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1. Introduction••[AQ1]

Since the time of Newton, a central dogma of scientific thinking has been that phys-
ical systems are best understood by representation in terms of the smallest possible
subsystem (i.e., model) that captures the important mechanistic interactions. The
influence of gravity in maintaining the earth’s orbit about the sun is satisfactorily
explained by analyzing the equations of motion representing a universe consisting
of two massive bodies. Still, a complete mathematical analysis of the three-body
problem remains out of reach, and most quantitative analyses of practical engineer-
ing problems, such as the analysis of the material properties of metal composites
and the building of aircraft, are based on a combination of mechanistic models
with intermediate-level empirical descriptions in quantitative terms. This approach
is typical of engineering solutions to complex problems in physical sciences.

Living biological systems consist of not two, or even two hundred interacting
components. Analysis, prediction, and rational manipulation of cellular function
requires a mechanistic understanding of physical systems of unimaginable
complexity. These are truly complex systems . Furthermore, each biological system
is geared toward a unique function (or functions), a concept usually lacking in the
physical sciences but central to engineering (Hopfield, 1994).

Two other disciplines that have tackled complexities similar to those encountered
in Systems Biology are economics and ecology. It is arguable that mathematical
thinking, language, and modeling are well-accepted components of these two
fields. In addition, in both fields there is a clear distinction between the so-called
micro- and macroscopic views. The microscopic view focuses on the small-scale
mechanistic components of a system, while the macroscopic view treats the systems
as a whole. As in biology, both economics and ecology have yet to establish a
quantitative framework connecting the two viewpoints.
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While it may seem natural to follow the path paved by Newton in constructing
a differential equation–based representation for biological systems, we should not
treat uncritically the assumption that a useful representation of this form always
exists. Popular mythology aside, Newton stood on no one’s shoulders. Similarly,
we do not require Systems Biology to stand on his alone.

Clearly, certain aspects of cellular physiology are successfully quantified via a
traditional kinetic differential equation–based theory. A classical example is the
electrophysiology of excitable cells, a field pioneered by Hodgkin and Huxley
(1952). On the basis of their foundational description, models of ever-increasing
complexity have been introduced, leading toward more complete computational
models of cellular electrophysiology (Noble, 2004). However, it is not immediately
clear that differential equations will provide a universal framework for integrating
these models with cellular mechanics, metabolism, genetics, and other phenomena.
It seems more likely that no such universal mathematical framework will exist for
Systems Biology.

In the past several decades, progress in cell biology has been driven mainly by
the philosophies of and methodology from biochemistry and molecular genetics.
Biochemistry emphasizes individual reactions and their chemical nature: what are
the reactants and products; which enzyme is involved; and what is the protein
structure and enzyme mechanism? Molecular genetics, on the other hand, focuses
on the function and/or malfunction of molecular components and on information
processing in living cells. The traditional modeling approach in biochemistry is
differential equation–based enzyme kinetics. Modeling studies of one or a few
enzymatic reactions at a time have been successfully applied to in vitro kinetics.
It remains to be demonstrated, however, that this approach can be scaled up to an
in vivo system of hundreds of reactions and species with thousands of parameters
(Teusink• et al ., 2003). More importantly, it is not clear that this is the ideal•[AQ2]

approach for integrating biochemistry with molecular genetics.
The constraint-based modeling (CBM) approach circumvents several of these

difficulties. It facilitates integration of experimental data of disparate types and
from disparate sources while increasing the accuracy in its prediction. It does not
require a priori knowledge (or assumptions) regarding all of the mechanisms and
parameters for a given system. However, when a priori knowledge exists, such
as data on enzyme kinetics or measurements of in situ concentrations and fluxes,
this knowledge can be introduced in the form of constraints, on equal footing
with molecular genetic observations on the topology and information flow in a
biochemical network. While the differential equation–based modeling provides
predictions with “high information content and high false rate”, the CBM approach,
by design, provides a low level of false prediction, but can often give little
information in its prediction. Thus, we believe that these two approaches will
ultimately prove to be complementary.

It is the aim of this chapter to review this alternative, constraint-based approach
to modeling biochemical systems (Reed and Palsson, 2003). We shall focus on
modeling of cellular metabolic networks, provide a comprehensive description of
the mathematical and theoretical basis for CBM of metabolic systems. The material
has been organized with the objective of a convenient exposition, rather than as an
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historical account. Wherever possible, we point to detailed reviews on specialized
topics.

2. Biochemical variables and constraints on fluxes

For metabolic systems, the variables of interest are the concentrations of
biochemical species (ci), the fluxes of the biochemical reactions (Jj ), and the
activities of the associated enzymes (Xj ). Furthermore, metabolic fluxes are
responsible for maintaining the homeostatic state of the cell, a condition that
translates into the assumption that the metabolic network functions in or near a
steady state, that is, all of the concentrations are treated as constant in time.

2.1. The mass-balance constraint

In a metabolic steady state, the biochemical fluxes are balanced to maintain constant
concentrations of all internal metabolic species. If the stoichiometry of a system
made up of M species and N fluxes is known, then the stoichiometric numbers can
be systematically tabulated in an M × N matrix, known as the stoichiometric matrix
S̃ (Clarke, 1980). The Sij entries of the stoichiometric matrix are determined by
the stoichiometric numbers appearing in the reactions in the network. For example,
if the j th reaction has the form:

SL
1jA1 + . . . + SL

MjAM�SR
1jA1 + . . . + SR

MjAM (1)

where Ai represents the i th species, then the stoichiometric matrix has the form
Sij = SR

ij − SL
ij .

The fundamental law of conservation of mass dictates that the vector of Steady
state fluxes, J, satisfies

S̃J = b (2)

where b is the vector of boundary fluxes that transport material into and out of the
system. If the values of the boundary fluxes are not known, equation (2) can be
written as SJ = 0 in which the boundary fluxes have been incorporated into the
M ×(N + N ′) matrix S, where N ′ is the number of boundary fluxes (Qian et al .,
2003). As an example, consider a simple network of three unimolecular reactions:

A
J1� B, B

J2� C, C
J3� A (3)

where all reactions are treated as reversible; left-to-right flux is the direction defined
as positive. The network of equation (3) is represented by the stoichiometric matrix:

S̃ =
A

B

C


 −1 0 +1

+1 −1 0
0 +1 −1


 (4)
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Next, consider that species A is transported into the system at rate bA and species
B is transported out at rate bB. Then the mass-balance equations S̃J = b can be
expressed:


 −1 0 +1

+1 −1 0
0 +1 −1





 J1

J2

J3


 =


 −bA

+bB

0


 . (5)

Algebraic analysis of this equation reveals that mass-balanced solutions exist if
and only if bA = bB . Equation (5) can be simplified to J2 = J3 = J1 − bA. Thus,
mass balance does not provide unique values for the internal reaction fluxes. In
fact, for this example, solutions exist for

J1 ∈ (−∞, +∞), J2 ∈ (−∞, +∞), J3 ∈ (−∞, +∞) (6)

Equation (6) illustrates the fact that often the mass-balance constraint poses an
underdetermined problem; typically, it is necessary to identify additional constraints
and/or to formulate a model objective function to arrive at meaningful estimates
for biochemical fluxes.

2.2. Thermodynamic constraints

In addition to the stoichiometric mass-balance constraint, constraints on reaction
fluxes and species concentration arise from nonequilibrium steady state biochemical
thermodynamics (Hill, 1977). For a biochemical reaction at a constant temperature
T, such as

A + B � C + D (7)

there exists a forward flux J + and a backward flux J −, with net flux J = J +−J −.
The concentrations of the reactants and products in this reaction are related to the
chemical potential of the reaction via (Qian, 2001)

�µ = µC + µD − µA − µB = kBT ln(J−/J+) (8)

where k B is the Boltzmann constant. We see from equation (8) that J and
�µ always have opposite signs, and are both zero only when a reaction is in
equilibrium.

For a system of reactions, let �µ be the vector that contains potential differences
for all the reactions. The magnitude of the product −J�µ is the amount of heat
the reactions dissipate per unit time. The negative sign reflects the Second Law
of Thermodynamics according to Lord Kelvin: One cannot convert 100% of heat
energy into useful work.

The fundamental law of conservation of energy (First Law of Thermodynamics)
dictates that the heat dissipated by the reactions is supplied by constant feeding
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of the open biochemical system. We have shown that this statement can be
mathematically expressed as

µJ = �µS̃J = µb (9)

where the right-hand side of equation (9) is the amount of energy supplied to the
system through boundary fluxes (Qian et al ., 2003). If the system is closed by
removing the boundary fluxes, Equation (9) becomes

�µK = 0 (10)

where the matrix K contains a basis for the right null space of S̃. This relation
reflects energy balance, a generalization of Kirchhoff’s loop law and the Tellegen’s
theorem in electrical circuits (Beard et al ., 2002).

For the example of equation (3), equation (10) is expressed as:

[�µ1 �µ2 �µ3]


 1

1
1


 = 0 (11)

Here, the matrix S̃ of equation (4), has a one-dimensional null space, for which
the vector [1 1 1]T is a basis. Equation (11) corresponds to summing the reaction
potentials about the closed loop formed by the reactions in Equation (3).

The requirement that J and �µ for each reaction in a network have opposite
signs provides a stringent constraint on the vectors J and �µ. Each vector J that
satisfies mass balance S̃J = b must also satisfy the following condition in order to
be thermodynamically feasible. The system of inequalities

∑
i

µiS̃ij Jj ≤ 0, (j = 1, 2, . . . , N) (12)

must have at least one nonzero solution for {µi} (Qian et al ., 2003; Beard et al .,
2004).

Under this constraint, the bounds on the fluxes of equation (5) are narrowed
from those of equation (6) to:

J1 ∈ (0, bA), J2 ∈ (0, bA), J3 ∈ (0, bA) (13)

Thus, in general, the thermodynamic constraint narrows the feasible flux space,
but not necessarily to a unique solution. Knowledge of the boundary fluxes
translates into constraints on the reaction directions. Thus, the feasible reaction
directions are a function of an open system’s (i.e., a cell’s) interaction with its
environment.

Prior to the introduction to the generalized constraint-based thermodynamic
theory outlined above, applications of constraint-based modeling of metabolic
systems relied on an empirical set of irreversibilities that were obtained from
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prior observations of reaction directions in physiological settings. By treating
certain reactions as implicitly unidirectional, biologically reasonable results can
often be obtained without considering the system thermodynamics as outlined
above. Since the system-level thermodynamic constraint is inherently nonlinear, in
current and future application of constraint-based modeling, it may be practical to
implement unidirectional (irreversibility) constraints on specific reactions in large-
scale network models.

3. Biochemical concentrations and enzyme activities

Combining mass balance with the thermodynamic constraint, one can determine
the feasible ranges for the biochemical concentrations and the levels of enzyme
activities.

3.1. Feasible biochemical concentrations from potentials

Introducing the chemical potential and the energy balance equation provides a solid
physical chemistry foundation for the CBM approach to metabolic systems analysis.
Proper treatment of the network thermodynamics not only improves the accuracy of
the predictions on the steady state fluxes, but can also be used to make predictions
on the steady state concentrations of metabolites. To see this, we substitute the
well-known relation between the chemical potential µ and the concentration c of
a biochemical species, µ = µo + kBT ln c into the equation (12):

∑
i

ln ciS̃ij Jj ≤ −�µo
j (14)

where �µo
j is the standard state chemical potential difference for reaction j ,

which may be obtained from a standard chemical reference source. There is also a
concerted effort to establish a central database for this information at the National
Institute of Standard and Technology (NIST). If a solution for µi exists for equation
(12), then there exists a set of corresponding concentrations ci. In fact, equation
(14) provides a feasible space for the metabolites concentrations as a convex cone
in the log-concentration space. If the set of feasible concentrations is empty, then
the vector J = {Jj } is thermodynamically infeasible.

3.2. Biochemical conductance and enzyme activity

From the traditional biochemical kinetics standpoint, both steady state biochemical
concentrations and reaction fluxes are predictable from known enzyme reactions
with appropriate rate constants and initial conditions. In steady state, the fluxes
are computable from the concentrations of the reactants and products. However,
a realistic challenge we confront is that our current understanding of the reaction
mechanisms and measurements of rate constants are significantly deficient. From
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the standpoint of CBM, however, the ratio between the Jk and �µk of a particular
reaction is analogous to the conductance, which can be shown to be proportional
to the enzyme activity of the corresponding reaction. We emphasize that the
magnitudes of both Jk and �µk are functions of the reaction networks topology.
Therefore, each one alone will not be sufficiently informative of the level of
enzyme activity (i.e., the level activity due to gene expression or posttranslational
modification).

3.3. Conserved metabolic pools

In addition to the constraint on concentrations imposed by equation (14), a
reaction network’s stoichiometry imposes a set of constraints on certain conserved
concentration pools (Alberty, 1991). These constraints follow from the equation
for the kinetic evolution of the metabolite concentration vector:

Pdc/dt = SJ (15)

where P is a diagonal matrix, with diagonal entries corresponding to the partition
coefficients, or fractional intracellular spaces, associated with each metabolite in the
system. In equation (15), columns corresponding to the boundary fluxes have been
grouped into the matrix S. Here, the vector J includes both internal reaction fluxes
and boundary fluxes. The left null space of the matrix P−1S may be computed and
bases for this space stored in a matrix L, such that:

Ldc/dt = LP−1SJ = 0 (16)

It follows from equation (16) the product Lc remains constant and defines a
number of conserved pools of metabolic concentrations. For example, if we were to
consider the glycolytic series as an isolated system, with no net flux of phosphate-
containing metabolites into or out of the system, then as phosphate is shuttled
among the various metabolites, the total amount of phosphate in the system is
conserved.

3.4. Incorporating metabolic control analysis

One of the theoretical frameworks in quantitative analysis of metabolic networks is
metabolic control analysis (Westerhoff and van Dam, 1987; Heinrich and Schuster,
1996). In metabolic control analysis, the enzyme elasticity coefficients provide
empirical constraints between the metabolites concentrations and the reaction
fluxes. These constraints can be considered in concert with the interdependencies
in the J and c spaces that are imposed by the network stoichiometry. If the
coefficients εi

k = (ck/Ji)∂Ji/∂ck are known, then these values bind the fluxes
and concentrations to a hyperplane in the J, c space. In addition, the constraint-
based approach finds applications (Beard et al ., 2003) in dynamic metabolic control
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analysis, which derives flux control coefficients from linear relaxation kinetics in
response to perturbations of a steady state (Reder, 1988; Liao and Delgado, 1993).

4. Optimization theory and objective functions

Constraint-based metabolic analysis is intimately tied to the mathematical field of
optimization. Readers may find an accessible introduction to optimization theory,
which represents a mature field of modern applied mathematics, in Strang’s
Introduction to Applied Mathematics (Strang, 1986). Optimization theory has
been the major mathematical engine behind bioinformatics and genomic analysis
(Waterman, 1995). Constraint-based approaches have also been very successful
in biological structural modeling ranging from distance geometry calculations
for protein structure prediction from NMR to the recent structural determination
of large macromolecular complexes (Alber et al ., 2004). For the purposes of
this chapter, it is sufficient to be familiar with the following basic concepts of
optimization theory.

Mathematical optimization deals with determining values for a set of unknown
variables x1, x2, . . . , xn, which best satisfy (optimize) some mathematical objective
quantified by a scalar function of the unknown variables, F(x1, x2, . . . , xn). The
function F is termed the objective function; bounds on the variables, along with
mathematical dependencies between them, are termed constraints . Constraint-based
analysis of metabolic systems requires definition of the constraints acting on
biochemical variables (fluxes, concentrations, enzyme activities) and determining
appropriate objective functions useful in determining the behavior of metabolic
systems.

Therefore, in CBM, the objective functions play a crucial role. A given objective
function can be thought of as a mathematical formulation of a working hypothesis
for the function of particular cell or cellular system. These objective functions
should not be considered to be as theoretically sound as the physiochemical
constraints; but they may be informative and biologically relevant. They can serve
as concrete statements about biological functions and powerful tools for quantitative
predictions, which must be checked against experimental measurements. One of
the surprising discoveries in constraint-based modeling is how well certain simple
objective functions have described biological function (see below).

That a cell functions precisely following some rule of optimality (such as optimal
energetic efficiency for optimal cell growth rate) is, of course, highly suspect.
There may be an evolutionary argument in favor of certain objective functions,
but the ultimate justifications lie in the correctness of its predictions. In this
sense, the constraint-based optimization approach provides a convenient way to
efficiently generate quantitative predictions of biological hypotheses formulated
in terms of objective functions. The value of this approach is in facilitating
the systematic prediction–experimental verification–hypothesis modification cycle,
ideally leading to new discoveries.

The aim of metabolic engineering is different from that of the traditional
biological research (Bailey, 1991; Stephanopoulos, 1994). In metabolic engineering,
one is more interested in the “capacity” and optimal behavior of a “biological
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hardware” (Edwards and Palsson, 2000; van Dien and Lidstrom, 2002) rather than
its natural function per se. For this reason, the metabolic engineering community
has been a major proponent of the constraint-based optimization approach, while
the cell biologists, whose traditional inclination follow reductionism, view the
approach with certain healthy skepticism. Hopefully, with the introduction of
thermodynamics, and the establishment of physiochemical basis of the CBM, the
two communities will join force in furthering the research on Systems Biology of
cells (Hartwell et al ., 1999).

5. Applications of constraint-based modeling

For bacterial cells, growth rate (rate of biomass production) has been a widely
used objective function. This objective is constructed as a net flux out of the
cell of the components of biomass (amino acids, nucleotides, etc.) in their proper
stoichiometric ratios, which translates into a linear function of the reaction fluxes.
On the basis of this elegant paradigm, predictions from FBA of the fate of the E. coli
MG1655 cell following deletions of specific genes for central metabolic enzymes
have been remarkably accurate (Edwards and Palsson, 2000). When combined with
energy balance analysis (EBA), it has been shown (Beard et al ., 2002) that cells
with nonessential genes deleted can redirect the metabolic fluxes under relatively
constant enzyme activity levels, with few changes due to gene expression regulation
and/or posttranslational regulation. The FBA/EBA combined approach predicts
which enzyme must be upregulated, which must be down regulated, and which
reactions must be reversed given, perturbations to the genotype and/or cellular
environment. Using this combined approach, a clear relation is established between
the enzyme regulation and constraint-based analysis of metabolism.

Different objective functions can be used in studying other biological systems
and problems. When addressing cellular metabolic pathway regulation, robustness
has proven to be a useful concept. Robustness can be defined as minimal changes
in metabolic fluxes, in steady state concentration, or in enzymes activities following
perturbations. For example, minimization of flux adjustment has been used to
model the metabolic response of E. coli JM101 with pyruvate kinase knockout
(Segrè et al ., 2002). In this study, it is assumed that the cell acts to maintain its
wild-type flux pattern in response to the challenge imposed by a gene knockout.
However, a minimal change in the flux pattern may require an unrealistic level of
metabolic control. We have shown (Beard et al ., 2004) that the objective of minimal
changes in enzyme activities predicts the key regulatory sites in switching between
glycogenic and gluconeogenic operating modes in hepatocytes. This approach
facilitates inverse analyses, where the regulatory system is treated as a black box
and control mechanisms are identified from measurements of the inputs and outputs
to the system.

6. Summary

In summary, the constraint-based approach to the analysis of metabolic systems is
based on a set of constraints that are imposed by the fundamental laws of mass
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conservation and thermodynamics. These laws impose mathematical dependencies
on the feasible fluxes, potentials, and concentrations in a given metabolic system.
Biological hypotheses may be formulated as mathematical objectives that metabolic
systems optimize under the imposed constraints. These hypotheses (e.g., optimal
growth or optimally efficient control) are accepted, rejected, or revised on the basis
of comparisons between the model predictions and experimental measurements.
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Abstract

Constraint-based analysis of large-scale metabolic systems is the computational
exploration of metabolic fluxes and concentrations constrained by the physical
chemical laws of mass conservation and thermodynamics. This chapter reviews
the mathematical formulation of the constraints on reaction fluxes and reactant
concentrations that arise as a consequence of the stoichiometry of a specified
network of biochemical reactions. Linear algebraic constraints arising from steady
state mass balance form the basis of the related computational technologies
metabolic flux analysis (MFA) and flux-balance analysis (FBA). Thermodynamic
laws, while introducing inherent nonlinearities into the mathematical description
of the feasible space, facilitate the introduction of reactant concentrations to
the constraint-based framework. Together, the mass-balance and thermodynamic
constraints form the basis of an approach to modeling and analysis of biochemical
systems that is alternate and complementary to detailed chemical kinetics.

Keywords

metabolic networks, constraint-based modeling, network thermodynamics,
computational modeling
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