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1 Introduction

The traditional approach to unraveling functions of a biochemical system is to study
isolated enzymes and/or complexes, and to determine their kinetic mechanisms for
catalyzing given biochemical reactions along with estimates of the associated param-
eter values [51, 44]. While this reductionist approach has been fruitful, the buzzwords
of the present are integration and systems. One of the important tasks in current com-
putational biology is to assimilate and integrate the behavior of interacting systems
of many enzymes and reactants. Understanding of such systems lays the foundation
for modeling and simulation of whole-cell systems, a defining goal of the current era
of biomedical science.

In this paper we discuss approaches to modeling biochemical systems, with an
emphasis on the basic concepts and techniques used in building large-scale integrated
models of biochemical reaction networks. We consider the vices and virtues of the
available methods; we speculate on what approaches are most reasonable for large-
scale cellular modeling.

How far current technology is from a reasonable quantification of whole-cell
biochemistry depends on what level of detail one considers. At the simplest level
(considering only reaction stoichiometry), whole-genome metabolic models of sev-
eral single-celled organisms have been developed [2, 48, 23, 47, 52]. At the more
detailed level of kinetic modeling, models of the relatively simple metabolism of the
red blood cell represent some of the most ambitious attempts to date at modeling
whole cell metabolism [24, 57, 28, 29].
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While there is no one single approach to biochemical reaction network modeling
deemed superior, all models have to satisfy a set of basic criteria. Recently, one of
us have proposed the concept of “sustainable conservative cell” [5]. It is argued that
all biochemical systems models need to properly represent the basic stoichiometry,
with balanced chemical reactions, and the conservation of mass, energy, and charge.
It is along this line we carry on our discussion.

2 Stoichiometric Organization of Biochemical Systems

We group approaches to modeling and simulation of biochemical systems into three
hierarchical levels of detail: (1) stoichiometric, in which only the stoichiometry of
the reaction network is known; (2) kinetic, in which detailed kinetic mechanisms and
associated parameters are known for a reaction system; and (3) distributed, in which,
along with detailed kinetics, information on the heterogeneous spatial organization
of a biological system is considered. Stoichiometric rules are outlined in this section;
kinetic approaches are described in following sections. Spatially distributed systems,
based on reaction-diffusion modeling, are reviewed elsewhere [3, 4].

The stoichiometry of a reaction network constrains the allowable metabolic
fluxes according to mass balance and thermodynamics. In stoichiometric systems,
such as a system of chemical reactions, the reactant concentrations change accord-
ing to: �����������
	���

(1)

where
	����������

is the stoichiometric matrix [10, 11],
�

is the vector of concentra-
tions of � reactants in the systems, and

�
is the vector of � fluxes. Eq. (1) constrains

the
���������

vector to a subspace of
���

as follows:
� ������������� 

(2)

where
�

is the left null space of
	

, e.g.,
� 	����

. Eq. (2) defines linear combinations
of concentrations that are constant:

� �!�#"
, where

"
is a constant vector of length

equal to the dimension of the left null space. The matrix
�

is a so-called conservation
matrix; the consequences of Eq. (2) have been extensively examined by Alberty [1].

In the steady state,
�����$�%�&�'�

, and the fluxes obey flux balance:	(���)�+*
(3)

Eq. (3) is the mass balance constraint that serves as the centerpiece of flux-balance
analysis (FBA). In FBA, which has been applied to large-scale metabolic systems
with promising success [23, 47, 6], Eq. (3) is used in concert with some biological
objective function (such as biomass production, or growth) that is assumed to be
effectively optimized. Flux balance is discussed in greater detail in Section 3.4.

In addition to mass balance, the stoichiometry of a system constrains the fluxes
according to the laws of thermodynamics. It has been shown that by introducing the
right null space, , , of the stoichiometric matrix

	
one can derive an energy-balance

law [6, 35]:
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(4)

where

� �
is the chemical potential of the � th chemical reactant, and

��� �
= �

� 	 ��� � �
is the chemical potential difference of the � th reaction. The right null space satisfies	 , �)�

. The Second Law of Thermodynamics can be interpreted as:� ��������� � 
(5)

where the equal sign holds when and only when the reaction is in equilibrium. The
thermodynamic constraint on the flux is expressed as: for a flux vector

�
to be feasi-

ble, there must exist a vector � for which Eqs. (4) and (5) are satisfied. In practice,
this constraint is difficult to implement. As an alternative, we have introduced an al-
gorithm that is based on the sign structure of the null space, which is the subject of a
forthcoming publication [7].

The stoichiometric conditions on thermodynamically allowable and mass-balanced
fluxes are a set of mathematical rules that should be followed by any reaction system
of a given stoichiometry. These rules alone, however, are not sufficient information
to understand and predict the behavior of living metabolic systems, because the sto-
ichiometric conditions fail to constrain systems to behave in a unique way. In fact,
it is this inherent unconstrained flexibility of metabolic systems that contributes to
their robust ability to maintain Claude Bernard’s milieu interior.

To model, with specificity and accuracy, the dynamic variables—reactant con-
centrations and their rates of change—in a living system, requires adopting mech-
anistic models that relate these variables to the fluxes among them. In doing so, it
is paramount to remember that the foundational principles, the basic stoichiometric
rules, must apply, regardless of the formulation of the detailed reaction mechanisms.
As “La vie..n’est autre chose qu’un phénomène physique”(life is nothing else than
a physical phenomenon) [26], our models of living things should not violate funda-
mental principles of physical chemistry.

3 Theory and Modeling of Biochemical Systems

3.1 Enzyme Mechanisms

Standard approaches to modeling biochemical kinetics begin with mass action rela-
tionships [44]. For example, for the simple unimolecular reaction

	
�
��� !� " ��#


(6)

we have rate equations:�%$ 	'&��� �)( ��$ # &��� �)(+*-,
�

$ 	'&�. *0/
�

$ # & (7)
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where
$ 	'&

and
$ # & are the concentrations1 of species

	
and # . It is important to re-

member that Eq. (7) is really based on two physiochemical principles. First, consider
the stoichiometry: ��$ 	 &��� � ( ��$ # &��� � ( �

�

. �
�


(8)

and second, the rate law according to mass action:
�

�

�)*
�

$ 	'&
,
�

�

�)*
�

$ # & . As we
shall show below, while the form of the rate law can vary, the stoichiometry is more
fundamental.

The above case does not consider the existence of enzyme-catalyzed intermedi-
ates that can enhance the turnover between

	
and # . The well-known Michaelis-

Menten model incorporates a substrate-enzyme intermediate step:

�� 	 .��
�
��� !� " � 	��

�
��� !� " � � . # �� *

(9)

Assuming the system to be in steady state (the net turn over from
	

to # is con-
stant and balanced by a flux

�
of
	

into and # out of the system) we arrive at the
Michaelis-Menten law for the flux:

� � �
�

( �
�

� �	��
 * ,
�
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�
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(10)

where
���

is the total concentration (free plus bound) of enzyme present,
� �� � �


 * ,
�

. * /
�
� �-* ,

� , and
� �� � � 
 * ,

�

. * /
�
� ��* /

� . This model predicts a chemical
equilibrium (

� �)�
) when

$ # & ��$ 	 & � �
�

� �
� =

������� 
 * ,
�

* ,
�
� � 
 * /

�

* (	� �
. This is

known as the Haldane relation [44].
In Eq. (9), as in Eq. (6), all steps are considered reversible, allowing for a physi-

cally realistic finite equilibrium. The action of a catalyst as in Eq. (9) does not change
the overall thermodynamic equilibrium associated with the system represented in
Eq. (6). When

* /
�

�'�
, we have the familiar irreversible Michaelis-Menten scheme,

for which the
� �� �

terms disappear from Eq. (10). In this case, the resulting equi-
librium constant is infinite, and it is no longer possible to characterize the thermody-
namics of the overall reaction

	  ! # .
In practice, the kinetics of many enzyme-catalyzed biochemical reactions are

more complex than the single-step Michaelis-Menten model described above. In
1956, King and Altman [25] introduced a systematic method for obtaining the form
of steady-state flux laws from diagrams of a given enzyme mechanism (i.e., the col-
lection of intermediate states and the various routes of transition between them). In
a concise and accessible chapter, Cornish-Bowden [12] outlines the King-Altman
method along with several approaches to simplifying the approach for complex
mechanisms. A more comprehensive treatment is found in [44]. With modern com-
puters and symbolic algebra packages, the exercise of deriving steady-state flux ex-
pressions from complex mechanisms may be done automatically.

�

Strictly speaking, if the activity of a species changes with concentration, then the effective
rate constants in Eq. (7) are no longer independent of concentration, resulting in a nonlinear
system.
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When nonlinear expressions such as Eq. (10) can be obtained for all of the reac-
tions of a given system, a complete model in the form of Eq. (1) can be constructed.
Large-scale examples of such systems can be found in [24, 57, 28, 29].

3.2 Biochemical Systems Theory: the S-System Approach

While the systems approach has entered the general consciousness of biochemistry
only in recent years [9], the original idea can be traced to the early 70’s or even
earlier. M.A. Savageau and his coworkers, through Biochemical Systems Theory
(BST), have continuously championed the cause [37, 38, 39, 40, 54]. Throughout its
development, BST has been applied to many different biological research areas such
as immunology, molecular genetics, even epidemiology and population dynamics.
The approach, however, is not without controversy.

The most important contributions of the BST are inherent recognitions of: (1) the
importance of a network of biochemical reactions to cellular functions, (2) the non-
linearity in the governing dynamics of biochemical systems, and (3) the complexities
as emerging properties of a reaction network requiring an approach based on systems
science.

BST grows out of the realization that the mechanism for an enzyme reaction
is often hard to obtain. Even when the mechanism is clearly worked out, it is usu-
ally quite complex with many intermediate steps between the substrate binding and
the product release. As an approximation, Michaelis-Menten theory assumes that all
the intermediate forms of enzyme-substrate complexes remain in steady-state. (This
assumption can be mathematically justified if the total enzyme concentration is suf-
ficiently less than that of the substrate [30].) This assumption greatly simplifies the
multiple steps of an enzyme reaction, and yields a compact rate law in terms of a
ratio of polynomials in the substrate and modifier concentrations (rational functions,
e.g., Eq. 10). Initial applications of BST revealed some interesting properties of the
kinetic systems in terms of the roots of the polynomial functions [37]. A closely
related approach called kinetic polynomial [27] also appears in the literature on re-
action systems with heterogeneous catalysis [55] in which the reaction order for
catalysts can be greater than unity (i.e., nonlinear).

Rational functions, however, are not necessarily easy mathematical objects to
work with. In contrast, the so-called power-law representation can be easily manipu-
lated mathematically; it is also a mathematical form consistent with the law of mass
action. Hence, it has gradually become a core constituent of BST [53]. However,
writing an enzymatic reaction in an aggregated from in a single rate equation, and
using a power-law to approximate the turn-over rate, requires some justification. This
justification is extensively discussed in [53], a very readable paper. Using Michaelis-
Menten as the reference, it shows how the power-law approximation is more accurate
than a linear approximation near a steady-state.

However, some difficulties are associated with the power law representation
when dealing with reversible reactions catalyzed by an enzyme. In Michaelis-Menten
theory, the product is considered to be a competitor for the substrate (the

$ # & terms
in the denominator of Eq. 10). Hence, the flux should be proportional to


��
� ��� in the
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power law formulation, with ���
�
, where � is a parameter and

�
� is the concentra-

tion of the product. This means one cannot represent initial or transient states where�
� � �

. In addition, it is not clear how to impose the Haldane relationship, which is
necessary to develop a thermodynamically valid kinetic theory [44].

The promise of BST is as a theory for large-scale systems. Yet, further difficul-
ties arise when dealing with networks of interacting biochemical reactions. In BST,
the dynamics of a biochemical network can be represented by an elegant system of
differential equations known as S-systems [41] where ‘S’ stands for synergetic.

For a simple reaction system,

�
�
 !��

�
 !��

�


(11)

The S-system representation has the form:� �
��%� ��( �

� �

( �
� �

. �
� �

. �
� ���(��

�

��� �
�
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��� �
�
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�

��� 

� (12)

� (�� ���
�

.� ��� � �
�

��� � 

�


(13)

where the sum of many power-law terms is further approximated by two single
power-law terms, one positive and one negative [38].

While the S-system form is both elegant and convenient, there are at least two
major disadvantages for the rate law as in Eq. (13): First, the identity of different
reactions participating in

�
has disappeared. Therefore the stoichiometric structure

of a reaction network is gone. Knowing everything about Eq. (13) still does not
provide us any information on the individual fluxes in

�
�
 !��

� and
�

�
 !��

� .
Second, because of the stoichiometry has not been preserved, this system of dif-
ferential equations in general will not satisfy the basic stoichiometric conservation
laws, as described above. For the example in Eq. (11), the stoichiometric constraint� 
 �

�

. �
�

. �
�
� �$�%� � �

should be imposed. Although this constraint remains at the
level of Eq. (12), it is lost in the final reduced power-law representation (Eq. 13).
This means that computational simplicity is achieved only by loss of physiochemical
accuracy.

3.3 Metabolic Control Analysis

Metabolic control analysis (MCA) is concerned with the perturbation of a steady-
state of a metabolic network in response to changing enzyme concentrations (i.e.,
gene expression level) and substrate concentrations. MCA is not a tool for dynamic
modeling of biochemical systems. More precisely, in MCA we are interested in char-
acterizing the relationships between arbitrary enzyme � and the arbitrary flux

� �
, in

steady state. Even when the enzyme � is not catalyzing reaction
*

, its activity may
influence the flux

� �
through network interactions in a biochemical system.

To probe the quantitative relationship between enzyme � and flux
� �

near a
steady-state, the natural choice is sensitivity analysis from standard statistics:
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�
�� ������� � ������
	 � 

(14)

where 	 � is the activity (or activity coefficient times concentration) of enzyme � .
Because of the network connectivity, there are mathematical relations that these Flux
Control Coefficients

�
��

have to satisfy. One of such relation, called summation rule,
is the central piece of MCA.

For a given metabolic network, one can compute the flux control coefficients if
all the enzyme mechanisms and rate constants are known or, alternatively, one can
experimentally determine the flux control coefficient from perturbation and mea-
surement on a biochemical reaction system. The former is a simple mathematical
problem so we shall focus on the latter. More discussions of the details can be found
in [17, 19, 20, 56].

While the traditional MCA emphasizes steady-states and mathematical deriva-
tions, recent developments by Reder, Delgado and Liao [36, 14] focus on obtaining
flux control coefficients from measurements on transient, linear relaxation of con-
centrations to steady-state. The key result needed for the analysis is the summation
rule: �� �

� �

�
��� � � 
 � ������� � � 

(15)

where
� � 
 � �

is the flux in any linear transient and
� �� � � � 
�� �

is the corresponding
flux in steady-state.

The key step in the dynamic MCA (dMCA) is to obtain the transient fluxes
� � 
 � �

from measurements on the rate of concentration change
� � � �����

. This problem is an
under-determined linear algebra problem without unique solution since (Eq. 1),

� � ���� � �� �
� �

	 � � � � 
(16)

and the right null space of the stoichiometric matrix
	

has non-trivial solution. This
is precisely the mathematical problem confronted by the FBA.

In dMCA, the steady state
� �

is assumed to be known. Based on this informa-
tion, one can computationally obtain

�
from a given set of observed concentration

changes
������������

0. An optimality condition assumes that the solution to the Eq. (16)
occurs at the shortest possible distance from the steady-state

� �
. The resulting fluxes

can be obtained by starting with arbitrary solution to Eq. (16), denoted �� , and then
constructing � � �� ( ��� . � � 

(17)

where
� �

is the projection of �� in the null space2 of
	

.
It has been shown [36, 14] that� � � 
 � � ( � ��� �� ��� � � �  * * *  ��� ��� � �

(18)
�

The null space of ! is defined as the subspace of "$# for which !&%('�) is satisfied.
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as a set of vectors in linear space, expands exactly the same subspace of the elasticity
coefficients, �

� � � ����� � ���
��� �
� 

the second key quantity in MCA. Hence, the solution to Eq. (15) gives the com-
plete set of flux control coefficients. This result in fact serves an alternative proof for
Eq. (15), the central piece of dMCA.

3.4 Flux Balance Analysis and Stoichiometric Network Theory

The recent surge of the flux-balance based computational analyses of metabolic net-
works owes to the unifying ability in integrating null-space analysis of stoichiometric
matrices, biological hypothesis-driven constraint-based optimization, and available
bioinformatic data on cell metabolism.

The theoretical tools for mathematical analysis of the null space of stoichiometric
matrices trace back to the work done by chemical kineticists in 70s and 80s [10,
11, 50]. A quite complete mathematical approach based on the flux cone and its
generating vectors3 (with certain modification called internal representation in [10],
elementary modes in [43], and extreme pathways in [42]) was developed. Clarke’s
stoichometric network analysis (SNA) [10, 11] combines the null space analysis with
the analysis of dynamic stability, representing a viable approach for extending FBA
beyond steady-state applications.

A powerful algorithm for computing the generating vectors is presented by
Schuster et al. [43, 42] and is based on a German reference [32]. The approach can
be traced back to Fourier [16] and is known as Fourier-Motzkin double description
method [13, 18]. We have summarized the basic idea in the Appendix to help under-
stand the algorithm. We point out that R.J. Duffin [16], who had trained some of the
greatest pure and applied mathematicians of 20th century, [31, 8, 46], had devoted his
lifework to the theories of nonlinear electrical networks in terms of abstract algebraic
topology and differential geometry, as well as practical results in mathematical pro-
gramming and optimization. Duffin’s work is a treasure which proves highly relevant
to current constraint-based modeling of biochemical networks.

A key concept in stoichiometric analysis is setting a convention for what is a flux.
If one takes all reaction fluxes to be unidirectional,

� � � �
, then reversible reactions

must be represented using separated forward and backward fluxes. This approach,
combined with the equality

	�� � �
, cogently defines a polyhedral flux cone in the

positive quadrant. While this convention for fluxes is mathematically satisfactory, it
obscures the nature of chemical reactions. In Fig. 1A the linear combination of the
two cycles on the left is not identified as equivalent to the single cycle on the right.
For a reversible reaction with forward and backward fluxes

� ,� and
� /� , the net flux

which is what one needs in the FBA, is
� � =

� ,� ( � /� . So, this convention introduces
unnecessary degeneracy and undeterminancy.

�

The null space of ! lies within an abstract mathematical entity called a feasible “cone” in
linear analysis. The “generating vectors” are the edges of the feasible cone in "�# .
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Different conventions for
�

’s can leads to different conclusions. If one takes all
the

�
’s to be irreversible and unidirectional, then the cycles on the left-hand-side

of Fig. 1A in fact represent a compound mode with two independent cycles (this is
not an elementary mode, as defined by Schuster and Hilgetag [43], since one can
eliminate the enzyme associated with the reversible step and still preserve a flux-
balanced steady-state; neither it is an extreme pathway since it is a linear combination
of two extreme pathways) and it is not equivalent to the single cycle on the right-hand
side. However, if one takes all

�
’s to be reversible as convention, then the sum of

cycle I and II gives cycle III, which is itself elementary (Fig. 1B). Thus, in terms of
the reversible flux convention, one will also be interested in finding a minimal cycle
base for a null space [21, 22].

Fig. 1. In (A), the flux convention is set for all unidirectional fluxes. There are total
six dimensions. Therefore we have

�����������������������	�
=
������������� ) � ) � ) ��
�� ) � ) � ) �����������	��'��������� ) � ) �������	� . The mathematics is quite different for (B) in which there are only five fluxes.

Hence
������������� ) � ) ��
�� ) � ) ��������������� =

��������� ) �������	� .
Finally, when combining the null space analysis (i.e., characterization of the

polyhedral flux cone) and a linear objective function, plus a corresponding second
set of inequalities

� �
� � �� , searching for optimal solution becomes a linear pro-

gramming problem (LPP). (The second set of inequalities is necessary for the sub-
space on which the objective function is not a constant.) It is important to point out,
however, that the extreme points of the polytope associated with the LPP:

	�� � �
,� � � �

� � �� , �����

���� � �

, do not all coincide with the extreme rays of the cone (see
Fig. 2 for a simple counter example). Furthermore, if a nonlinear objective function
is introduced (e.g., the minimal heat dissipation of the network), then the optimal
solution in general will lie inside the polytope. Therefore, having a minimal cycle
base will be invaluable for nonlinear optimization problems.
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Fig. 2. The LPP shown on the left defines a polytope, a plane, with vertices
� ) � ) � ) � ,��������� ) ��������� , � ) ����������������� , and

�������������������	�
. Note that the last vertex is not on the gen-

erating vectors, i,e., the edge of the cone defined by the equality in the positive octant.

4 Large-Scale Model Building

4.1 Modular Principles

The need to develop computational models encompassing major portions of bio-
chemical and genetic regulatory networks and their control is evident. Integrative
models are the key to providing context for the individual reactions and for eliciting
an understanding of the influences of the various components upon whole system
behavior. The methods for which theory was described in Section 3 are reduced to
practice, for example, in formulating a virtual cell model, or in constructing models
of more limited expanse, such as cellular energetics.

Small portions of a metabolic system can be described in detailed form. For a
system such as glycolysis, it is useful to develop several representations providing
different levels of complexity, or accuracy, or computational speed. Having the high-
est level of precise detail is not compatible with computing the solutions the fastest,
yet speed is required to allow widespread exploration to gain insight, develop pre-
dictions, or optimize the fits of models solutions to experimental data. Making com-
promises for specific purposes is therefore essential.

Larger, more all-encompassing models are best composed of smaller modules,
each of which has been previously validated by comparisons with data, and verified
for computational accuracy. The individual modules must adhere to a pre-chosen
standard and provide a scientifically accurate representation of the system, using
semantics compatible with those of the larger system. Individual modules are best
developed and maintained by individual investigators or groups who are expert in
the particular science. Models are merely working hypotheses that must be kept at
the forefront of the field if they are to be useful as tools for experiment design and for
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data analysis. Leaving them in model repositories tended by technical staff relegates
them to obsolescence in short time. Certain principles and practices should be up-
held in order that modules be actively sustainable. Here, we enumerate the essential
principles that we attempt to adhere to in constructing the “eternal” or “sustainable
cell” model [5]. The list begins with the science, and extends to matters of style,
convenience, and dissemination to the scientific community.

1. Write model code to conserve mass, charge, volume, energy, and redox state.
2. Define all variables and parameters, along with name and units.
3. For linking purposes, identify all inputs and outputs.
4. Identify all assumptions and approximations.
5. Identify all information sources.
6. Write the code for maximal computational speed.
7. Provide operations manuals and tutorials for developed models.
8. Publish models on the web, so that they can be run or downloaded.
9. Establish open forum discussion of models and modules.

Speed, only number six on our list, is vital: one needs to compute at the speed
of thought in order to facilitate exploration and the gain of insight into biological
processes. Speed is also critical to the use of models as tools to analyze experimental
data through automated optimization procedures.

4.2 Linking of Modules to Compose Larger Models

Of the list above, the first five are essential to using a module as a component in a
more comprehensive system. The first, conservation, provides some assurance of self
consistency; furthermore if each building block fulfills conservation requirements,
then determination of conservation for a multi-component model is simplified. The
second, definitions and units, defines content. The third, the list of all the inputs and
outputs automatically provides the minimal list of links to other modules; the list of
links must be extended to include variables which are common to two modules and
variables which influence the behavior of a component of another module, e.g. the
effect of cAMP on contractility. The fourth, identifying assumptions and approxima-
tions, introduces new possibilities into the composite model, such as the ability to ask
“does the combining of modules allow for the elimination of certain approximations
or assumptions?” and “what additional assumptions might become implicit in the
combining of modules?” Such assumptions must be made explicit. The remaining
three points are essential for documentation and dissemination.

The process of linking modules is suggested by the composite model in Figure
3. The upper panel shows a set of modules for intermediary metabolism that are
linked with known stoichiometry. Consider each to be a separate model, each the
evolutionary result of years of research. Linking them through the stoichiometric
relationships of input substrates and output products appears straightforward, and
results in the integrated model shown in the lower panel. It appears as if the sanctity
of the individual modules remains intact, and in fact it is almost this simple. Problems
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arise, not so much in accounting for NADH and other slowly changing variables,
but in accounting for the influences of rapidly changing calcium and hydrogen ion
concentrations in some circumstances.

Fig. 3. Building composite modules from pre-built modules in intermediary metabolism. Up-
per panel: Individual models for glycolysis, Krebs (TCA) cycle, oxidative phosphorylation
and nucleotide energetics showing their main inputs and outputs. Lower panel: Combining
the modules from the upper panel, and adding fatty acid metabolism gives a composite model
of intermediary metabolism. Stoichiometric balance is maintained, and the modules remain
distinct from each other.

The argument that models are best developed and maintained by a group work-
ing in the particular field leads to contradictions when models become modules of
larger system models. The expertise required to develop and maintain a given model
may not be available in the group that chooses it as the best version of the de-
sired component of a higher level integrative model. From the technical point of
view, putting together two models from different sources is not too difficult when
both submodels or modules can be described by ODEs (ordinary differential equa-
tions). Using a simulation system like JSim (from nsr.washington.edu), or Madonna
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(from www.berkeleymadonna.com/index.html), or SAAM (from www.saam.com),
or Gepasi (from www.gepasi.org), one simply combines the two modules into a
common piece of source code, combining all those equations which have common
variables. The process sounds simple, but the problem is that one of the originating
groups is not necessarily expert in the field of the other, so that unless all the common
variables have been defined with the same names in both modules their identity will
not be easily recognized. Clear semantics requires lists of synonyms.

The second issue is how to build a composite model out of modules while main-
taining the identity of the code of the module so that it can be replaced automati-
cally when the originating group improves the module. Ideally the composite model
should be reconfigured whenever it is judged that improvements have been achieved
in any particular module. Automating this is possible when common variables are
named identically; it is also possible, but requires human intervention, to define
equivalences, when the variable names in each module are not identical. There is a
trade-off here: when the variable names are identical, the combining of the modules
can be automated because the equations for the common variable can be automati-
cally combined, as has been achieved by Gary Raymond in our laboratory. The cost
is that the two source codes are now intermixed. For computational reasons this is
good since it minimizes the numbers of different variables and facilitates solving the
whole system simultaneously. But what it costs is that a composite model composed
of a large set of modules must be entirely formed anew when a module is to be
replaced.

Separating modules from one another can help to obtain computational speed.
Solving a large set of simultaneous equations as a whole gives high accuracy when
the system is non-stiff and linear, but is computationally costly when it is composed
of non-linear equations and/or has dramatically different time constants in different
parts of the model. Then one would like then to solve separately those submodels that
have rate or time constants that are relatively slow and to solve at higher frequencies
those submodels that have time constants orders of magnitude faster. Allowing differ-
ence in time steps from one module to another greatly reduces the “stiffness” of the
overall system and increases computation speed. This argument favors keeping mod-
ules separated even while linked in the composite model, and enhances the incentive
to use automated methods for composite model building. Last but not least, atten-
tions should be directed to the numerical accurary of composite models for which
fractional steps and exponential splitting could be introduced [49, 45].

A situation in which modular separation can be maintained occurs whenever the
common variables change slowly relative to the internal rates of the modules to which
they are relevant. An example is ATP, which is such large concentration normally
that its concentration changes only very slowly even with dramatic changes in cir-
cumstances. By treating ATP as an external variable from the point of view of the
individual modules its concentration can be considered constant during a time step;
by preserving the fluxes of ATP into or out of the relevant modules, ATP concentra-
tion can be correctly represented still to a high degree of accuracy without solving for
it at the high rates required for the fast modules. Then modules can be computed sep-
arately, bringing their solutions together at relatively long time intervals. This same
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approach lends itself to parallel computation of the different modules on different
CPUs. Since computation time is a major factor for metabolic and electrophysio-
logic cell models and a huge issue for integrated organ models, such approaches
need much further development to achieve maximal efficiency in computation and to
enhance progress in investigation.

5 Summary and Conclusions

To summarize, we view biochemical systems as represented at the basic level as
networks of given stoichiometry. Whether the steady-state or the kinetic behavior
of a given system is explored, the stoichiometry constrains the feasible behavior,
according to mass balance and the laws of thermodynamics. Study of the feasible
behavior of a system, given a set of stoichiometric constraints, forms the basis of
flux balance analysis, and more generally, stoichiometric network theory.

To obtain precise information beyond what stoichiometry can tell, one must de-
velop a kinetic representation of the transformations occurring in a given system.
The classical enzyme-kinetic approach is often used to build kinetic models that
satisfy the stoichiometric rules. The drawback of this approach lies in the inherent
uncertainly involved in assigning kinetic mechanisms to biochemical fluxes and in
identifying the associated parameter values.

As an alternative to classical enzyme kinetics, the biochemical systems theory al-
leviates some of these drawbacks. At the heart of BST, the S-system is a versatile and
useful phenomenological nonlinear dynamic equation system which has found many
applications. However, as a modeling paradigm for metabolic reaction networks, it
lacks the structure for introducing several fundamental, physiochemical elements
of biochemical reactions: stoichiometry, mass and energy balance, and reversibility.
These difficulties prevent a true integration of mechanistic studies of individual en-
zymes and simple metabolic reactions into a complex network system. Therefore, as
it stands, BST has not fulfilled the need of current systems biochemistry.

Though many of the useful tools in biochemical analysis (enzyme kinetics,
metabolic control analysis, stoichiometric network theory) have been well estab-
lished in the literature for decades, new developments in theory continue to enhance
the usefulness of these tools. In particular, recent additions of thermodynamic con-
siderations into stoichiometric network theory [6, 35], and the development of a dy-
namic metabolic control analysis [36, 14], hold promise.

Whether or not these new tools provide the key to improving our understanding
of the operation of whole-cell systems remains to be seen. In any case, we can be
confident that whatever future technologies prove useful for biochemical systems
analysis, those approaches will not conflict with the basic stoichiometric principles.
As we move up the hierarchical ladder of system complexity, toward biophysically
realistic representations of large-scale systems, the foundation must remain intact.
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Appendix

Let
�

� ,
�

� , ...,
���

be an � -dimensional, orthonormal base set. In terms of this base
set, � -dimensional vectors � � , � � , ..., ��� can be written as column vectors. Matrix��� ���
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If one carries out row operation for the above tableau, say������
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then the first column on the left is no longer a set of orthonormal vectors. However,
the entries


 �  � � of the matrix on the right still gives the inner product

�����  �

�
�

where
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� ��

is the current � th vector on the left, after the operation. If one carries out Gauss-
Jordan elimination by row operation and reaches������
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then one has
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words, vector
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� lies in the linear subspace defined by the intersection of hyperplanes
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.
One notices that the above algorithm is closely related to that for inverting a ma-

trix and computing its null space. For a system of linear equations, the null space
plays a fundamental role in the solution to and characterization of the problem. The
null space of a matrix

	
can be expressed in terms of the loop matrix , :

	 , =
0. Analogously, for a system of linear inequalities [15], the solvent matrix

�
=��� ��� 	 � ��� � �  �

� 	 ��� � ��� � � � plays the fundamental role in the solution to and
characterization of the convex system.

The above method can be used to compute the generating vectors of the polyhe-
dral cone defined by a set of linear inequalities


��  � � � � �
, ( 	

� �  �� * * *  � ). In this
case, proposed by Fourier, pairwise eliminations with positive multipliers and only
additions are carried out [13, 16] to preserve the inequalities, and one stops when all
the nonzero entries are positive. For a column with # , 
 , and

�
number of positive,

negative, and zero terms respectively, the number of pairwise eliminations is deter-
mined by the expansion number # 
 . �

where # . 
 . � � � [15]. An efficient
pairwise elimination algorithm is designed to have a rule for selection of an optimal
order for the elimination steps [16, 32].

Every convex polyhedral cone has two representations, in terms of a set of in-
equalities (H-representation) or a set of extreme rays (V-representation), respectively.
The double description method works with both sets similar to solving the minimal
spanning tree problem (MSTP) for a graph. The MSTP can also be solved in terms of
the maximal weight forest which belongs to the class of problems known as matroid
programming [34, 33].


