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Abstract Based on a stochastic, nonlinear, open biochemical reaction system perspective,
we present an analytical theory for cellular biochemical processes. The chemical master
equation (CME) approach provides a unifying mathematical framework for cellular mod-
eling. We apply this theory to both self-regulating gene networks and phosphorylation-
dephosphorylation signaling modules with feedbacks. Two types of bistability are illustrated
in mesoscopic biochemical systems: one that has a macroscopic, deterministic counterpart
and another that does not. In certain cases, the latter stochastic bistability is shown to be a
“ghost” of the extinction phenomenon. We argue the thermal fluctuations inherent in mole-
cular processes do not disappear in mesoscopic cell-sized nonlinear systems; rather they
manifest themselves as isogenetic variations on a different time scale. Isogenetic biochem-
ical variations in terms of the stochastic attractors can have extremely long lifetime. Tran-
sitions among discrete stochastic attractors spend most of the time in “waiting”, exhibit
punctuated equilibria. It can be naturally passed to “daughter cells” via a simple growth and
division process. The CME system follows a set of nonequilibrium thermodynamic laws
that include non-increasing free energy F(t) with external energy drive Qhk ≥ 0, and total
entropy production rate ep = −dF/dt + Qhk ≥ 0. In the thermodynamic limit, with a sys-
tem’s size being infinitely large, the nonlinear bistability in the CME exhibits many of the
characteristics of macroscopic equilibrium phase transition.

Keywords Biochemistry · Cell biology · Chemical master equation · Evolution ·
Nonequilibrium · Nonlinear dynamics · Stochastic processes · Thermodynamics

1 Introduction

From an evolutionary biology standpoint, Kirschner and Gerhart have argued that a cen-
tral task of cellular and organismal biology is to provide phenotypic variations with mole-
cular mechanisms that connect genome to life [1]. Molecular mechanisms demystify the
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biological variations upon which Darwin’s natural selection occurs, thus giving the “plausi-
bility of life”.

Biochemistry and molecular genetics/genomics are the two foundations of cellular mole-
cular biology [2]. According to the Modern Synthesis School of population genetics [3] and
its genomic interpretations [4], the molecular basis of biological variations is coded in the
DNA sequence, which is inheritable via Mendelian genetics and Watson-Crick base-pairing.
Biochemistry, on the other hand, has long been considered as a deterministic mechanics that
executes the instructions in the DNA [5, 6].

Continuous theoretical investigations [7, 8] and recent experimental demonstrations of
stochastic gene expression in single cells, however, have transformed the genomic mono-
play of biological variations [9, 10]. Stochasticity has risen rapidly to prominence in cellular
molecular biology [11–13]. Isogenetic biochemical variations are now widely considered as
mechanisms for “novelty” in cellular processes ranging from cell differentiation to oncoge-
nesis [14–16].

It is against this backdrop that statistical physics and physical chemistry have a defining
role to play in complementing the yet descriptive cellular molecular biology with a first-
principle based analytical theory. Stochastic fluctuations in atomic and molecular processes
have been the rule in our fields; it is the emergent macroscopic deterministic behavior that
begs for explanations. However, as we shall show, there are emergent biochemical variations
from stochastic molecular systems with nonlinearity. Stochastic variations do not disappear
in mesoscopic molecular systems; they simply emerge on a different, much longer “evolu-
tionary” time scale [17, 18].

We shall also discuss statistical thermodynamics. By thermodynamics, we mean one is
interested in a system’s organizing properties such as entropy and energy, and their interre-
lations. It turns out, thermodynamics, at least the isothermal part, is a general mathematical
law of any stochastic system endowed with a Markovian dynamics [19]. The concept of “en-
tropy” in the classical thermodynamics was defined empirically via the quasi-static process.
Therefore, there is a feeling that one can only work with this concept in systems at, or
near, equilibrium. As we shall demonstrate, however, that one can introduce a mathematical
concept of entropy for any stochastic dynamics that follows a Markov process. Therefore,
the Gibbs entropy, the relative entropy, and their time derivatives (see (36)–(38)) can all be
defined for a system at any give time, near or far from equilibrium, in stationarity or in a
transient. When applying the “thermodynamics” to biological systems, the real question is
the validity of a stochastic Markovian description of the Nature. If that is valid, so is the
application of the thermodynamic and the entropy theory [20].

In the approach we take in the present work, the origin of the stochasticity is due to the
“intrinsic noise” of molecular collisions [9]. It is interesting to point out that a distinction
between intrinsic and extrinsic noises can be made if one considers simultaneously two
stochastic trajectories with different initial conditions. The former assumes the two with
different stochastic realizations, while the latter assumes the two with a same realization.
The “extrinsic noise”, thus, is more consistent with the random dynamical systems (RDS)
approach which regards the origin of temporal stochasticity being in a system’s parameters
[21], while intrinsic noise is more consistent with the stochastic processes approach which
considers one initial condition at a time. See [22] for an example of applying RDS models in
neural biology. While a stochastic differential equation with multiplicative Browian motion
can have both interpretations, a birth-and-death process can not have a RDS interpretation.1

1This statement is not strictly true: In the random time-change Poisson representation of a birth-and-death
process, one can have a RDS interpretation. However, this seems to pin the stochasticity entirely on the flow
of a global time.
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2 Stochastic Chemical Dynamics

Two papers published in 1940 have laid the theoretical foundation of stochastic chemical
dynamics that connects statistical physics to cellular biology.

H.A. Kramers’ paper “Brownian motion in a field of force and the diffusion model of
chemical reactions”, which was published in that April [23], has shown us how to compute
the rate constant for a discrete, individual chemical reaction in aqueous solution, such as
X + Y → Z or A → B , in terms of atomic coordinates and molecular energy functions.
In a nutshell, Kramers’ theory connected chemistry to physics by understanding chemical
reactions using the mechanics of molecular particles and their interactions. This approach,
together with Smoluchowski’s earlier work on diffusion-controlled chemical reactions and
their later synthesis [24, 25], is now one of the main areas of theoretical chemistry [26].

Figure 1 shows the stochastic transitions between two conformations A and B of a single
molecule in terms of an energy function. Kramers’ theory predicted that the rate constant
follows the Arrhenius’ law k1 ∝ e−�G‡/kBT . More importantly, the reaction time is spent in
waiting, which is random and exponentially distributed, while the actual transition time is
instantaneous. This feature is general for any “barrier crossing” process in stochastic, non-
linear systems. Stochastic trajectories of single molecule conformational transitions under
room temperature were not observed experimentally until 1990s [27].

In the same year, the January of 1940, Max Delbrück published an equally ground-
breaking paper, though with much less fanfare in the subsequent fifty years [28]. While
Kramers’ Brownian motion is in the “configuration space”, Delbrück’s birth-and-death
process is in the “copy number space”. This theory, now under the name of the chemi-
cal master equation (CME) and more popular Gillespie algorithm [29, 30], has recently
emerged as a main workhorse in computational systems biology [31]. In a nutshell, the
CME connected cell biology to chemistry by understanding cellular phenotypes and their
evolutions in terms of nonlinear biochemical networks in a mesoscopic reaction volume on
the order of hundred femtolitres, the size of a cell (1 femtolitre = 1 µm3).

Kramers’ theory and the CME clearly marked two complementary domains of physical
chemistry. The former computes the rate constant of a individual chemical reaction based on
the molecular structures, energy functions, and the solvent environment, while the latter de-
scribes the dynamic behavior of a chemical reaction system, assuming that the rate constants
are given for each and every reaction within.

Fig. 1 Kramers 1940 theory connects the chemical reaction kinetics to the stochastic motions crossing an

energy barrier. It is shown that the reaction rate constant k1 ∝ e−�G‡/kBT . The stochastic dynamics spends
most of the time in “waiting” while the actual transition is instantaneous. The waiting times are random and
exponentially distributed. Barrier-crossing is a generic feature of any stochastic, nonlinear dynamical system
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2.1 The Chemical Master Equation (CME)

Birth-and-death processes, to which the CME belongs, are a very special class of dis-
crete state, continuous time, Markov processes. The discrete states are non-negative inte-
gers forming a lattice Z

N . Consider a system of N chemical species Xi (i = 1,2, . . . ,N )
with M chemical reactions, with the j th chemical reaction being represented by a set of
stoichiometric coefficients ν

j

i and μ
j

i (the superscript being reaction and the subscript being
species):

ν
j

1 X1 + ν
j

2 X2 + · · · + ν
j

NXN

kj−→ μ
j

1X1 + μ
j

2X2 + · · · + μ
j

NXN, (1)

in which some of the integers ν’s and μ’s can be zero (j = 1,2, . . . ,M). If ν
j

� = μ
j

� �= 0 for
a particular �, the corresponding X� is called a catalyst for the reaction j . If μ

j

� > ν
j

� > 0,
then X� is an autocatalyst.

The state of the chemical reaction system at time t is characterized by the set of N inte-
ger n(t) = (n1(t), n2(t), . . . , nN(t)), i.e., a grid point on the Z

N lattice, which specifies the
copy number of Xi being ni(t). The dynamic of the chemical reaction system, thus, is repre-
sented by a trajectory in the copy number space Z

N . The stochastic dynamics, according to
Lebowitz-Gillespie’s algorithm [30, 32], runs as follows: each of the M reactions by itself,
say reaction j , can occur at a random time T j , very much like the radioactive decay, which
follows an exponential distribution

fT j (t) = λje−λj t , (2)

with the rate

λj = V kj

N∏

i=1

ni(ni − 1) · · · (ni − ν
j

i + 1)

V ν
j
i

. (3)

The parameter V in (3) stands for the volume of the reaction system. It converts molecular
copy number ni to concentration ni/V for species Xi ; all the rate constants in (1) are con-
centration based. Now with the presence of all M reactions in the system, the first one to
occur is at the random time

T ∗ = min{T 1, T 2, . . . , T M}, (4)

which follows again an exponential distribution

fT ∗(t) = λ∗e−λ∗t , λ∗ =
M∑

j=1

λj . (5)

The T ∗ determines the time for the system to move away from the current grid point. The
system then moves randomly to one of the M grid points

(n1, n2, . . . , nN) +
(
μ

j

1 − ν
j

1 ,μ
j

2 − ν
j

2 , . . . ,μ
j

N − ν
j

N

)
, j = 1,2, . . . ,M, (6)

with the probability λj/λ∗.
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The above stochastic dynamics on Z
N lattice can also be described by a probability

distribution p(n1, n2, . . . , nN, t), which satisfies the chemical master equation (CME):

dp(n, t)

dt
=

M∑

j=1

[
λj (n − μj + νj )p(n − μj + νj ) − λj (n)p(n)

]
(7)

where n = (n1, n2, . . . , nN), μj = (μ
j

1,μ
j

2, . . . ,μ
j

N), and νj = (ν
j

1 , ν
j

2 , . . . , ν
j

N ).
Therefore, the CME and the Gillespie algorithm are two different descriptions for the

same stochastic dynamical model of chemical reaction systems in a mesoscopic volume,
parallel to the diffusion (Fokker-Planck) equation and stochastic differential equation ap-
proaches to Brownian motion, developed by Einstein and Langevin respectively in 1905
and 1908.

See [33–35] for several recent reviews on the theory of the CME and [36–38] for its
applications to simple nonlinear chemical reaction systems.

2.2 Nonlinear Chemical Dynamics

The parameter V , the volume of the reaction system, is a crucial parameter of the CME. For
chemical reaction systems with macroscopic volume and Avogadro’s number of molecules,
one can introduce the concentration for species Xi , ui = ni/V . If we let both ni and V → ∞
in the CME, but keep ni/V → ui finite, then it can be mathematically shown that a set of
deterministic, nonlinear kinetic equations arise [35, 39]:

dui(t)

dt
=

M∑

j=1

(
μ

j

i − ν
j

i

)
J j , (8)

in which

J j = kju
ν
j
1

1 u
ν
j
2

2 · · · u
ν
j
N

N = lim
V, n→∞

λj (n)

V
, (9)

where λj (n) is given in (3). We note that the system of kinetic equations (9) is nothing but
the classic Law of Mass Action for the reaction scheme (1)! Therefore, the CME is not an
alternative approach to biochemical kinetics. Rather, the deterministic dynamics based on
the Law of Mass Action is the skeleton of the CME dynamics. A thorough understanding of
any CME, thus, requires a full grasp of the deterministic dynamics from the corresponding
nonlinear differential equation.

In fact, studying the CME, (7), together with its deterministic counterpart, (8), side-by-
side leads to a series of insights into the nonlinear, stochastic chemical kinetics.

Stationary Distribution First, for most biochemical reaction systems, the CME has a
unique stationary probability distribution pss

V (n). Note that this distribution is also a func-
tion of the system’s volume V . As a function of V the pss

V (n) usually has the general form
of the so called WKB (Wentzel-Kramers-Brillouin) expansion:

pss
V (n) = exp (−V φ0(u) + φ1(u) + · · · ) , u = n

V
, (10)

when V → ∞. The function φ0(u) is independent of V . It can be obtained, if it exists, from

φ0(u) = lim
V →∞

− 1

V
logpss

V (V u). (11)
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One of the most important properties concerning the φ0(u) is the equation [40]

b(u) · ∇φ0(u) = − (∇φ0(u))2 , (12)

where the b(u) = du/dt is the right-hand-side of (8). Equation (12) implies that

d

dt
φ0 (u(t)) = ∇φ0(u) · du

dt
= ∇φ0(u) · b(u) ≤ 0. (13)

In other words, the deterministic, nonlinear chemical dynamics given by (8) follow the
downhill of the function φ0(u). The function φ0(u) can and should be considered as a
dynamic landscape. In fact, the stable steady states of (8) are precisely the local minima
of φ0(u).

Maxwell Construction Many nonlinear dynamical systems have multiple, locally stable
steady states. We will see one of such examples in self-regulating gene network in Sect. 3.1.
A deterministic dynamical system approaches one of its stable steady states (or attractors)
and then stays there forever. Which attractor it goes to depends on the initial condition of
the dynamical system. This behavior gives rise to the concept of “basin of attraction”. This
is the picture one obtains from studying chemical dynamics based on (8).

Is one attractor more “important” than another? This question can not be answered under
strictly deterministic dynamics. However, for a dynamical system with stochasticity, dif-
ferent attractors can have different probabilities. In this sense, one attractor can be more
“stable” then another—While jumping among different attractors, the system spends totally
more time in a more stable attractor. This is an insight the CME offers that does not exist in
the deterministic kinetics.

Now let us consider again pss
V (n). Let us assume it has several peaks corresponding

to the stable steady states of the deterministic dynamics. What is its limit when V → ∞?
Noting that pss

V (n) is always normalized, and pss
V (n) ∼ exp(−V φ(u)), we see that the entire

distribution converges to the global minimum of φ0(u) with probability 1. Even though
a φ0(u) can have many local minima, in the limit of V → ∞, all their probabilities are
infinitesimal but one!

All these other local minima are called metastable. If a stochastic dynamics start from
within one of the basins of metastable states, if the V are very large, it will take an extremely
long time, ∼ eαV (α > 0) to exit. This is consistent with the result from the deterministic
dynamics. The “infinite time” in the deterministic dynamics is meant to be much shorter
than these extremely long exit times.

Applying the above discussions to a bistable system which undergoes saddle-node bifur-
cation:

du

dt
= b(u, θ) (14)

where θ is a parameter. The steady state(s) u∗(θ) of the system is obtained from solving
b(u, θ) = 0. The solid line in Fig. 2, the S-shaped curve, is called bifurcation diagram. For
the middle range of the θ value, the system has three steady states, the top and bottom
ones are stable, while the middle one is unstable. The corresponding stochastic dynamics
gives its stationary distribution and corresponding φ0(u, θ) which is also shown in Fig. 2.
The peaks and troughs match the steady states u∗(θ). For each θ , in the limit of V → ∞,
the stationary probability pss

V (u) converges to the global minima of φ0(u, θ). Therefore, the
stochastic dynamics selects only one of the two minima of φ0(u): When θ < θ∗, the lowest
branch and when θ > θ∗, the uppermost branch. The dashed vertical line at θ∗ is known as
Maxwell construction [41].
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Fig. 2 The S-shaped curve u∗(θ) is known as bifurcation diagram for saddle-node bifurcation. It shows
the steady states of a deterministic chemical dynamical system du/dt = b(u, θ) changing with parameter θ .
The system is bistable for the middle ranged value of θ . The corresponding CME gives dynamic landscape
φ0(u, θ), with its peak(s) and trough match the u∗. In the limit of V → ∞, the stationary distribution of the
stochastic dynamics has probability 1 located at the global minimum of φ0(u). Hence when θ < θ∗, it is
located at the lowest branch; and when θ > θ∗ , it is located at the uppermost branch. There is a discontinuity
at θ = θ∗ . The vertical dashed line is known as Maxwell construction

Competition Between Large System Size and Long Time The stochastic CME clearly
shows that there are two very different time scales in the nonlinear chemical dynamics with
multistability. The two time scales are well separated by the exit times from one attractor to
another. In the time scale much shorter than this, the deterministic chemical kinetics rules.
However, in the time scale much longer than this, the system stochastically jumps among
the multiple attractors, as a set of discrete states. The dynamics on this time scale is again
stochastic. The exit time of an attractor depends exponentially on the system’s volume V ,
eαV (α > 0). Hence, the larger a reaction system, the longer one has to wait to observe the
stochastic jumps.

Mathematically, for a chemical reaction system with bistability, exchanging the two lim-
its

lim
V →∞

lim
t→∞pV (n, t) �= lim

t→∞ lim
V →∞

pV (n, t). (15)

The left-hand-side gives probability 1 at the global minimum of φ0(u) independent of the
initial condition; the right-hand-side goes to different local minima of φ0(u) depending on
the initial condition. The inequality in (15) is the origin of T. Kurtz’s convergence theorem
for only finite time [39], as well as the so called Keizer’s paradox [36, 37].

To Kirschner and Gerhart’s thesis, the most important insight from the nonlinear bio-
chemical dynamics is that on an “evolutionary” long time scale, even a simple chemical
reaction system can exhibit stochastic variations. These variations and the stochastic dynam-
ics among them, though deeply rooted in the random fluctuations of molecular reactions as
understood by Kramers, are mesoscopic, or even macroscopic, emergent properties of non-
linear interacting molecular species. Biological variations need not be solely from DNA
sequences; it could come also from isogenetic nonlinear biochemical reaction systems.

There is a crucial conceptual issue to be resolved: From a thermodynamic standpoint,
how can the above mentioned chemical variations, i.e., diversity, be maintained? Should not
all chemical systems approach to equilibrium in the long-time limit?

Indeed, all the above discussed mutistable systems are open chemical systems with sus-
tained external chemical driving force. Therefore, they do not approach to an equilibrium
but rather their respective nonequilibrium steady states [42, 43]. In fact, if one eliminates
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all the chemical driving force on a system, then the CME predicts an equilibrium steady
state in the long-time limit. The pss

V (n) in this case is a simple, Gaussian-like distribution;
all chemical reactions satisfy the principle of detailed balance [44]. The net flux is zero in
each and every reaction in the system.

2.3 Nonequilibrium Steady State (NESS)

The mathematical theory of nonequilibrium steady state in stochastic dynamical systems
represented by master equations and Markov processes has only been established re-
cently [45]. The physics, however, has a long and diverse histories which can be traced
back to H. Haken, T.L. Hill, J. Keizer, M.J. Klein, M. Lax, J.L. Lebowitz, G. Nicolis, I.
Prigogine, J. Ross, to name a few among the many pioneers [46–53]. See [42, 43, 54] for
some recent applications to chemical and biochemical systems.

Conceptually, there are four kinds of mesoscopic chemical kinetic systems: (i) station-
ary systems in chemical equilibrium with equilibrium fluctuations; (ii) systems with time-
dependent transient relaxation to equilibrium; (iii) stationary open chemical systems which
are sustained out-of-equilibrium by a sustained chemical driving force; and (iv) systems with
time-dependent transient relaxation toward the (iii). Nonequilibrium steady state (NESS), or
stationary nonequilibrium state, the (iii), is the most appropriate chemical dynamic model
for a living cell under homeostasis [55].

Equilibrium Stochastic Dynamics and Time Reversibility It is now well understood that
the stochastic fluctuations in an equilibrium, as a function of time, is time reversible. All
statistical properties of a forward stochastic trajectory can not be distinguished from its time
reversal. In fact, any sequence of events that occur will have equal probability to occur in
reverse—thus nothing can be accomplished in an equilibrium dynamics. There is no energy
conversion from one form to another; or transport materials from one place to another.

Detailed Balance At the chemical reaction level, all reactions are going forward and back-
ward with equal likelihood. The net flux within each and every reaction is zero. This is the
principle of detailed balance [44]. One immediately sees that any chemical kinetic scheme
that assumes irreversible reactions is incompatible with an equilibrium steady state. In fact,
the rate constants of a kinetic scheme for an equilibrium reaction system, or a system ap-
proaching to an equilibrium, have to satisfy the Wegscheider cycle condition [44, 56]. In the
CME formulation, the Wegscheider cycle condition becomes the Kolmogorov cycle con-
dition for reversible Markov processes [45]: each and every cycle in the Z

N satisfies the
detailed balance. In order to distinguish the subtle difference, we have termed the former
chemical detailed balance and the latter mathematical detailed balance [37].

Gardiner [57] has shown that for chemical reaction systems with chemical detailed bal-
ance, not only its CME has mathematical detailed balance, hence its stationary distribution
is solvable, the stationary distribution is also a multivariate Poissonian conditioned on the
conservation laws among molecular species. It has a single peak.

Cycle Flux in NESS Any kinetic model that contains irreversible chemical reactions, there-
fore, implicitly assumes an chemical driving force. In fact, the force is assumed to be infinite.
To have a firm thermodynamic basis, it is advised that one finds out explicitly the source(s)
and sink(s) of the chemical driving force(s) applied to a biochemical system in cellular bio-
chemical modeling. For example, in the stochastic models for motor proteins, the driving
force is from the hydrolysis of ATP → ADP + Pi. Their concentrations are assumed to be
constant in motor protein kinetics.
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With the presence of a sustained chemical driving force(s), the stochastic dynamics ac-
cording to a CME approaches not to an equilibrium, but to a NESS. When a system is in
a NESS, since all the probabilities are no longer changing with time, and since the system
is not detailed balanced, there must be balanced cycle fluxes. This is a simple consequence
of Kirchhoff’s Law. The cycle flux and the landscape φo(u) in a chemical NESS are like
the current and voltage in an electrical circuit with battery. They provide complementary
information on a “living” chemical system [58, 59].

NESS on Different Time Scales The term “nonequilibrium steady state” deserves further
clarification. It seems to have two different meanings in systems with multiple attractors. On
the time scale shorter than the jumping times between the attractors, a NESS corresponds to
a single, average chemical composition with a multivariate Gaussian-like concentration (or
number) fluctuations. In this sense, a nonlinear chemical system can have multiple steady
states. The long-time fate of the system depends on its initial condition. They are the attrac-
tors of deterministic dynamics.

However, on the time scale much longer than the slowest exit time between the attractors,
the term NESS takes another, completely different, meaning. Here a NESS has a stationary
distribution which peaks at every attractors with appropriate weights. The chemical system
jumps continuously among the multiple attractors with ergodicity. In this case, a system has
a unique NESS which has the stationary distribution as the solution to the CME, the pss

V (u).
We should mention that for a chemical reaction system with individual reaction rates on

the order of milli- and micro-seconds, and with a couple of thousand copies of molecules,
the exit time of an attractor can easily be as long as 1011 years. That is an eternity! However,
if the number of molecules is reduced to a few hundreds, then the time is only on the order
of hours.

2.4 Nonequilibrium Phase Transition in the Bistable CME

Multiple steady states, or attractors, and bifurcations upon parameter changes are the essence
of deterministic nonlinear dynamical systems. Since the 1970s, it has long been argued that
cellular and physiological states of biological systems should be understood in terms of the
concept of attractors in nonlinear dynamics [14, 60–63]. The CME approach to the reaction
dynamics of mesoscopic biochemical systems adds a significant mathematical rigor to this
still elusive idea. In particular, the interplay between nonlinearity and stochasticity seems to
provide a deeper understanding of the complexity of real biological systems. The concepts
such as “barrier crossing” and “nonlinear bifurcation” are unified in the CME theory.

In a recent study of the CME of an open, driven biochemical system, the phosphorylation-
dephosphorylation cycle with feedback (see Sect. 3.2), it has been shown that [17] the
bistable system exhibits all the characteristics of equilibrium phase transitions extensively
studied in statistical physics. This includes the Maxwell construction for discontinuity in
the thermodynamic (V → ∞) limit, the Lee-Yang theory of a zero of the partition func-
tion being the origin of non-analyticity, and the terminal critical point in a phase diagram
matching the cusp in nonlinear saddle-node bifurcation. These findings seem to suggest that
isogenetic variations in biochemical systems are intimately related to phase transition.

3 Self-Regulating Genes and Phosphorylation-Dephosphorylation Cycles with
Feedback

We now turn our attention to two concrete biochemical reaction systems, one is the self-
regulating gene network (see (16)) and the other is the phosphorylation-dephosphorylation
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signaling cycle (see (23)). As we shall show, even though they are considered completely
different biochemical entities, their biochemical kinetics are essentially identical. Hence,
their analysis based on deterministic mass-action kinetics and stochastic CME will be car-
ried out in parallel.

3.1 Self-regulating Gene Networks

Self-regulating gene networks have been extensively studied in recent years [64–66]. These
systems can be described in terms of a biochemical kinetic scheme that consists of biosyn-
thesis and degradation of a transcription factor (TF), as well as the TF binding to the DNA
regulatory sequence of its own gene:

transcription factor binding: DNA + χ TF
h
�
f

DNA · (TF)χ , (16a)

TF biosynthesis: DNA
g0−→ TF, DNA · (TF)χ

g1−→ TF, (16b)

TF degradation: TF
k−→ . (16c)

Hornos et al. [65] considered g1 < g0 with χ = 1, i.e., the TF in monomeric form is a
repressor for its own gene expression. Walczak et al. [66] studied g1 > g0 with χ = 2. The
gene product in this case, in dimeric form, is its own transcription enhancer.

The corresponding macroscopic kinetics of gene regulations with feedback, in terms of
the deterministic Law of Mass Action, can be written in ordinary differential equations as

dx

dt
= hyχ(1 − x) − f x,

dy

dt
= (g0(1 − x) + g1x) − ky, (17)

where x is the fraction of the DNA with TF bound (χ = 1,2 for monomer and dimer, respec-
tively), y is the concentration of the TF, the gene product. Figure 3 shows that system (17)
can have unique steady state as well as bistability.

To solve the steady state(s), we introduce nondimensionalization. The two equations
in (17) are then simplified

dx

dτ
= ω

[
θzχ (1 − x) − x

]
,

dz

dτ
= g + (1 − g)x − z. (18)

Fig. 3 The null clines (isoclines) of the system in (17) for negative feedback case (A) and positive feedback
case (B), showing unique steady state and bistability, respectively. For the negative feedback case, g0 > g1
and χ = 1. The two null clines are x = f1(y) = y/(Kd + y) and x = f2(y) = (g0 − ky)/(g0 − g1), where
Kd = f/h. For the positive feedback case, g1 > g0 and χ = 2. The two null clines are f1(y) = y2/(Kd +y2)

and f2(y) = (ky − g0)/(g1 − g0). Parameters used in computations for (A): Kd = 1, k = 0.5, g0 = 1,
g1 = 0.05, χ = 1; and for (B) Kd = 1, k = 0.5, g0 = 0.05, g1 = 1, χ = 2
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Fig. 4 Self-regulating gene network with χ = 1. The steady state fraction of gene with TF bound, x∗,
increases with the binding affinity parameter θ = (g1/k)K−1

d
where Kd = f/h. The four curves are for

g = g0/g1 = 0.001,0.1,1.1,10 where g0 and g1 are the TF biosynthesis rates in the absence and presence
of TF binding to DNA. g > 1 corresponds to the TF being a repressor, and g < 1 corresponds to the TF
being an enhancer. For strong enhancer with very small g = 0.001, the TF induced gene expression is highly
cooperative, exhibiting delayed onset

where

z = k

g1
y, τ = kt, θ = h

f

(g1

k

)χ

, ω = f

k
, g = g0

g1
. (19)

The three cases of χ = 0,1,2 yield, respectively, hyperbolic gene activation, delayed onset
(with possible transcritical bifurcation when g = 0, at θ = 1), and bistability with saddle-
node bifurcation.

χ = 0 There is only a single steady state. The fraction of activated gene is x∗ = θ/(1 + θ)

which has a hyperbolic dependence on θ . In the meantime the gene product z∗ = (g +
θ)/(1 + θ).

χ = 1 The quadratic equation (1 − g)x2 − (1 − 2g − 1/θ)x − g = 0 has a unique root
x∗ ∈ (0,1] for θ ≥ 0:

x∗ =
(1 − 2g − 1

θ
) +

√
(1 − 2g − 1

θ
)2 + 4g(1 − g)

2(1 − g)
. (20)

Figure 4 shows that x∗ increases from 0 to 1 when θ increases from 0 to ∞. When g = 1,
there is no self-regulation and x∗ = θ/(1 + θ) which has the standard hyperbolic shape.
When g = 0, i.e., the TF is a strong enhancer, x∗ = 0 for θ ≤ 1 and x∗ = 1 − 1/θ for θ ≥ 1.
There is a transcritical bifurcation at θ = 1. This type of response is called delayed onset.

χ = 2 For the repressor case with negative feedback, i.e., g > 1 in (18), there is no bista-
bility because the null cline for dx/dt = 0 is an increasing function z = (x/(1 − x)/θ)1/2

while the null cline for dz/dt = 0 is a decreasing function z = g − (g − 1)x. For the case
of positive feedback with g < 1, the system (18) can have three steady states in the positive
quadrant, two stable and one unstable. Figure 3 shows the qualitatively different arrange-
ments of the null clines for the two cases.

The condition for the positive feedback case to have bistability is when (θ, g) is in the
cusp region bound by the parametric curve ( 1

z(2−3z)
, z(1−2z)

2−3z
) as shown in Fig. 5.
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Fig. 5 The f1(y) and f2(y) in Fig. 3B has three intersection, corresponding to three steady states for the
ODE system (bistability). The parameter region for the bistability typically has a “cusp”, known as cusp
catastrophe. If we let z = ky/g1, then the two null clines in Fig. 3B become the f1(z) and f2(z) with
θ = (hg2

1/(f k2) and g = g0/g1. To obtain the cusp region, we solve simultaneously f1(z) = f2(z) and
f ′

1(z) = f ′
2(z). This yields the (θ, g) parametrically in terms of z

Adiabatic and Non-adiabatic Limits If ω  1 in (18), then the FT binding to DNA is
much faster than its own biosynthesis and degradation. This is known as the adiabatic limit
[65, 66]. In this case, one can first solve the quasi-steady-state for dx/dτ = 0 to obtain
x = θzχ/(1 + θzχ ). Then the system of equations is reduced to a single one:

dz

dτ
= g + θ(1 − g)zχ

1 + θzχ
− z. (21)

On the other hand, if ω � 1, then the FT binding to DNA is much slower than its own
biosynthesis and degradation. This is known as the non-adiabatic scenario [65, 66]. In this
case, one can solve the quasi-steady-state for dz/dτ = 0 to obtain z = g + (1 − g)x. Then
again the system in (18) is reduced:

dx

dτ
= ω

{
θ

[
g + (1 − g)x

]χ
(1 − x) − x

}
. (22)

Strong Enhancer with g = 0 The steady state of the above kinetic system with g = 0 has
been extensively studied in the context of phosphorylation-dephosphorylation cycles with
feedback [17, 41, 67–69]. We now introduce this biochemical signaling system which is
kinetically almost isomorphic to the self-regulating gene network.

We have assumed in (16) a cooperative binding of two copies of TF to the DNA in
the case of χ = 2. It is important to point out that the strong nonlinearity required in the
bistable behavior is not from the cooperativity per se. Rather, it is from the fact that only the
doubly occupied DNA is functional. In this case, the response function is sigmoidal even for
completely independent binding: x2

1+2x+x2 . This response function is in sharp contrast to the

fraction of binding, 1·2x+2·x2

2·(1+2x+x2)
, which is hyperbolic x

1+x
. See [70, 71] for recent experimental

and theoretical studies on the consequences of nonlinearity from time delay and cooperative
binding.
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3.2 Phosphorylation-Dephosphorylation Cycles (PdPC) with Feedback

Phosphorylation-dephosphorylation cycles (PdPC) are biochemical regulatory systems in
cell signaling. They consist of a substrate protein E which can be phosphorylated to become
E∗, catalyzed by a protein kinase K , and protein phosphatase P . In many cases, the kinase
itself can be regulated via binding to the E∗; thus the feedback is in the form of autocatalysis.
For more discussions on concrete biological examples see the Fig. 1 of [69].

The system can be described in terms of biochemical kinetic scheme

kinase regulation via binding of E∗: K + χ E∗ h
�
f

K†, (23a)

protein phosphorylation: E + K
g0−→ E∗ + K, E + K† g1−→ E∗ + K†, (23b)

protein dephosphorylation: E∗ + P
k̂−→ E + P. (23c)

The deterministic kinetic equations for this class of models, according to the Law of Mass
Action, is

dx

dt
= hyχ(1 − x) − f x,

dy

dt
= (g0(1 − x) + g1x) (yt − y) − ky, (24)

where x is the fraction of the kinase in the K† form, y is the concentration of phosphorylated
E∗, k = k̂[P ], and yt is the total concentration of E and E∗. Comparing (24) to (17), we
see that the two systems of equations are essentially the same except the former contains an
extra term (yt −y) on the right-hand-side of dy/dt . When k  g0, g1, the former is reduced
to the latter.

If the reaction K + E∗ � K† is fast, y
χ
t � f/h = Kd , and g0 = 0, then one has a quasi-

steady-state for dx/dt = 0 and a simplified equation for u = y/yt ,

du

dτ
= σuχ(1 − u) − u, (25)

in which u represents the fraction of phosphorylated E∗, τ = kt , and σ = g1hy
χ
t /f k repre-

sents the ratio of activities of a kinase to that of a phosphatase.
When χ = 0, the steady state u∗ is a hyperbolic function of σ : u∗ = σ/(1 + σ). When

χ = 1, u∗ = 0 for σ ≤ 1 and 1−1/σ for σ ≥ 1, exhibiting delayed onset. When χ = 2, u∗
1 =

0 is always stable, and when σ ≥ 4, a second stable steady state u∗
2 = (σ +√

σ 2 − 4σ)/(2σ)

appears. u∗
1 and u∗

2 are separated by an unstable u∗
3 = (σ − √

σ 2 − 4σ)/(2σ). See Fig. 6.
The open, driven chemical nature of the PdPC with bistability has been studied in [68]. It

was shown that if the free energy from ATP hydrolysis is below a critical value (this can be

Fig. 6 Steady state(s) of phos-
phorylation-dephosphorylation
cycle (PdPC) with positive
feedback, described by the model
in (25). χ = 0,1,2 represent no-,
monomeric, and dimeric
activations of the kinase,
respectively. Find the equations
for the three curves in the text
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Fig. 7 m = 0 and m = 1 represent the unbound and bound state of the single copy of DNA (gene). � denote
the copy of free TF. Monomeric TF binds DNA with on-rate constant h and off-rate constant f . Binding
reduces the copy number of free TF by 1 (χ = 1). TF biosynthesis rate is g1 and g0 when the gene is bound
and unbound, respectively. TF degradation rate is k

accomplished by either decreasing ATP concentration or increasing ADP/Pi concentrations),
then the bistability disappears all together. Biochemical variations can only be maintained
with an energy expenditure and free energy dissipation.

3.3 Stochastic Dynamics According to the CME

The theory in Sect. 2.2 indicates that for systems with nonlinear, deterministic bistability,
the CME will have its stationary distribution with two peaks located precisely at the two
fixed points; there are two stochastic attractors.

However, it comes as a surprise that the CME of a self-regulating gene network, with
a monomeric repressor (g0 > g1, χ = 1), also exhibits bimodal stationary distribution
[64, 65]. This is not expected from (17), as illustrated in Figs. 3A and 4. In a similar vein,
it has also been discovered that PdPC with feedback, even for χ = 1 and g0 = 0, can have
bimodality [69, 72]. This phenomenon has been called noise-induced bistability.

It turns out, this type of stochastic bistability (to be distinguished from the nonlinear
bistability) is a small copy number effect. In fact, for the self-regulating gene network in a
single cell, there is only one copy of the DNA [64, 65]! In the PdPC system studied, the
copy number is also small, about 30 [69]. The stochastic bistability is intimately related to
the extinction phenomenon [69, 73].

Stochastic Bistability with Slow Fluctuations Stochastic bistability can be best understood
in the single-molecule context with slow fluctuations [73, 74]. Consider the CME for kinetic
scheme in (16) and assuming only a single copy of the DNA, then one has the detailed
kinetics on a lattice, m = 0,1 and � = 0,1,2, . . . , in Fig. 7.

If the rates h and f are sufficiently smaller than g’s and k, then one has a quasi-stationary
Poisson distribution along each line in Fig. 7:

p(�|m = 0) = 1

�!
(g0

k

)�

e−g0/k, p(�|m = 1) = 1

�!
(g1

k

)�

e−g1/k. (26)

The transition rate from m = 0 to m = 1 is given as the average

h = h

∞∑

�=0

� p(�|m = 0) = hg0

k
. (27)

Then the stationary distribution is

pss(�,m) = p(�|m)p(m) =
⎧
⎨

⎩

f k

f k+hg0

1
�!

(
g0
k

)�
e−g0/k, m = 0;

hg0
f k+hg0

1
�!

(
g1
k

)�
e−g1/k, m = 1.

(28)
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Therefore, if the peak on the m = 1 line, g1/k, and the peak on the m = 0 line, g0/k, are well
separated, then the marginal distribution pss(�) will have two peaks. This is the stochastic
bistability due to slow, non-adiabatic gene regulation.

Adiabatic Limit We now consider the case when the rates h and f are much greater than
g’s and k [65, 74]. We can obtain a quasi-stationary distribution between m = 0 and m = 1
for each and every �. We shall now denote the total copy number of TF by �, so the labels
along the two lines in Fig. 7 match:

p(m = 0|�) = f

�h + f
, p(m = 1|�) = �h

�h + f
. (29)

Then the kinetics are simplified into a 1-dimensional birth-and-death process with birth and
death rates

b� = fg0 + �hg1

f + �h
, d�+1 = (f + �h)(� + 1)k

f + (� + 1)h
. (30)

The marginal stationary distribution for the copy number of total TF is

pss(�) = C

�∏

i=1

bi−1

di

= C

�∏

i=1

[fg0 + (i − 1)hg1][f + ih]
i[f + (i − 1)h]2k

, (31)

where C is a normalization factor. We note that

b� − d� = fg0 + �(hg1 − f k + hk) − �2hk

f + �h
. (32)

The numerator of (32) is only a quadratic function of �. When � = 0 it is positive and when
� = ±∞ it is negative. Therefore, it has only a single zero for positive �. The distribution
pss(�) in (31) can only have a single peak for � > 0. This result agrees with that from the
deterministic kinetics. However, because of the discrete nature of �, the pss(�) can also peak
at � = 0 [69]. The condition for this is pss(0)/pss(1) = d1/b0 > 1. That is,

(
f

f + h

)
k

g0
> 1. (33)

In fact, if g0 = 0, then the system has an absorbing state at � = m = 0. Therefore, the sto-
chastic bistability is the “ghost” of the extinction phenomenon.

Mathematically, we note that the χ = 1 case has a quadratic nonlinearity and the χ = 2
case has a cubic nonlinearity. This distinction, leading to stochastic bistability and nonlinear
bistability respectively, has been discussed in the context of PdPC with feedback in [69].

Transition Rate Volume Dependence as an Indicator for Bistability Mechanism How can
one determine whether the bistability in a mesoscopic system is stochastic in nature or non-
linear in nature? We suggest that the volume-dependence of exit rates can be used as an
indicator. By increasing volume and numbers of molecules but keeping their concentrations
invariant, stochastic bistability disappears while nonlinear bistability intensifies. As a func-
tion of the system’s size, the two types of bistability behave differently in a fundamental
way.

In thermodynamics, one investigates the mechanism of chemical and biochemical re-
actions (e.g., protein folding) by measuring reaction rates as functions of temperature and
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plotting the so-called Arrhenius plot with activation enthalpy. The widely practiced ap-
proach does not mean one is interested in a chemical reaction in high temperature or low
temperature, per se. Rather it is understood that temperature dependence provides insights
into the mechanism of a reaction: Is it entropic or enthalpic driven?

An analogue exists for the case of volume dependence of the transition rates between two
stochastic attractors: The rates increase for nonlinear bistability but decrease for stochastic
bistability when the volume decreases.

4 Nonequilibrium Statistical Thermodynamics

We now turn our attention to thermodynamics. Afterall, the initial motivation of statistical
physics is to understand thermodynamics from a molecular perspective in terms of the the-
ory of probability. We now have a probabilistic, stochastic description of the dynamics of
open, driven biochemical reaction systems. Is there an overarching nonequilibrium thermo-
dynamics?

The answer is “yes”. Recently, it becomes known that there is a completely statistical
thermodynamics for Markovian dynamics based on a master equation [19, 75–79]. Ther-
modynamics, it turns out, is a general mathematical law of any Markovian dynamics. The
thermodynamics of molecular systems discovered in thermal physics is simply one special
example.

The Mathematical Theory of Thermodynamics Let us consider a master equation

dpi

dt
=

N∑

j=1

(
pjqji − piqij

)
. (34)

As we have discussed, one needs to assume that qij �= 0 iff qji �= 0 for any i, j in order to be
able to study thermodynamics. For simplicity, we further assume the Markovian system is
irreducible. Hence, it has a unique, positive stationary distribution we shall denote by {πi}:

N∑

j=1

(
πjqji − πiqij

) = 0, πi > 0. (35)

Two thermodynamic quantities will be investigated [19]: The Gibbs entropy

S(t) = −
N∑

i=1

pi(t) lnpi(t), (36)

and the Gibbs free energy

F(t) =
N∑

i=1

pi(t) ln

(
pi(t)

πi

)
. (37)

Applying the chain rule, one has

dS(t)

dt
= ep − hd,

dF (t)

dt
= −fd, (38)
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where the entropy production rate ep , heat dissipation rate hd , and free energy dissipation
rate fd are

ep = 1

2

∑

i,j

(
piqij − pjqji

)
ln

(
piqij

pjqji

)
, (39)

hd = 1

2

∑

i,j

(
piqij − pjqji

)
ln

(
qij

qji

)
, (40)

fd = 1

2

∑

i,j

(
piqij − pjqji

)
ln

(
piπj

pjπi

)
. (41)

One can mathematically show that

S(t) ≥ 0, F (t) ≥ 0, ep(t) ≥ 0, and fd(t) ≥ 0. (42)

More importantly, one can define the so called house keeping heat, originally introduced
by Oono and Paniconi [80] in a phenomenological NESS thermodynamics, to quantify the
driving force applied to the system:

Qhk = ep − fd = 1

2

∑

i,j

(
piqij − pjqji

)
ln

(
πiqij

πjqji

)
≥ 0. (43)

It is also non-negative.
The interpretations of these inequalities are clear: Since the hd can be positive and neg-

ative, there is no guarantee that dS/dt ≥ 0. As it was clear to Gibbs, for canonical systems
it is not the entropy that always increases, but it is the free energy that always decrease:
dF/dt ≤ 0.

Furthermore, we have the decomposition of the entropy production rate

ep = fd + Qhk, in which fd ≥ 0 and Qhk ≥ 0. (44)

Now we see that the total time irreversibility, which is characterized by the entropy pro-
duction rate, ep [45], really comes from two different origins: The fd characterizes the
spontaneous relaxation (or organization) to a system’s stationarity. fd = 0 when a sys-
tem reaches its stationary πi . This irreversibility is Boltzmann’s original thesis. However,
Qhk characterizes irreversibility due to sustained driving, or energy pumping, of the sys-
tem out-of-equilibrium. There is a continuous dissipation even in NESS. As we have dis-
cussed in Sect. 2.3, this driving force is characterized by the breakdown of detailed balance:
πqij �= πjqji . When there is no external driving force, Qhk = 0. This irreversibility has long
been Prigogine’s thesis [49]. For systems without detailed balance, spontaneous approach-
ing to stationary distribution πi is a form of self-organization [49, 51, 63].

Systems with Detailed Balance For systems with detailed balance, which is the subject of
classic statistical mechanics, we have the free energy dissipation precisely equal to entropy
production rate: fd = ep . In fact, we see that in this case, lnπi = −Ei is the energy of the
state i (kBT = 1). Then

F =
N∑

i=1

Ei pi − S = 〈E〉 − S. (45)



Cellular Biology in Terms of Stochastic Nonlinear Biochemical Dynamics 1007

We have recovered the fundamental equation of classical thermodynamics. Furthermore, we
see that if πi = constant, i.e., the system’s equilibrium has an equal probability a priori,
then the S(t) = −F(t)+constant, and dS/dt = −dF/dt ≥ 0. This is in fact Boltzmann’s
statistical mechanics for isolated system with microcanonical ensemble. In this case, the
Second Law states “entropy never decreases”.

The Energy of a Stochastic System The foregoing theory seems to suggest that for any
stochastic dynamical system, with or without detailed balance, one can define a “statistical
energy” as Ei = − lnπi . Combined with the discussion on φ0(u) from Sect. 2.2, it seems to
us that Boltzmann’s law, pi = exp(−Ei/kBT ), might be understood backward and used as
a way to introduce a new form of energy: The energy of stochastic systems [75].

Taking the CME as an example. If one takes φo(u) as the energy function, and takes V

as 1/(kBT ), then one has a “partition function”

Z(V ) =
∫

du e−V φ0(u). (46)

One can in fact develop an entire system of “volumodynamics”. It will be interesting to see
whether this line of inquiry leads to any new insights for analyzing the CME or nonequilib-
rium thermodynamics [81].

5 Summary

There are implications to cellular biological systems from the stochastic, nonlinear chemi-
cal dynamics perspective. But at the onset, we shall first stress that the CME theory we have
discussed assumes a spatially homogeneous chemical reaction system. This is certainly not
true for a real biological cell. The CME is a highly idealized model, just as the Ising model
extensively studied in statistical mechanics. While the Ising model and related interacting
particle systems emphasize spatial aspect of a molecular system, the CME emphasizes com-
positional heterogeneity in biological systems.

The significance of the CME is its richness, depth, and sophistication. It endows a full
range of dynamics from the stochastic mesoscopic scale to the deterministic macroscopic
scale, and beyond. It provides insights into the nature of “thermodynamic limit”.

Furthermore, it gives rigorous distinction between closed systems that approach to equi-
librium and open, driven systems that exhibit spontaneous self-organization. It also allows
for studying the relationship between stochastic dynamics and statistical thermodynamics.
In terms of the CME, investigations into elusive ideas such as “energy cost that sustains
complexity (diversity) measured by entropy” becomes possible.

Last, but not the least, the CME offers an understanding of the interaction between non-
linearity and stochasticity in dynamics. There is no doubt that these two elements are central
to many biological processes.

5.1 Emergent Properties of Stochastic Nonlinear Systems

Emergent properties are central to any complex systems and processes [74, 82]. In nonlinear
dynamics, emergent properties manifest themselves as the existence and locations of multi-
ple attractors with fixed points, periodic oscillations, or chaotic motions. Simple dynamics
are associated with gradient systems in which the attractors are known a priori and are deter-
mined locally; every step of the way, the system is closer to the final destiny. A non-gradient
system has no such certainty.
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A stochastic CME with detailed balance has its dynamics essentially following a gradient
of a function. In protein folding dynamics, the energy landscape is the function. In any study
of protein folding dynamics, an energy landscape is always known a priori; and its gradient
field is the cause of the dynamics.

The φ0(u) as a dynamic landscape, however, has a different characteristics. First, it is
non-local. One requires the dynamics to move over the entire possible space many times in
order to establish it. The φ0(u) is a consequence of the dynamics. It is only known retro-
spectively.

Therefore, in this perspective, the very existence of multistability, and the average time
required to move from one attractor to another, are all emergent properties. They are the
results of the complex dynamics of an open biochemical system as a whole under a particular
given environment condition.

Dynamics as a Sequence of Punctuated Equilibria Dynamics of nonlinear, stochastic sys-
tems with multiple attractors possess certain universal features. As we have said in the be-
ginning, stochastic dynamics jumping among stochastic attractors spend most of the time
in waiting. On an evolutionary time scale, the process exhibits a sequence of punctuated
equilibria (see Fig. 1).

Upon a perturbation, a system’s initial response is always a relaxation back to the fixed
point with nearly deterministic dynamics. This occurs rapidly. The system then settles at
the bottom of the attractor with Gaussian fluctuations. Such a state is often mistaken as an
equilibrium. Then in a much longer time scale, the rare event of barrier-crossing leads the
system to another attractor (see Fig. 8).

Protein folding kinetics is well-known to have this generic characteristic: A folded pro-
tein when immersed in a denaturing solvent, first becomes a “dry molten globule” then un-
folds via a thermal activated process; a unfolded protein when immersed in a native solvent,
first becomes a “wet molten globule” then folds by thermal activation [83]. These molten
globules are folded protein in a denaturant and unfolded protein under a native condition,
respectively.

Fig. 8 A schematics showing the generic features of a nonlinear, stochastic dynamical system with multiple
attractors under perturbation: Immediately after the perturbation, the system is likely residing at the slope of
an attractor. Then (1) relaxation occurs and the system returns to its local steady state. At local steady state (2),
the system fluctuates and spends the time in waiting until a rare event of barrier-crossing (3). The rare event
only occurs in the evolution time scale; and when it occurs, the actual transition is nearly instantaneous. A
rare event usually has an exponential waiting time and the process is “memoryless”. This means it occurs
without any indication
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Other much more complex biological processes seem also to exhibit this feature. For
example, the three Es of cancer immunoediting articulate that an immune system counteracts
tumor growth with three main phases: elimination, equilibrium, and escape [84].

5.2 Isogenetic Variations of Biochemical Dynamics

Two cells with identical genomes are called isogenetic. With exactly same chemical envi-
ronment, two isogenetic cells can have very different chemical compositions represented by
different attractors of the nonlinear biochemical dynamics. Note that by the same chemical
environment, we mean a sustained chemical gradient of certain nutrients and their metabo-
lites. With the same chemical potential, however, the two cells can have different nutrient
influx. Applying this idea specifically to the biochemical network responsible for gene tran-
scriptional regulation, one can easily understand the origin of isogenetic variations in gene
expression [60, 85, 86].

There are growing experimental observations on the multiple steady states of a cell pop-
ulation. The multiple-state nature is most convincing when a cell population is in the middle
of a transition: Two peaks with comparable size rather than one can be observed. For ex-
ample, in Xenopus oocyte maturation induced by hormone progesterone, it had been known
that progesterone treatment leads to an increase in the phosphorylation of mitogen-activated
protein kinase (MAPK). Ferrell and Machleder [87] have shown, however, that the level
of MAPK phosphorylation in an isogenetic Xenopus oocyte population has a bimodal dis-
tribution. Furthermore, the relative heights of the two peaks change but their locations are
invariant with the increasing progesterone. This is the hallmark of a bistable (also known as
two-state, and all-or-none) system under external perturbation.

Similarly, Buckmaster et al. [88], using Raman spectrum as an indicator for DNA frag-
mentation, observed a shift in a bimodal distribution during the apoptosis of DAOY cell line
(human brain tumor medulloblatoma) induced by etoposide, a topoisomerase II inhibitor.

Also in cell line U2OS, a human osteosarcoma, Xu et al. [89] observed a bimodal distri-
bution in the intensity of fluorescein labeled FITC-Annexin V, a protein that preferentially
binds to negatively charged phosphatidylserine (PS). Cell apoptosis involves changes on its
surface with the exposure of PS. Upon irradiation, which induced DNA damage and apop-
tosis in U2OS cells, Xu et al. reported a shift in the relative heights of the two peaks. The
shift is intensified with the presence of PDCD5 (programed cell death 5) protein, which is
known to facilitate apoptosis. Again, the apoptotic process changes the heights of the two
peaks without changing their locations.

Cancer cells are well known to be genomically very unstable and heterogeneous; it is
not known to us whether these tumor cell lines are truly isogenetic. Still, assuming somatic
mutations are rare, these observations strongly suggest nonlinear biochemical multistability
in tumor cells.

It is interesting to note that in the 1970s, the field of protein folding had gone through a
similar stage in demonstrating the two-state nature of protein folding kinetics [90]. The his-
tory of protein science can shed some light on the current development of cellular dynamics.

5.3 Inheritability of Nonlinear Chemical Attractors

DNA in terms of Watson-Crick base-pairing has been considered the only mechanism for
inheritability. However, a biochemical system residing in a nonlinear attractor can also be
“inherited” via cell growth and division. The CME predicts that the concentrations of the
biochemical species are invariant, not their copy numbers. Therefore, if a cell has an au-
tonomous mechanism for increasing its aqueous volume, all the copy numbers will follow
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by keeping the concentrations at the steady state. This process is self-organizing and robust.
Cell division also maintains the concentrations for both daughter cells. By this mechanism,
two isogenetic cells in different biochemical attractors that far apart will go through “growth
and division” with their respective chemical compositions inherited.

Finally, we shall also emphasize that the existence and locations of the stochastic attrac-
tors of a nonlinear biochemical system are dependent upon the environmental biochemical
conditions. Therefore, “mutations” occur upon “environmental” changes in the chemical
context. This possibility provides further insights into the debate on spontaneous versus
adaptive mutations at the cellular biochemical systems level [91–93]. Still, whether and
how such “feedback loops” in cellular evolution leading to genomic innovation is the next
stage of the “plausibility of life”.
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