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SYNOPSIS

A method is presented to characterize the molecular weight distribution
of a polymer composed of fluorescent monomers in solution. This
method, which we call "Fluorescence Distribution Spectroscopy”
(FDS), measures the amplitude of fluctuations of the total number of
polymer subunits in a well defined small open volume. The number of
subunits is measured in terms of the total fluorescence emission from a
volume defined by a laser beam. FDS is essentially an equilibrium
measurement which does not depend on the time course of the
flucutations or on any dynamical properties of the system. We present
a statistical relationship between the measured subunit number
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fluctuations and the distribution of polymer molecular weights. The
relationship is illustrated with computer simulations of an application to
an equilibrium aggregation.  This method does not perturb the
measured system and therefore has the the notable advantage being
applicable to labile or reversible polymerization or aggregation systems
and therefore should be particularly useful in biological studies.

INTRODUCTION

Fluctuation spectroscopies are promising techniques to study the
dynamics of macromolecules [1]. One of these methods, fluorescence
correlation spectroscopy (FCS) [2,3], records spontaneous fluctuations
of the number of fluorophores in a small observation region defined by
a laser beam in terms of measured fluctuations of fluorescence photon
counts. Since the number of fluorescent molecules in the open region
changes more rapidly the faster they diffuse (or drift or flow), the time
correlation of the fluctuation is entirely determined by the transport
properties of the molecules and the size of the observation region.
Therefore, FCS can measure transport properties from the time course
of the fluorescence fluctuation autocorrelation function [2,3].

Application of this approach to a solution of fluorescence labeled
polymer molecules can yield information in addition to transport
properties. One can obtain the distribution of degrees of polymerization
from a statistical analysis of the distribution of fluorescence photon
counts. We have developed this idea in a new method which we call
Fluorescence Distribution Spectroscopy (FDS). FDS is an equilibrium
analysis which is independent of the transport properties of the polymer
molecules. The theory is formalized by assuming the measured
fluctuations are statistically independent of each other. Many previous
techniques to measure polymer molecular weights are based on the
dependence of transport properties on polymer molecular size and must
be interpreted in terms of some hydrodynamic model [4]. Other
methods require polymer fractionation techniques which cannot be
applied to labile biological polymers [5,6]. Ideally, FDS can provide a
perturbation-free measurement of the distribution of polymer molecular
weights in a reversible polymerization system in equilibrium.
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THE BASIC THEORY

The fluorescence measurement provides directly a record of emitted
photon counts, which yields a histogram of the number of photons
recorded in each counting interval. This probability distribution of
photon counts results both from the random emission characteristic of
individual fluorophores and from the random number of fluorophores
in the observation region due to concentration fluctuations. For each
single fluorophore, the random emission follows the Poisson
distribution [7] so that the probab‘ility that n photons are recorded in a
counting interval is:

Prob{P=n} = A\e-A/n! (b

where A is the mean emission photon count per fluorophore and per
counting interval under the given excitation light intensity. We assume
that each subunit (monomer) is labeled with one fluorophore and that
its optical properties are not affected by polymerization, that the
polymer solution is dilute, and that polymer molecules diffuse
independently. Then, the relationship between the measured
distribution of photon counts, denoted by P,, and the fluorophore
number distribution, Py. has the form of a Poisson transform,

Lo0] (m)n
PP(n) = Z“ PN(m) —_—_— e«Am (2)
=0 n!

Next, we show that Py is. in turn, related to the polymer size
distribution by deriving the generating function for the fluorophore
number distribution Qnix) = L Py(mx". First consider a solution
containing only i-mers. Let A; denote the average number of i-mers in
the observation region. Since the i fluorophores on an i-mer diffuse as
one unit, the distribution of i-mer fluorophores in the observation
region will be, again, a Poisson distribution. Hence the probability that
there are n i-mers and therefore nj monomers in the sample region is

Prob{N=ni} = (Ai)"exp[-Ai]/n! 3

Note that only i, 2i, 3i *++ can be observed. The corresponding
generating function is

Q) = I; x"Prob{N=ni}
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A mathematical solution for - the inversion of the Poisson
transformation (2) would allow a direct calculation of Py(n) from the
experimentally measurable histogram Pp(m). Some general discussion
of generating functions can be found in references {4] and [10].

If we denote Qp(x)=£an(n)x“, the generating function of
distribution Pp(n), it is easy to verify that:

Qp(x) = QuleA1x) (10)

Therefore, we have

INQp(x) = [nQy[eN1-0]
= -Ag + I, _{A e \1ny an

or, if we let y=e‘)‘“"‘), then,

Ay + L, {AY"} = InQp(l +1Iny/\) (12)
REAL AND SIMULATED DATA

An example of an FCS/FDS experiment on a suspension of 0.1 ym
beads highly labeled with coumarin is presented in Figure 1. The
direct fluorescence fluctuation record is shown in Part A. The
fluctuation autocorrelation function is shown in Part B. This
autocorrelation function yields a value of 83 msec for the time
correlation of diffusion of the beads. It should be emphasized,

however, that the dynamics of bead motion play no role in the FDS .

results apart from specifying how the time parameters of the
measurement should be set. The total data recording period must be
long enough to include a sufficiently large number of fluctuations to
guarantee statistical accuracy. Also the counting interval must be short
enough relative to the characteristic diffusion time so that all statistically
relevant fluorescence fluctuations are recorded. but as long as possible
within this limit to maximize the photon counts for each data point.
Part C presents the distribution of photon counts per counting interval,
i.e., the distribution, Pp. In a polydisperse system information about
the distribution of polymer or aggregate sizes can be obtained from this
histogram by FDS analysis. In this example of a monodisperse system

the measured distribution is well fitted by the expected compound
Poisson distribution.
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FIG. 1. An example of an FC?/FDS Experimgnt. (A) Digital photon count of the
fluorescence emitted from a W = 10-15 Wm® subregion of a much larger sample
chamber which contains a solution of fluorescent beads. The integration time interval
is 0.005 sec, and the experiment lasts about 4 minutes. These beac'is are used to
simulate aggregates. (B) Fluorescence fluctuation autocorrelation functlon. of th'e data
from Part A. By FCS analysis the time correlation determines a characteristic time Ty
which, is used to calculate mean diffusion constant of the particles by forn}ula
D=W /4Td (reference 2). (C) The distribution of photon counts per 5 msec counting
interval, Pp. FDS analysis yields information about the distrib}mqn of aggregates from
this histogram. In this monodisperse sample, the photocount dxsmt_)unon is expected to
be a compound poisson distribution. A simple poisson distribution does not fit the
data.
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FLUORESCENCE DISTRIBUTION C
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PHOTON COUNTS

The mathematical relation between {Ai} and Py, derived in terms
of a generating function, is complex. Hence we demonstrate the
expected capabilities of FDS by a computer simulation. Figure 2
compares the distributions Pp and Py for a mixture of 5-mers and 25-
mers (Part B) with a superposition of the histograms obtained from 5-
mers and 25-mers separately (Part A). It is clear that random emission
smears the fluorophore number distribution. That is, mathemafically
<OPOP> > <ANAN>. Therefore, the inverse Poisson transformatior;
serve.s. as a "filter” to sharpen the distribution. In some favourable
cond.ltlc.)ns, however, even the photocount distribution can give
qualitative results. For example, Figure 2 demonstrates that two peaks

ca.n be resolved in the simulated photon count distribution from a
-mixture of 5-mers and 25-mers. ‘

DISCUSSION

Idc.ally the determination of a polymer size distribution by FDS
would invert the Poisson transform of Equation (2) to obtain the
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nputer simulation of an FDS Experiment. :l'he simulation .randomly
(ll:ils(?r.ibﬁiesczl plzarlicles in a circle with a radius of. 7 .07 units. The .subregt:on .ur:‘de;
observation has a radius of 1 unit. For each particle in the qbsgrvanon Slll' reg:o ih
Poisson random number generator simulates thf: photon emission accord ;?g hown:
given number of fluorophores (m) on the particle (The mean _num:eth pho ns
emitted per fluorophore per time interval is set to 1). Aft'er recording t i photon cq;"he
the particles are randomly rearranged and the process 1S repeate_d. (d, ul)[ie‘r; L
fluorophore distributions Py for two different e)famples, n=20,m'-—? an dn— = are,
represented by filled circles and squares, 'respectJvely. Thg open circles an dsqt:la os are
distributions of photon counts, Pp. Solid and dashed lines are expected theore
curves. (B, lower) The ﬂuorop?lore (filled squares) and photon (opﬁn .sq;are?)s
distributions for a mixture of 20 pentamers and 8 25-mers. '{here are peaks in PP' al 3
and 25. If the Pp data (open squares) were "filtered” by an inverse Poisso
transformation, the P‘l; distribution (filled squares) would result.
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fluorophore number distribution Py from the experimentally measured
photocount distribution function P,. Then, the size distribution, A;,
could be derived from Py as demonstrated in Equations 9 (a-c). A
closely related method to characterize molecular aggregation from the
moments of the photocount distribution has also been developed recently
[1.12]. It is obvious that a two component system can be
characterized by the first three moments, and a three component system
can be characterized by the first four moments. This is analogous to
Equation 9 which shows that the first three terms of Py are required to
determine A, and the first four terms of Py, to determine Ay. In
experimental work we have noticed that the moment analysis method is
extremely sensitive to the presence of aggregates, but is also very
sensitive to external noise, which can strongly perturb the
measurement. In contrast the FDS method is relatively insensitive to
the external noise and therefore simpler to accomplish experimentally,
but also does not so sensitively detect aggregates as the moment
analysis.

The statistical analysis we present here can be applied in studies
other than fluorescence spectroscopy. Any physical or chemical
measurements which are proportional to the total number of monomers
in a well defined small volume can be analysed in the same fashion.
For example, the total mass or the total absorbance of a well defined
aerosol of fine droplets can be analysed as above. Similarly scattered
light could be used to replace fluorescence with this approach. But the
relationship between light scattered and molecular weight is complex for
large particles.

An important feature of FDS is its independence of the dynamic
properties of the aggregates. It invokes no hydrodynamic model, and is
purely an equilibrium analysis. In principle, FDS requires each
succesive measurement of concentration to be independent. This is
usually not true in an actual experiment due to slow diffusion. But it is
obvious that if the total integration time is sufficiently long, the
approach is still valid.

CONCLUSIONS

FDS is a statistical equilibrium analysis which yields the polymer
molecular weight distribution. It can also be used to characterize
molecular aggregations. This method is perturbation-free and relatively
model independent. FDS undoubtedly has potential applications in
polymer chemistry and biochemistry.

314

[1]
(2]

(3]
4]
(5]

[6]

(7]
(8]

[9]
| [10]
(1]
(12]

QIAN AND ELSON

This work was supported by NTH grant GM38838.

REFERENCES

M.B. Weissman, Ann. Rev. Phys. Chem, 32, 205 (1981).

E.L. Eison and W.W. Webb, Ann. Rev. Biophys. Bioeng., 4,
311 (1975).

E.L. Elson. Ann. Rev. Phys. Chem., 36, 379 (1985).

D.E. Koppel, J. Chem. Phys., 57, 4814 (1972).

C. Frieden. Ann. Rev. Biophys. Biophys. Chem., 14, 189
(1985).

P.J. Flory, Pinciple of Polymer Chemistry, Cornell. University
Press. New York, 1953.

B. Saleh, Photoelectron Statistics, Springer-Verlag, Berlin,
1978.
W. Feller. An Introduction to Probability Theory and Its

Applications, John-Wiley, New York, 1957.

S. Chandrasekhar, Rev. Mod. Phys., 15. 1 (1943).

C.D. Cantrell, Phys. Rev. A, 1, 672 (1970).

A.G. Palmer and N.L. Thompson, Biophys. J., 52, 257 (1987).
H. Qian and E.L. Elson, unpublished work.



	Picture_001
	Picture_002
	Picture_003
	Picture_004
	Picture_005

