minus two to plus two times 
the residual standard error.10 
 
 As a final point of discussion in this appendix, recall that around page 4-22 in this chapter we 
mentioned the advantage of having the regression model to forecast the value of splitime when time 
= 31, one period beyond the data that were actually observed.  We explained that instead of simply 
using the mean value of past data as an estimate, it is better to take the time trend into account by 
using the formula for the predicted value, a procedure that gave us a forecast value equal to 70.8 
seconds.  We shall now show how to use SPSS to accomplish this while also producing confidence 
limits for the forecast. 
 

                                                        
10 The multiplier is actually closer to 2.08, but we shall not quibble in this course about minor technical details.  The important 
point is that the residuals are assumed to be approximately normally distributed. 
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 The first step is to clear out all of the columns involving predicted values and confidence 
limits from the Data Editor and then to type in two new values of time in rows 31 and 32: 
 

  
 

 
 
 For now, ignore the last value, 100—we shall discuss that later. Concentrate on the new 
value 31. 
 
 At the next step we must create a new variable—we will call it select.  Through Transform/ 
Compute… we make select exactly equal to time.  The last rows of the Data Editor now look like 
this: 
 

   
 

 
 
 Then we set up the regression analysis again, but this time we have moved the new variable  
select into the box for Selection Variable: 
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Next, we must click on the Rule… button and set up the new dialog window as follows: 
 

 
 
Finally we continue back to the regression dialog window and do the analysis, saving the 
unstandardized predictive values and the confidence limits for individuals.  Our results look like this: 
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 We see that by using the Selection Variable feature of linear regression, we can obtain 
predicted values and confidence limits for values of the independent variable that are not in the data 
set that was used to fit the model.  For time = 31 we get the same value that we calculated by hand 
back on page 4-22, 70.8 seconds, but now we can also report that our 95% confidence interval is 
68.7 seconds to 72.9 seconds, unfortunately fairly wide-ranging. 
 
 Finally we explain why we have also included 100 as a value for time for which we want to 
forecast splitime.  Note in the image above that we predict that for time = 100 our running time will 
have degenerated to 79.8 seconds with an interval of uncertainty ranging from 75.7 to 83.8 seconds.  
You should ask, however, “Why are we trying to predict an observation that is so far removed from 
our actual data?  Is it even sensible to consider that the runner would have the strength and 
endurance to continue for 100 lap splits?  Do we really believe that the straight line would continue 
with the same slope as during the first 30 splits?”  Recognizing that the answer to all of the questions 
is probably a resounding “No!”, we also note that we are at least penalized for such an outlandish 
prediction by a confidence interval that is very wide.  When time = 100, the resulting interval is 8.1 
seconds wide as opposed to only 4.2 seconds wide for time = 31.  In our graph above, if the time 
axis had been extended far enough, the outer limits (the lines of dashes) would be bowed outward, 
similar to the inner confidence bands (shown by pluses).  Thus there is an important lesson contained 
in this last example: 
 

 We caution that in real world applications of linear regression it is extremely dangerous 
to forecast results using values of the independent variables that are far outside the range 
observed in the original data set.  How can we be sure that the conditions underlying the 
process that we have observed will not have shifted in some unpredictable way? 
 
 
 
 


