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414 DONALD A. McQUARRIE 

I. INTRODUCTION 

In this article we shall present a summary of the various stochastic approaches 
and applications to chemical reaction kinetics, but before discussing these we 
first briefly introduce the basic ideas and definitions of classical or deterministic 
chemical kinetics. One of the basic questions to which chemists address themselves 
is the rate of chemical reactions, or in other words, how long it takes for a chem- 
ical reaction to attain completion, or equilibrium. Apparently the first signi- 
ficant quantitative investigation was made in 1850 by L. Wilhelmy [93]. He 
studied the inversion of sucrose (cane sugar) in aqueous solutions of acids, whose 
reaction is 

H20 + C12H22011 -* C6H1206 + C6H1206. 

(sucrose) (glucose) (fructose) 

He found empirically that the rate of decrease of concentration of sucrose was 
simply proportional to the concentration remaining unconverted, i.e., if S(t) is 
the concentration of sucrose, then 

dS 
-1)= kS. 

The constant of proportionality is called the rate constant of the reaction. If 
So is the initial concentration of sucrose, then 

(1-2) S(t) = Soe-kt. 

Since then an enormous number of reactions has been studied and the field 
of chemical kinetics is now one of the largest areas of chemical research. The 
importance of the field lies in the fact that it yields concise expressions for the 
time dependence of reactions, predicts yields, optimum economic conditions, and 

gives one much insight into the actual molecular processes involved. The de- 
tailed molecular picture of a reaction process is called the mechanism of the 
reaction. 

In most cases, the rate, say the decrease of concentration of species 1, is found 
to depend upon the product of the concentrations of the other species present, 
so that 

dc, b 
(I-3) 

- dt kc~c,*"c1. 

The order of the reaction is defined as the sum of the exponents of the concen- 
tration terms on the right hand side of this expression. The inversion of sucrose, 
for example, is a first order reaction. It should be pointed out that it is not ne- 
cessary for the order of a reaction to be an integer since it is determined simply 
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as the best fit of a rate equation to empirical data. Also it is important to realize 
that there is absolutely no connection between the stoichiometry of a chem- 
ical reaction and its order. For instance, of the two reactions 

(a) 2N205 - 4NO2 + 02 

and 

(b) 2NO2 - 2NO + 02, 

(a) is first order and (b) is the second order. This is because many reactions pro- 
ceed through a number of steps or stages between initial reactants and final pro- 
ducts and the slow ones determine the rate. Each of these individual steps is 
called an elementary reaction. We use the term molecularity to indicate the 
number of reactant molecules that enter into an elementary reaction. Unimole- 
cular reactions are first order, bimolecular reactions are second order, etc., but 
the converse is not necessarily true. Reaction order applies to the empirical rate 
law; molecularity applies to the molecular mechanism of an elementary step. 

What are the reasons for formulating classical chemical kinetics in a probabi- 
listic or stochastic framework? A basic reason is that the process is in fact statis- 
tical in nature. An expression like Equation (I-2) considers the variable S(t) 
to be a continuous real-valued function of time, and no deviations from this 
curve are considered. In general, however, the concentration or number of mole- 
cules in the system is an integer-valued random variable, and the process should 
be described by the probability density of this random variable. The mean of 
this distribution will then be the observed concentration and the variance will 
supply a measure of the inherent statistical fluctuations about the mean. For 
most simple reactions, however, the mean will be essentially the same as the 
deterministic solution and the fluctuations will be so small as to be of no import- 
ance. There is a great number of important exceptions to this which will be 
described below, but even if this were not so, it would still be of value to consider 
the statistical aspects of chemical kinetics in an effort to extend thermodynamics 
or statistical thermodynamics to time dependent systems, or in other words to 
predict rates from molecular properties. We shall discuss such an approach 
due to Montroll and Shuler [92] in a later section. 

There are a number of reactions for which the deterministic approach is not 
adequate and stochastic models must in fact be used. The most obvious example 
are systems which contain a small number of reactant species, such as many 
reactions occurring in biological cells [8]. Another example is a process where a 
few activated molecules initiate an avalanche type reaction. Such a mechanism 
has recently been proposed for certain visual and blood clotting mechanisms 
[82], [84], [118]. Many reactions in the field of polymer chemistry have been 
formulated stochastically such as the distribution of chain lengths, the distribu- 
tion of copolymeric composition [20], [21], [22], [37], [50], [51], [79], [86], [98], 
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[98], [99], [104], kinetics of reactant isolation [19], and the polymerization kine- 
tics of biological macromolecules on templates [112], [127], [128]. Several of these 
will be discussed in Section (IV). Other examples are diffusion controlled chemical 
reactions [72], [97], [125], models of sterilization [36], chromatography [41], [42], 
[87], rearrangement of linear methylsilicone oils [102], [103], denaturation 
of polypeptides or proteins [90], [100], [109], relaxation of vibrational nonequi- 
librium distributions in shock waves [13], [16], [48], [62], [91], [106], [107], [110], 
theory of homogeneous and heterogeneous nucleation of vapours [4], [17], [23], 
[31], [45], [61], the theory of adsorption of gases onto solid surfaces [64], degra- 
dation of linear chain molecules [2], [3], [46], [63], [101], the separation of 
molecular compounds by countercurrent dialysis [71], the statistical processes of 
aggregation and polymerization [123], isotope exchange [68], and attempts to 
study irreversible thermodynamics through stochastic models [54]-[60], [67]. 

II. HISTORICAL BACKGROUND 

Although the mathematical techniques of stochastic processes have existed for 
some time [32], until ten years or so ago few applications of the theory to chemical 
kinetics had appeared. A great body of literature has existed in physics foi many 
years, but in this article we shall try to concentrate specifically upon chemically 
oriented rate processes. We must, however, simply refer to the classic articles of 
Chandrasekhar [18], Uhlenbeck and Ornstein [116], Wang and Uhlenbeck [119], 
and the others that appear in Wax's monograph [121], for completeness. 

The first application of stochastic ideas to chemical kinetics seems to be due 
to Kramers [77], [92], who treated a chemical reaction as a Brownian motion of 
particles, whose rate of passage over a potential barrier represents the rate of 
decomposition. This was an early attempt at trying to formulate macroscopic 
rate processes in terms of molecular parameters. 

The next seems to be that of Delbriick [27] who studied a stochastic model of 
the so-called autocatalytic reaction A -+ B. By autocatalytic, one means that the 
rate of disappearance of A is not only proportional to A, but also to B, so that 
the reaction tends to catalyze itself. Even though this appears to be a second order 
reaction, Delbriick assumed that the concentration of A is so large that it remains 
constant through the course of reaction and so the rate is simply given by 

dB = kB, dt 

which is a first order reaction. He showed that during the initial stages of reaction, 
the fluctuations in the number of reactant molecules was of the order of the 

square root of the number of reactant molecules. 
It was not until 1953 that Singer [113] discussed the application of a stochastic 

method to the study of irreproducible reactions. He pointed out that a number 
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of chemical reactions, for instance, the oxidation of formic acid by potassium nit- 
rate, the slow or explosive decomposition of some solids, and the initial stages of 
certain polymerization reactions have been reported to show large fluctuations or 

irreproducibilities. He concluded that in small systems, fluctuations in the number 
of reactant species could be responsible for irreproducible reactions, together of 
course with those due to the presence of impurities. Shortly thereafter R6nyi 
[105] treated the bimolecular reaction of A + B -+ C and showed that the law 
of mass action, which is a basic axiom in the deterministic theory, is only ap- 
proximately valid and does not hold for small systems. This work is outlined in 
Chapter 8 of Bharucha-Reid's monograph [14]. This was followed by a series 
of papers by Pr6kopa [102], [103], in which he used stochastic methods to 
study the rearrangement of linear methyl-silicone oils. During this time there 
was also a number of papers appearing in the biological or biostatistical literature 
dealing with population models and other applications, but since we are trying 
mainly to outline chemical applications, we simply refer to Chapter 4 of [14], 
which contains what seems to be a comprehensive review of biological applica- 
tions and the reviews that have appeared in this journal by Gani [38] and Kimura 
[76]. In 1957 Bartholomay [7], [8] started a series of articles studying the Mar- 
kovian basis of chemical kinetics, and then studied the unimolecular reaction 
A -~ B as a pure death process. Since then a large number of papers have ap- 
peared, and are continuing to appear at a larger rate now that chemists are be- 
coming aware of the simple techniques of stochastic rate processes. 

In 1960 Ishida [65] extended Bartholomay's method of treating unimolecular 
reactions to a more general stochastic process having a time dependent rate 
constant. Using this he studied the bimolecular process 2A -+ B and a multi- 
dimensional stochastic model of the unimolecular decomposition theory of 
Kassel. Then McQuarrie [88] studied a number of simple first order reactions 
and also considered the effect of initial conditions on the expectation value and 
variance of product. This was followed by a study of two bimolecular processes, 
2A - B and A + B -+ C, which were solved exactly by generating functions [89]. 
These seem to have been the first exact numerical results for bimolecular processes. 
Several approximate methods were also presented. During this time Bartholomay 
[11], [12], applied a stochastic model to the Michaelis-Menton reaction, one of 
importance in biochemistry. Shortly after, Ishida [66] also solved the above 
two bimolecular reactions exactly, and recently Darvey, Ninham, and Staff [25] 
solved a number of reversible bimolecular processes exactly for their equilibrium 
properties. This very nearly exhausts the simple elementary processes that have 
been studied. 

Since 1960 or so, there have been a large number of papers on more compli- 
cated applications of stochastic ideas to chemical kinetics or related topics. These 
have been mentioned in the previous section. 

In this article we shall review all the exact elementary reactions that have been 
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studied and then present a partial select review of some of the more complicated 
applications. The only other review of this type is Chapter 8 of [14], which covers 
essentially only the work of R6nyi [105], Singer [113], and Bartholomay [7], 
[8], [9]. Chapter 4 of Bharucha-Reid's book contains an excellent discussion of 
biological stochastic models, and so little emphasis will be placed here on biolo- 
gical applications, except for a few recent articles. 

In the next section we shall treat unimolecular and exactly solved bimolecular 
reactions, and some possible approximate methods. In the last section we shall 
present some selected more complex applications. It is hoped that the exactly 
solvable elementary reactions can serve as a basis for more complex reactions, 
cases on which to test badly needed approximate methods, and as a useful con- 
nection between rate processes and statistical mechanics. The experimentally 
useful results, however, are to be found in the more complex reactions which 
must in fact be treated stochastically. 

III. EXACTLY SOLVABLE ELEMENTARY REACTIONS 

In this section we shall present a rather detailed discussion of the exactly solv- 
able elementary reactions. By elementary we mean unimolecular and bimolecular 
reactions, and simple extensions of them. All of these can be thought of as various 
birth and death processes in one or several variables. Unimolecular reactions are 
represented by linear birth and death processes and bimolecular reactions are 
represented as quadratic birth and death processes. Bartholomay [7] has empha- 
sized the connection between unimolecular reactions, linear birth and death pro- 
cesses, and the Q-matrix method of Doob. We shall simply assume the existence 
of differential-difference equations such as (III-1). 

III.A. Unimolecular reactions 
In this section we shall treat a variety of first order reactions. Such systems 

may be described by a finite or infinite set of states, {x), each member of 
which corresponds to a specified number of some given type of molecule in 
the system. One then defines a set of transition probabilities of going from state 
x to state x - j, which in unimolecular reactions depend linearly upon x. The 

simplest example of this type of reaction is A -+ B which occurs particularly in 
radioactive decay processes. This process seems to have been first studied in a 
chemical context by Bartholomay [8]. 

a) Reaction A -+ B [8], [88] 
Let the random variable X(t) be the number of A molecules in the system 

at time t. The stochastic model is then completely defined by the following as- 

sumptions: 
(1) The probability of transition (x) -~ (x- 1) in the interval (t,t + At) is 

kxAt + o(At), where k is a constant and o(At) means that o(At)/At -, 0 as t -, 0. 



Stochastic approach to chemical kinetics 419 

(2) The probability of a transition (x) -4 (x - j), j > 1, in the interval (t, t + At) 
is at least o(At), since the time interval is considered to be small enough that 
only one molecule undergoes a transition. 

(3) The reverse reaction occurs with probability zero. 
A detailed balance gives 

(III-1) Px(t + At) = k(x + 1)AtPx+ (t) + (1 - kxAt)Px(t) + o(At), 

where 
Px(t) 

= Prob (X(t) = x}. By the standard procedure of transposing Px(t) 
from the right-hand side, dividing by At, and then taking the limit At -*0, one 
easily gets the differential-difference equation 

(111-2) 

dP. 

= k(x + 1) Px+ (t) - kxPx(t). 

We assume that this procedure is valid. The validity of such transport equations 
has been discussed in some detail, e.g. by Van Hove [117]. By means of the 
generating function of Px(t), namely, 

00 

(111-3) F(s, t) = I Px(t)sx fst < 1, 
x=O 

Equation (111-2) may be transformed into a partial differential equation, 

8F 8F 
(111-4) OF= k(l - s) OF 

It should be mentioned here that even though the system we are considering has 
a finite number of states, the sum in Equation (111-3) runs from zero to infinity. 
This introduces no difficulty since we know physically that Px(t) must vanish 
for all time when x > x0, where x0 is the total number of particles in the system, 
and so the sum is really finite. This same reasoning applies to later cases as well. 

The solution of this, subject to the initial condition F(s,0) = sxo, is 

(111-5) F(s, t) = [1 + (s - 1) e-k'txo 

By noting the easily proved relations 

E(X(t)} = (OF/Os),,= 

(11I-6) D2{X(t)} = (O2F1/s2) = , + 
(OF/Os)s ,- (OF/Ds),2, , 

where E{X(t)} is the expectation value or mean of X(t), and D2{X(t)} is the 
variance, one obtains 

(III-7) Ex(t)} = xoe-kt 

D2{X(t)} = xoe-k'(1 - e-k'). 
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Note that the mean value of the-stochastic representation is the deterministic 
result, showing that the two representations are "consistent in the mean". We 
shall see later that this is true only for unimolecular reactions. The stochastic 
model, however, also gives higher moments and so fluctuations can now be in- 
cluded in chemical kinetics. One sees that the stochastic approach is to chemical 
kinetics what statistical thermodynamics is to thermodynamics. An expansion 
of Equation (111-5) gives for Px(t), 

Px(t) = 
(X)e-kt(1 

- e-kt)xo-x 

which is first due to Bartholomay [8]. 
b) Reversible unimolecular reaction Al B 

If we again let X(t) be the concentration of A molecules at time t and let k1 
and k2 be the forward and backward rate constants, respectively, then we obtain 

[88] 
dP 

(111-8) - = 
k2(xo 

- x + 1)Px- ,(t) + k,(x + 1)Px+ 1(t) - [k,x + k2(xo - x)]Px(t), 

where x0 is the total number of A and B molecules. The partial differential equa- 
tion becomes 

aF aF 
(III-9) = [k + (k2- k) s - ks2 + xok2(s -1)F. at as 

If we assume that there are x0 molecules of A at time zero, then the solution 
of Equation (111-9) is 

1Ae - 
(s 

'1) 
+ A _ S xo 

(111-10) F(s,t) = [ '(s 1) + 
- 

where A = kI/k2. and k = k, + k2. Equations (111-6) give for the mean and 
variance: 

(III-11) E{X(t)} = [xol(k1 + k2)](ke-kt + k2), 

(111-12) D2{X(t)} = [Xowf/(1 + A)] (1 - [w/(1 + 
A)]), 

where o = Ae-kt + 1. Such a reversible system at equilibrium (t -+ co), can be 
studied by equilibrium statistical thermodynamics, which predicts that [53] 

(III-13) N2 - (Na)2 = NaNBIN = N2 - (NB)2, 

where NA and NB are the numbers of A and B molecules, respectively, and 
N = NA + NB. Equations (III-11) and (III-12) show that this relationship is 
valid not only at equilibrium, but for all t. This is a surprising result and gives 
one hope that stochastic models of rate processes have a real connection with 
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time-dependent statistical thermodynamics. The exact connection, however, is 
not at all clear. For large A, i.e., the forward rate constant much larger than the 
backward rate constant, Equation (111-12) reduces to Equation (111-7) whose 
maximum deviation is x0/4, occurring at half-life of the reaction. 

c) Parallel first-order reactions 

k 
A B 

A-- C. 

In a system such as this, one must consider a two-dimensional stochastic process. 
Let X(t) be the number of A molecules at time t and Y(t) be the number of B 
molecules. A detailed balance gives [88] 

Px,I(t + At) = k1(x + 1)AtP+1,,y-_(t) + k2(x + 1)AtPx+1,y(t) 

+ (1 - klx - k2x)Px,y(t) + o(At). 

The partial differential equation corresponding to this is 

(II-15) = 

(klr 

+ k2 - Ks) OF at as 

where 

(III-16) F(r, s, t) = 
, Pxy(t) 

sxrY 
x=0 x=0 

and K = k, + k2. If Equation (I-15) is solved with the initial condition 
sXorBo, then 

(I111I-17) F(r, s, t) = ([klr + k2 - (kjr + k2 - Ks)e-Kt]/K)XorB0. 

The mean and variance of X(t) and Y(t) are 

(111-18) E{X(t)} = x0e-Kt 

D2{X(t)} = xoe-Kt(1 - e-t) 

E{Y(t)} = B0 + (kx0o/k)(1 - e-Kt 

(111-19) D2{Y(t)} = (k1xo/K)(1 - e-K) (1 - [k,(1 - eKt)!K)] 

The means are in effect the deterministic result. The extension to n parallel reac- 
tions is obvious. 

d) More general initial conditions [88] 
We now discuss the reaction A -* B again, but do not assume that initially 

there were exactly xo molecules of A in the system. Due to inaccuracies in weigh- 
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ing, etc., one always obtains a distribution about some initial concentration. 
In general this distribution would be Gaussian, but for large systems it can be 
more conveniently approximated by a binomial distribution: 

(11-20) Prob {X(O) = r} = p'(1 
- p)"-', r = 0,1, 2,***n. 

The mean m and variance a2 of Equation (111-20) are 

(111-21) m = np, a2 = np(1 - p). 

We let np =xo, and so a2 = x0(1 - p). We shall consider x0 to be fixed so that 
a2 can be varied by adjusting p. This can be done by simply adjusting n simul- 
taneously so that the product np =xo is constant. In this way we can study the 
effect of varying p for fixed x0, or physically, we can study the effect of various 
degrees of inaccuracy of the determination of the initial conditions. As p ap- 
proaches unity, the initial conditions are more and more accurately determined. 
Equation (11-2) is now solved with the initial condition 

(III-22) F(s, 0) = [1 + (s - 1)p]xo/P 

to give as its solution 

(III-23) F(s, t) = [1 + p(s- 1)e-kt]XOIP 

The mean and variance for this process are 

E{X(t)} = xoe-kt 

-24) D{X(t)} = xoe-kt(1 - 
pe-k'). 

Note that the mean is dependent only upon the mean of the initial distribution 
and not upon its width. When p = 1, i.e., the mean and the variance of the initial 
distribution are x0 and 0 respectively, then Equations (111-24) reduce to Equa- 
tions (111-7). This was done to study the effect of an uncertainty in the initial 
conditions on the scatter in the rate data. This is seen in Figure 1 where Equation 
(111-24) is plotted against kt for various values of p. It thus seems possible to 
develop a scheme to determine rate constants even though the initial conditions 
have a known but sizeable spread. 
e) Triangular reaction 

Fredrickson [35] has considered first order stochastic triangular reactions 
between three chemical species. He points out that this system is of interest in 
irreversible thermodynamics and biology. He has applied it [36] specifically to 
the sterilization or the thermal killing of bacterial spores, the most resistant 
biological forms known. The triangular process is pictured in Figure 2. For 
first order reactions, transitions of a given molecule occur independently of 
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Figure 1 
Variance against kt for the irreversible unimolecular case in which the initial conditions are 

described by a binomial distribution with mean xo and variance xo(1 - p) 
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Figure 2 

Schematic representation of the triangular unimolecular reaction 
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whatever transitions other molecules undergo. For instance, the probability that 
the nth molecule undergoes a transition i 

--j 
in time t to t + At does not depend 

on what happens to the other N - 1 molecules in that time interval. Because of this 
hypothesis of independence, PX,12x3(t) must be given by the multinomial formula 

(111-25) P 23(t) 
= N! 

A3 [pj(t)]x, 
(III-25) PXIX2X3 

j=1 Xj 

where N is the total number of molecules in the system (assumed to be closed), 
p,(t) is the probability that any one molecule is in state i = 1, 2, or 3, xi is the 
number of molecules in state i. Since 

(III-26) 1 xi = N and I p,(t) = 1, 

there are really only two independent random variables and so we have 

N! 
(111-27) Px,,x(t) = [pi(t)]xJ[pj(t)]x'i[1 - p(t)- _p(t)]N-xi-xJ 

(i #1 j). 
Note that the previous expressions for P,(t) in this section are of this binomial 
or multinomial distribution form. Equation (111-27) is of course not specified 
until the pi(t) are determined, but Fredrickson [35] shows that by means of the 
usual hypotheses, they are given by 

(111-28) dp 

where 

-(k12 +• k13) k21 k3l 

(111-29) K = k12 -(k21 + k23) k32 

k13 k23 -(k31 + k32) 

and 

p(0) = 1 
where 4o is arbitrary. 

This approach was apparently first suggested by Bartholomay [10] and ampli- 
fied by Jachimowski and Russell [70] in a "set-theoretic approach" to reaction 
kinetics. Although strictly applicable only to first-order systems, it can be used 
to obtain approximate expressions for more complex reactions. 

f) Multicomponent case 
Since the stochastic models of first-order chemical reactions always lead to 

first order partial differential equations for the generating function, these models 
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can always be solved exactly. General first-order stochastic processes have been 
solved by Krieger and Gans [78] and by Gans [39]. Their motivation was a study 
of relaxation of multistate systems and not chemical kinetics per se, but the mathe- 
matical formulation is the same. They also showed that a system relaxing by a 
first-order process from one equilibrium state to another will maintain, at all 

times, a multinomial distribution. A stochastic model for the general system of 
first-order chemical reactions involving n chemical species was derived later by 
Darvey and Staff [26], from which again the multinomial distribution was shown 
to represent the probability time course of the components of the reaction. Their 

paper seems to be little different from that of Krieger and Gans, except perhaps 
for their viewpoint. They were able to show that the expected value for the 
number of molecules of any particular component of the general system of first- 
order reactions given by the stochastic model is consistent with the exact number 
of molecules predicted by the deterministic model obtained by using the principle 
of mass action, provided the probability parameters of the former model are 

interpreted as the rate constants of the latter model. This is clear, however, 
by simply multiplying their Equation (4): 

d 
Px 

(t) n n 

dP,•Y.x,(t) 
= t kij(x, +l1) Px, -xj+1,x; 

- 
1,...,x,,(t) dt 

i=1 
j=1 

(1II-30) 

- Z E kAxPxIXx ... xF(t) 
i=1 j=1 

i9j 

by xm, say, and summing over all the x's. If this is done, one finds, after some 

manipulation, 

(d -31) 
k,(ix,> 

- 

_ 
kij<xi> 

(i = 1,2, ...,n), d 
j== 1 j= 

which is the deterministic equivalent of the process described by Equation (111-30) 
Another way of deriving equations for the moments is to use the technique 

of the cumulant generating function [88] which generates the cumulants or semi- 
invariants of the process. Let K(u, t) = In F(eu, t). The partial differential equa- 
tion for F(s, t) may then be transformed into one for K(u, t). Since 

(III-32) K(u, t) = uE{X(t)} + l -D2{X(t)} + 
_.., 

both sides of the equation for K(u, t) may be expanded in terms of the dummy 
variable u, and coefficients of like powers of u may be compared. This procedure 
produces a hierarchy of ordinary differential equations for the cumulants in 
which the equation for the nth cumulant is 
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(111-33) 
d 

= f(n, Xn- t, ", ` ) 

where f( *) is a linear function. Unfortunately, this technique is applicable only 
to first-order processes, since the hierarchy does not uncouple in the case of 
processes of higher order. In particular, for a second-order process, Equation 
(111-33) becomes 

(111-34) 
dX• 

f(Xn+ I, n,, XX) - 
dt 

A similar situation exists in the molecular distribution function theory of liquids 
[52] and one usually resorts to a superposition approximation. This amounts 
to assuming that, e.g., (x3) = (x) (x2) or something similar. Such an appro- 
ximate treatment of other than first order reactions will be presented below. 

g. Unimolecular decomposition 
Ishida [65] has made an interesting application of these more general first 

order processes to what he calls "true" unimolecular gas reactions. These are 
reactions in which isolated molecules are excited either thermally or by radia- 
tion and are allowed to decay spontaneously. This necessarily requires low 
pressures in order to diminish the effect of collisions between molecules. Con- 
sider microscopically the multi-dimensional stochastic process for a reaction 
system, such that at time t the numbers of reactant molecules in the states of 
internal energies E, 62,' ,~ , are x1, x2,1...,x,* ., 

respectively, under the 
same conditions as in the previous section. Then if we denote the probability 
for this reaction system by P,12...(t)= P({xi}, t), we have 

dP({x,},t) = - k()xP({x1}, t) + k(xi + 
1)P,+,•2...(t) 

- k2)x2P({(x,}, t) + k)(x2 + 1)PX1X2+t...(t) 
-... 

or 
d 

i P(xi,}t) 
= - ( 

kxjP({ 
x1, t) 

(111-36) 
+ 

, 
k(')(xi + 1)P({xjj}i, xi + 1, t), 

where P({x} j-,, x,+ 1, t)= P(X1, X2, 
.-., 

xi 1, x+ 1, xi+ , ***, t) and the rate constant 
ki', which is a function of energy si, denotes the transition probability that a 
molecule in the internal state with an energy s, decomposes during unit time. 
Let the total number of reactant molecules at time t be x = 2x, and the initial 
number of reactant molecules with the internal energy s, by x?. If we multiply 
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both sides of Equation (III-36) by Exi and sum from 0 to x0 (i = 1,2, 
...) 

with 
respect to each energy state, we obtain 

dK zX) = kl- Kl)x Kkf+ k')x1 (xi -1> 

Kk(2)x > + k(2)x (x -d -- 

- < -K(k)xi > 
that is, 

(111-37) dx 
- 

k x> . 

Here if we set 

(III-38) i x, 
Xi 

Equation (III-37) becomes, according to E k) x, = kx, 

(111-39) d - k(x) . dt 

which formally agrees with Equation (III-39). The rate constant k1 denotes 
the "average" probability that one molecule undergoes a chemical transforma- 
tion during unit time. On comparing Equation (III-39) with the conventional 
rate equation 

(111-40) dx - x dt 

it is seen that the application of the multi-dimensional stochastic model to the 
"true" unimolecular gas reaction presents us with an excellent method for 
calculating statistically the rate constant together with the number of reactant 
molecules. He then goes on to discuss ~1 in terms of statistical thermodynamic 
quantities in relation to the well-known theories of unimolecular reaction kinetics. 
This is perhaps one of the most interesting applications of stochastic kinetics 
to strictly chemical processes. It is an example in which one sets up a detailed 
microscopic description of a chemical reaction and derives a macroscopic equa- 
tion in which the parameters, the rate constant in this case, can be expressed 
in terms of molecular quantities in order to give more insight into the process. 
Ishida goes on to discuss the statistical mechanical significance of k1 in terms 
of the energy levels of the molecules. Herein lies the possible connection between 
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a stochastic description of chemical kinetics and statistical thermodynamics. We 
refer the reader to [65] for a detailed discussion of the statistical mechanical 
implications. 

h) Time dependent rate constant 
We have so far discussed stochastic models for processes in which the rate 

constant k, is independent of time, but Ishida [65] has extended this to the more 
general case in which the rate constant varies with time. Using k(t) instead of 

kl in Equation (111-2), we have 

dPx(t) 
(III-41) dP(t- - k(t) xPx(t) + k(t) (x + 1)Px+ 1(t). dt 

The first-order partial differential equation for F(s, t) is 

(III-42) OF = k(t) (1 - s) 
at "s 

whose solution is 

(III-43) F(s,t)=f ((1 - s) exp - 
s)exp - k(t)dt)), 

where f is an arbitrary function to be determined by the initial condition. Using 
the initial condition that 

F(s, O) = f(1 - s) = sxo 

we have 

(III-44) F(s, t) = (I - exp 
-fo 

k(t)dt)) 
+ sexp 

(-fo 
d(t)dt) 

o 

which satisfies the condition F(1, t) = 1, i.e., EX=L 0Px(t) = 1. Hence expanding 
the right hand side of Equation (111-44), we obtain the binomial distribution 

(III-45) Px(t) = (x) {exp(-fotk(t)dt)} { 
- exp 

(-fok(t)dt)}o- 
The mean value for the number of reactant molecules at time t is given by 

(111-46) <x) = xo exp (- 

fok(t)dt). Ishida has used this more general process as a basis for an approximate method 
for solving bimolecular processes. This will be described in Section (III-C). 

This concludes our discussion of first order processes. In summary, any truly 
unimolecular process can be solved exactly since it leads to a first order partial 
differential equation for the generating function and these may be readily solved 
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by the method of characteristics. Usually however, one is only interested in 
the first few moments and these may be obtained either directly from the set 
of differential-difference equations or by means of the cumulant generating func- 
tion. In all cases, the equations for the first moments are the same as the deter- 
ministic equations. 

III. B. Bimocular Reactions 

In this section we shall treat a number of rather simple bimolecular reactions. 
In the deterministic case we mean by bimolecular that the decay of some species A 
is proportional to A2 for instance. This could, but not necessarily, describe the 
reaction 2A -+ B. Another example is the reaction A + B -+ C, which could pos- 
sibly, but again not necessarily, be described by 

dC 
= kAB. 

dt 

We shall see that bimolecular reactions lead to second order partial differential 
equations for the generating function, a fact which makes bimolecular reactions 
much more difficult to treat than first order reactions. 

Bimolecular reactions were first treated by R6nyi [105] who considered the 
reaction A + B -+ C. He solved the system of differential-difference equations by 
Laplace transforms and obtained a rather awkward expression for the molecular 
probability distribution. Since the generating function approach seems to yield 
more usable expressions, we shall concentrate on it. We shall discuss two pro- 
cesses 2A -) B and A + B -+ C, which are the only two whose time dependence 
has been solved exactly [89], [66]. (See also Bailey [6].) 

a) The irreversible reaction 2 A-+B 
According to the deterministic theory of reaction kinetics, the rate of this 

irreversible bimolecular reaction is given by the differential equation 

dA 
(111-47) - = kA2. 

From this, the number of reactant molecules in the system at time t is given by 

(111-48) A = Ao 1 + Aokt' 

where Ao is the initial concentration of A. It should be noted, however, that for 
small systems (with the concentration expressed as the number of molecules per 
constant volume of the reaction mixture) the rate, according to the law of mass 
action, is proportional to the concentrations of the reacting species, in other 
words, to the number of ways a pair of reactant molecules can be chosen from 
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the total of A molecules. Hence for the reaction 2A -+ B the rate is proportional 
to jA(A - 1) or 

dA 

(III-49)t= 
kA(A - 1). 

The number of reactant molecules at time t is given by 

(III-50) A = Ao Ao + (1 - Ao)e-kt 

However, the modified deterministic model expressed by Equation (III-50) still 
predicts a precise value for the number of reactant molecules at time t and neg- 
lects any fluctuations about this value. 

Suppose that in Equation (III-48) we let A(t) =Ao/n, where n is some integer, 
say, and denote the time for this value of t by t/n,. 

If n = 2, for instance, t1/2 
is called the half-life of the reaction. In general, 

(n - 1) 
ktl,, = 

Ao 

The time for this reaction to be 90% completed then is 90/Ao or 99/A0 for 99% 
completion. If A0 then is of macroscopic order, kt for the reaction to proceed 
essentially to completion is quite small. These conditions make Equation (III-48) 
and (III-50) identical, as one should expect from their differential equations. 

Just as in the unimolecular cases, the basis for the stochastic approach is to 
consider the reaction 2A -,B as being a pure death process with a continuous 
time parameter and transition probabilities for the elementary events which make 

up the reaction process. Letting the random variable X(t) be the number of A 
molecules in the system at time t, the stochastic model is then completely de- 
fined by the following assumptions: 

(1) The probability of the transition (x + 2) -,(x) in the interval (t, t + At) 
is +k(x + 2) (x + 1) At + o(At), where k is a constant and o(At)/At -+0 as At -+0. 

(2) The probability of the transition (x + j) (x), j> 2 in the interval 

(t, t +At) is o(At). 
(3) The probability of the transition (x - j) - (x),j > 0, in the interval 

(t, t + At) is zero. 
(4) The probability of the transition (x)-4 (x), in the interval (t, t + At) is 

1 - 'kx(x - 1)At} + o(At). 
In view of these assumptions the following relation is obtained [89]: 

P(t +At) = Px+2(t) [Ck(x + 2)(x + 1)At] 
(III-51) 

+ 
P,(t) 

[1 - ? kx(x - 1)At] + o(At), 
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where Px(t) = Prob{X(t) = x, x = 0,2,4, .-,xo}, and xo is the initial number 
of A molecules. The differential-difference equation is 

dP 
(111-52) t= k(x + 2)(x + 1)Px+2(t) - 2 kx(x - 1) Px(t), 

and the partial differential equation for the generating function is 

8F k _2F 
(II1-53) = ( - s2) 2 at 2 Os2 

Equation (III-53) may be solved by separation of variables to give 

(111-54) F(s, t) = A 
,C*(s) T,(t) , 

n=O 

where C,-a(s) is a Gegenbauer polynomial [30], [122], i.e., a solution of 

(III-55) (1 - s2) [d2C;"(s)/ds2] + n(n - 1)C•*(s) 
= 0 

and 

(111-56) T(t) = exp {- j kn(n - 1)t}. 

The coefficients A, can be determined most easily from the boundary condition, 

(III-57) OF/8s = xosxo- at t = 0. 

Using this boundary condition together with the relation [122], 

dC-1 
d,- 

= - Cn = P,_n-(s), ds - 

where P,(s) is a Legendre polynomial, one can show that 

A= Xos 
- 

2n) XO - pn- 1I(S) ds 2 - 

1 - 2n r(xo + 1)r[(xo - n + 1)/2] 
(III-58) = 

2" Fr(xo 
- n + 1)r[(xo + n + 1)/2]1 

ni = 
2,4,..,xo. 

By using the relations, 

(III-59) (x) = (F/OAs)%= 1, (x(x - 1)) - (a2F/8s2),= 1 

it can easily be shown that 
xo 

(III-60) (x) = -IX A,T.(t), ni2 
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xo n(n - 1) 
(III-61) (x(x- 1)> = 

- AT(t) n=2 2 
where these sums are taken over the even integers only. 

The coefficient of variation, CV(t), is used to measure the relative extent of 
fluctuations, i.e., fluctuations relative to the mean, and is 

(111-62) CV(t) = (Variance 

The fraction of reactant molecules has been calculated at various times for 
xo = 10 and 50 from the deterministic, Equation (111-48), the modified deter- 
ministic, Equation (111-50) and stochastic expression, Equation (111-60). The 
results are shown in Figures 3 and 4. The coefficient of variation is plotted in 

- STOCHASTIC 
-----MODIFIED 

0.8 ----DETERMINISTIC 

0.7 

(X) 

0.6 

0.5 

0 0.50 1.00 1.50 

X0kt 
Figure 3 

Mean against xokt for the irreversible bimolecular reaction 2A -+ B (xo - 10) 

Figure 5. The results indicate that the stochastic and deterministic means approach 
each other quite rapidly as the number of particles increases, though fluctuations 
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------ 
Stochastic 
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0.8 ---- Deterministic 

0.7- 

<X) 
XO 

0.6 

2A--B 
Xo=50 

0.5- 

0I I . 01 
0 0.50 1.00 1.50 

xkt 

Figure 4 
Mean against xokt for the irreversible bimolecular reaction 2A-+ B (xo = 50) 

about the mean still exist. Figure 5 shows that the relative fluctuations decrease 
as xo becomes large. 

b) The irreversible reaction A + B -+C [66], [89] 
Let X(t), the discrete, time-varying, random variable, be the number of A 

molecules at time t and Y(t) = Zo + X(t), the number of B molecules where 
Zo = Y(O) - X(O) and Y(O) > X(O). The differential-difference equation for this 
bimolecular process is 

dP 
(II1-63) dPx= k(x + 

1)(Zo 
+ x + 1)Px+ (t) - 

kx(Zo 
+ x) Px(t) 

and the corresponding partial differential equation is 

(F 
2F OF 

(III1-64) = ks( - s) + k(Zo + 1)(1 - s) 
•s 

Application of the method of separation of variables yields 
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Figure 5 
Coefficient of variation against xokt for the irreversible bimolecular 

reaction 2A -+ B for xO = 10, 50 and 100 

o00 

(III-65) F(s, t) - C 
ASn(s) 

Tn(t), 
n=O 

where S,(s) = J,(Zo, Zo + 1, s) are Jacobi polynomials and solutions to the dif- 
ferential equation [96], 

(111-66) s(1 - s) [d'J,(p, q, s)/ds2] + [q - (p + 1)s] [dJ.(p, q, s)/ds] 

+ n(n + p) J.(p, q, s) = 0 

and T.(t) .= exp {-n(n + Zo)kt}. 
Using the boundary condition give by Equation (III-57) together with the 

relation, 

(111-67) dJn(p, q, s) = [-n(n + p)c] J,_ (p + 2,q + 1,s) 

and the orthogonality relation, 
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n !{(fq)2f(n + p - q + 1) 
(111-68) s' s1(1 - s)P-'J,,(p, q, s) J,(p, q, s)ds - n )(n + p 

fO(2n + p)r(n + p)r(n + q) 
we obtain 

(-)((2n + Zo) F(n + Zo)F(xo + 1)F(xo + Zo + 1) 
F(n + 1)F(Zo + 1)T(xo - n + 1)lT(xo + 

Zo 
+ n + 1)' 

where n = 1,2,3, - - -, x. 
The first moment and the second factorial moment are 

x" (2n + Zo) F(xo + 1) F(xo + Zo + 1) Tn(t) (III-70) (x) = r(xo - n + I) (xo + Zo + n + 1) n=1 (x-n+1)r(xo+Zo+n+1) 

xo (n - 1)(n + Zo + 1)(2n + Zo)r(xo + 1)r(xo +Zo + 1) 
(111-71) (x(x - 1)> = E Tn (t). 

(=2 F(xo - n + 1)r(xo - 
Zo 

+ n + 1) 

For the bimolecular reaction A + B -+ C, if it is assumed that Zo is very large, 
that is Y(0) X (0), it can be easily shown that the bimolecular process changes 
to a "pseudo first-order" process. When Zo is sufficiently large, only the first 
term in the expansion of (111-70) is needed, 

(I-72) xo[(Zo + 2)/(xo + Zo + 1)] exp {-(Zo + 1)kt}) 
For large Zo this reduces to 

(III-73) xo exp {- (Zo + 1)kt) = xo exp{- k't} 
or 

(x> = xo exp{- k't}. 
In a similar manner, Equation (111-71) becomes 

(III-74) (x(x - 1)) = xo(xo - 1)exp(-2k't). 

The variance is 

(III-75) D2{X(t)} = xoe-'t(1 - e-kR- 

which is identical with the variance found by Bartholomay [8] and McQuarrie 
[88] for the unimolecular reaction A -+ B. 

The mean and the coefficient of variation for this process look much like 
those in Figures (3), (4), and (5) ([89]). 

This same pair of reactions was also studied by Ishida [66] who used a Laplace 
transform technique. Although superficially quite different results were obtained, 
they are in fact identical to those presented above. 

Reversible bimolecular reactions such as A + B?C + D can be solved exactly 
by the method of separation of variables and the ordinary differential equa- 
tions in the variable s are Lam6 equations. This makes the evaluation of the 
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Fourier-type coefficients very difficult since derivative formulas such as Equa- 
tion (111-67) and orthogonality conditions do not seem to exist or at least are 
not easily used. In addition to this, even if such formulae did exist, it seems un- 
likely that numerical results could be easily obtained. It does turn out, however, that 
these reversible bimolecular processes can be solved exactly and conveniently 
in the equilibrium limit, and this was done by Darvey, Ninham, and Staff [25]. 

c) Equilibrium solutions [25] 
Consider the reversible bimolecular reaction 

k, 
(I) A+B : C+D 

k2 

and let A(t), B(t), C(t), and D(t) be random variables which represent the numbers 
of molecules of species A, B, C, and D present at time t. We let a, b, c, and d be 
the (integer) values which these random variables can achieve. The possible 
states of the system at time t which could lead to the state specified by a, b, c, d 
at time t + At involving not more than one molecular transformation in the 
time interval At are {a+1, b+ 1, c-1, d- 1}, {a-1, b-1, c+ 1, d+ 1}, 
and {a, b, c, d}. Denoting by P(a, b, c, d; t) the probability that, at time t, 

A(t) = a, B(t) = b, C(t) = c, D(t) = d, 
we have 

P(a,b,c,d;t + At) = k1(a + 1)(b + 1)AtP(a + 1,b + 1, c - 1,d - 1;t) 

(111-76) + k2(c + 1)(d+ 1)AtP(a - 1,b- 1,c+ 1,d+ 1;t) 

+ [1 -(ktab + k2cd)At]P(a, b, c,d; t) + o(At). 

However, since the system is conservative, the four random variables are re- 
lated through the initial concentrations which are taken to be 

A(O) = a, B(O) = , C(0)= y, D(O)= 6. 

Clearly, 

(111-57) a- a = -b= c -y= d-6, 

so that the probability time course of the reaction can be described by a single 
random variable. We choose this to be A(t), the number of molecules of species 
A present at time t. Equation (111-76) then becomes 

Pa(t + At) = kl(a + 1)(ft - a + a + 1)At P,a+(t) 

(III-78) + k2(y + c - a + 1)(6 + c - a + 1)At Pa(t) 

+ [1-kia(fl- a+a)At-k2(y+c-a)(6+c-a)]Pa(t)+ o(At), 

where Pa(t) replaces P(a, b, c, d; t). 
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We then solve the corresponding differential-difference equation subject to the 
initial condition 

(111-79) Pa(O) = 
6(aa" 

The equations which describe other reactions with second-order steps can 
be written down in a similar way. For example, 

ka 
(II) A + B -* C, 

k2 

(111-80) [dPa(t)/dt] = k,[(a + 1)(/ - a + a + 1)Pa+ 1(t) - a(# - a + a)Pa(t)] 

+ k2[(y + e-a + 1)Pa(t) - (y + -a)Pa(t)]. 

ka 
(III) 2A -i*C + D, 

[dPa(t)/dt] = k1[(a + 2)(a + 1)Pa+2(t) - a(a - 1)Pa(t)]/2 

(111-81) + k2[2y + a - a + 2)(26 + a - a + 2)Pa-2(t) 

- (2y + a - a)(26 + a - a) Pa(t)]/4. 

ka 
(IV) 2A : C, 

kc 

(III-82) [dPa(t)/dt] = k1[(a + 2) (a + 1)Pa + 2(t) - a(a- 1)Pa(t)]/2 

+ k2[(2y + a - a + 2)Pa.2(t) - (2y + a - a) Pa(t)]/2. 

These three equations are also subject to the initial condition given by Equation 
(111-79). If the left-hand sides of these equations are set equal to zero and then 
the right-hand sides transformed by means of generating functions, one gets 

k, 
(I) A + B ? C + D; 

k2 

(I-83) s(1 - Ks)(d2S/ds2) + [P - a + 1 + K(2a + y + 6 - 1)s] (dS/ds) 

- K(a - y)(a + 65)S = 0. 

(II) A + B C; 

(111-84) s(d2S/ds2) + (/ - a + 1 + Ks)(dS/ds) - K(a + y)S = 0. 

(III) 2A A C + D; 
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(111-85) (2 - Ks2)(d2S/ds2)+ K(2a + 2y + 26 - 1) s(dS/ds) 

- K(a + 2y)(a + 26)S = 0. 

(IV) 2A 
?- 

C; 

(111-86) d S/ds2 + Ks(dS/ds) - K(a + 2y) S = 0, 

where K = k,/k2 and the S's are related to the equilibrium generating functions 
by 

F(s, oo) = goS(s), 

where go is a constant given by requiring that F(1, oo)= 1. 
The equilibrium generating functions for the above four processes (I), (II), 

(III), (IV), are given respectively by 

(2F(-a 
- y, -a - 6, f - a + 1; Ks) 

2F1(-a - y, -0 - 6,fP - a + 1;K) 

(111-88) F(s, oo) = IF1(-o 
- yft - o + 1; -Ks) a, 1F (-e - y;p - a + 1; -K) 

a even S2F,(-?Ja - y, -?a - 6;?;?Ks2) 
(F1(-?F - r, -? - ;;?K) eve 

(111-89) F(s,oo)= 
2Fl[-i(ac- 

1)-r, 
-i(a-- 

1)-3; ;(Ks2)] 

S2FT[- (a-1)-y, -j(a0- 1)-3 ; j;jK] 

IF1[-Jao - r;; ; -(Ks2)] 
, a even 

1F1(--j - y;I; -JK) even 
(111-90) F(s, oo) = 

F [ -?(a - 1) - r;; ;-(Ks )] a odd, SF, [-I(a - 1)- y; 1; -jK] 

where the F2's and 1F,'s are the usual hypergeometric functions. The determi- 
nistic and stochastic means are given in Table 1. 

Darvey et al. [25] have shown how the variances for these processes can be 
written in terms of the difference between the stochastic mean values and the 
deterministic solutions. If we write this difference as 

(III-91) A = [y,(oo) - a,]/a, 

where pit(oO) is the stochastic mean and am is the deterministic solution, then, 
for (I), (II), (III), (IV) respectively, 

(III-92) ot2(oo) 
= - aA2 - a, {[fl - a + K(2ac + y + 6)/(1 - K)] + 2a,}A; 

(III-93) c 2(oo) = - aA2 - 
ao(fl 

- a + K + 2a,)A; 



TABLE I 

Expected values and deterministic solutions for various reversible bimolecular reactions 

Reaction Stochastic mean, Pa(oo) Deterministic solution, a, 

A+B•_C+D 

K(a+Y)(ac+6) 2FI(-a-+1,-o-6+1;fl-a+2;K) oKca,(fl- a+a) 
(P 

-- 
+ 1) pF,(--or - y, -a- S; 

-- o 
+ 

1;K) 
(y + - a 

_ 
a)(6 + a - ai) 

(-a + y) F(- (-a-y,-a- 1; -- 
+ 2; -K)+ aXfl - a + aa,) 

A+B:C K 

(•+y) 
F,(-o--y+1;#-a+;-K) >2 K = 

a(f-a+aa) 
(p - a + 1) ,F,(-a - y;p - a + 1; -K) $(y + a - a.) 

K 2)(226)(2F(-)2 
a - y + 1, -a - 6 + 

1;1;?K) 2F(-(- y,- y)( 2,;K)) , a even 2FI(- Joe - y, -ja - 
6,a;a-K) 

2A::-C + D - K = ( 
2a,(a)-a1) I(2y + a - a,)(26 + a- a) 

LK(2- 1 + 2y)(a- 1 +25) 2F[a)-y+1), a odd 
L 2F1[-?(a-1)-y, --(a-- 1)--j; j;?K] a 

K(a- 2) 1F1(-ja - v + 1;j; -jK) 
F(--K(a 

- 
-Ky)) a even 

2A C K K- aa(a, - 1) 
2AC K (2 + a- 

a.) 
JK(a-1+2y) ,F,[-I(a - 1) - y + 1;; -4K] K(a [- 1 + 2)- , a odd t ,F,[--ia - 

1)--;); -?K] 

g 
It 
cg 

B 

~. CI 

E: 

rpl 
clul, 
'(O 
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(111-94) ao2(oo) = - 
aoA2 

+ 2ao([1 - K(c + y + 6)/(2 - K)] - a,}JA; 

(111-95) oa2(oo) = - a,2A2 + a0(1 - K - 2a)A. 

These four equations explicitly point out that if the variance of bimolecular 
processes is zero or negligible, the deterministic results and the stochastic means 
are equal. This: was shown very elegantly by Renyi [105] in his consideration 
of the irreversible bimolecular reaction A + B -+ C. If the concentrations of A, 
B, and C are given by the random variables XI(t), X2(t), and X3(t) respectively, 
then it is easy to show that 

dE{X3(t)} 
(111-96) dt). 

= kE{X(t)} E{X2(t)} + kD'{X3(t)}, 

where E and D2 are the mean and variance. By simple manipulation he showed 
that Equation (111-96) can be put in the form 

dE{X3(t)} 
(111-97) dE{X(t) 

= kE {X(t)X2,(t), 

which is to be compared to the deterministic equation 

dC 
(111-98) dC= kAB. 

Equation (111-97) is immediately "derivable" from Equation (111-98) by simply 
"taking the average" of both sides of Equation (111-98). The deterministic ap- 
proach always assumes that E{AB} can be replaced by E{A} E{B} and, as Equa- 
tion (III-96) shows, this amounts to setting D2 {C(t)} = 0, and this is true only 
for a delta function type density function, i.e. one in which all central moments 
vanish. By a similar heuristic argument, it can be seen that the deterministic 
solution and the stochastic mean values are always the same for unimolecular 
processes. This was pointed out (but never really proved in general) by McQuarrie 
([88]). 

This concludes a discussion of exactly solvable second-order processes. As 
one can see, only a very few second order cases can be solved exactly for their 
time dependence. The more complicated reversible reactions such as 2A : C 
seem to lead to very complicated generating functions in terms of Lame functions 
and the like. This shows that even for reasonably simple second and third order 
reactions, approximate techniques are needed. This is not only true in chemical 
kinetics, but in other applications as well, for example, population or genetic mo- 
dels. The actual models in these fields are beyond the scope of this review, but 
the mathematical problems are very similar. See [14] for a discussion of many 
of these models. In the next section we shall present the various approximations 
which have been used in the hope that better and more sophisticated ones can 
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be developed, or perhaps that they already exist, being unknown to those working 
in chemical applications of stochastic processes. 

III.C. Approximate methods 

Although the stochastic approach is applicable to all types of reaction systems, 
in most realistic cases the system of equations which defines the stochastic model 
cannot be solved exactly, and approximate methods must be used. Since the 
quantities of main interest in the stochastic approach are usually only the first 
moment (x) and the second moment <x2), much effort can be saved by applying 
methods which produce these lower moments without having to solve for the 
probability density function or generating function. 

Two approximations have been used by McQuarrie, et al. [89]. A set of equa- 
tions involving the time derivatives of the moment of the concentration can be 
generated from the differential-difference equation for the process under con- 
sideration by multiplying the differential-difference equation by x" and summing 
over the variable x. This technique is equivalent to the use of the cumulant gene- 
rating function which generates the cumulants of the process. 

Consider again the irreversible birmolecular reaction 2A - B. Multiplication 
of Equation (111-52) by x and x2, respectively, followed by summation over x, 
gives 

(111-99) dx> - k(x2) + k(x) dt 

d(x ) (III-100) dx - 2k(x3) + 4k(x2) - 2k(x)>. dt 

In all second-order cases the set of equations obtained in this manner cannot 
be solved unless some relation between the higher and lower moments is assumed. 
Two approximate methods of determining the first and second moments have 
been formulated and are given below. 

(1) An assumption frequently made is that it is permissible to express the 
higher moments as a product of the lower moments, e.g., (x3>) = (x2) (x). 
The resulting equations are nonlinear and, in most cases, cannot be solved si- 
multaneously unless a further approximation is made. 

Equations (111-99) and (III-100) offer an example where results are readily 
obtained, however. Putting (x2) = (x)2 into Equation (III-99) yields the so- 
lution, 

(III-101) (x) = ko 
xo + (1 - xo)exp{-kt} 

which is the same as Equation (III-50). The assumption that (x2) = (x)2 is 
equivalent to reducing the stochastic model to the deterministic model, i.e., 
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TABLE II 
Fraction of reactant and coefficient of variation for the exact and approximate methods. 
2A -+ B. s refers to the exact solutions and I and 2 refer to approximations 1 and 2 respectively. 

xokt (x,>/xo (x)>/xo (x2>/xo cV, CV1 CV2 

xo =10 

0.25 0.815 0.818 0.802 0.196 0.213 0.214 
0.50 0.686 0.695 0.684 0.258 0.304 0.306 
0.75 0.593 0.606 0.592 0.300 0.375 0.377 
1.00 0.521 0.539 0.513 0.332 0.435 0.444 
1.50 0.421 0.444 0.411 0.382 0.542 0.548 

xo = 50 

0.25 0.803 0.803 0.801 0.091 0.099 0.101 
0.50 0.670 0.671 0.670 0.119 0.141 0.141 
0.75 0.576 0.577 0.575 0.137 0.172 0.172 
1.00 0.504 0.508 0.502 0.152 0.199 0.200 
1.50 0.404 0.408 0.401 0.176 0.244 0.246 

xo = 100 

0.25 0.801 0.801 0.801 0.059 0.070 0.070 
0.50 0.669 0.670 0.668 0.082 0.100 0.100 
0.75 0.574 0.574 0.573 0.097 0.122 0.122 
1.00 0.502 0.503 0.501 0.109 0.141 0.141 
1.50 0.402 0.402 0.401 0.125 0.173 0.173 

TABLE III 
Fraction of reactant and coefficient of variation for the exact and 
approximate methods. A + B-+ C. Ao = Bo. s refers to the exact 
solutions and I and 2 refer to approximations 1 and 2 respectively. 

xokt (x,>/xo <xi>/xo <(xz2>o v CV = CY2 

xo -- 10 

0.25 0.798 0.800 0.799 0.121 0.158 
0.50 0.662 0.667 0.661 0.192 0.226 
0.75 0.565 0.572 0.562 0.226 0.278 
1.00 0.491 0.500 0.487 0.250 0.324 
1.50 0.389 0.400 0.382 0.293 0.390 

xo = 50 

0.25 0.799 0.800 0.799 0.056 0.071 
0.50 0.664 0.667 0.664 0.091 0.105 
0.75 0.567 0.572 0.567 0.101 0.122 
1.00 0.498 0.500 0.497 0.105 0.144 
1.50 0.398 0.400 0.396 0.125 0.174 

xo = 100 

0.25 0.800 0.800 0.800 0.037 0.050 
0.50 0.666 0.667 0.667 0.057 0.071 
0.75 0.571 0.572 0.571 0.070 0.086 
1.00 0.499 0.500 0.498 0.076 0.100 
1.50 0.399 0.400 0.398 0.088 0.122 
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setting the variance equal to zero. Putting (x3>) = (x2) (x), and using Equation 
(III-101) for the first moment, a solution of Equation (III-100) can be obtained. 
These assumptions give 

(111-102) (x2) = (x)2 {j [(xo - 1)/xo] (e2kt'- ekt) + 11, 

or 

(111-103) D2{X(t)} = j [(x0 - 1)/xo] (e2kt - ekt). 

The coefficient of variation derived from this is shown in Tables II and III for 
the reactions 2A -+ B and A + B -+ C, respectively. If the moment equations 
are truncated beyond the third or if Equation (III-101) is not used in Equation 
(III-100), the algebra becomes severe. Consequently, so far as I know, this type 
of approximation has not been exploited to its full potential in chemical kinetics 

although it seems to have much promise. 
(2) The second method formulated for determining the first and second 

moments is somewhat empirical. The coefficient of variation for unimolecular 
and bimolecular processes (see Figure 5) suggests that [CV]2 increases expo- 
nentially with time. Hence, if it is assumed that 

(I-104) [CV]2 = exp{pt} - 1 

where p is constant, then 

(111-105) (X2> = (X)2 exp {pt} 

since [CV]2 = ((x2) - (x)2)/(x)2. 
Substituting Equation (111-105) into Equation (111-99) and solving for the 

first moment gives 

xo(p + k) 
(111-106) (X>=k) xokexp {pt} - (pxo - p - k)exp {-kt} 

The constant p can be determined from the equation involving the time derivative 
of the second moment if it is assumed that (x") - x" at time t = 0. Differentiating 
(111-105) with respect to t gives 

(111-107) d(x2) = p(x)>2eP + 2 (x) e d(x)/dt 

= p(x>2eP'- 2k(x) (x2) e" + 2k (x)2 e't. 

By equating (III-100) and (111-107), setting t = 0, it can be shown that 

p = 2[(xo - 1)/xo]k. 

Therefore, 

(III-108) (x2> = (x)2 exp {2[(xo - 1)/xo]kt}. 
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For large x0, that is, as x0 -+ co, 

(x2> -+ (x)2 
since (xo - )/xo -+1 and kt 

• 0(11/x) -+ 0. 
Consider the reaction A + B -~+C, for the case Ao = Bo. Multiplication of 

Equations (111-63) by x and x2, respectively, and summation over x yields 

(111-109) d(x)/dt = - k(x2), d(x2)/dt = - 2k(x3) + k(x2). 

When the higher moments are expressed in terms of the lower moments (Approx- 
imate Method 1), these equations have the solutions 

(x> = x0o(1 + xokt), (x2> = (x>2 exp {kt}. 
When (111-105) is substituted in (111-109) (Approximate Method 2), the first and 
second moments are 

(III-110) (x)= xo 1 + 
xo[exp {kt} - ij 

(III-111) (x2> = <(x>2 exp {kt}. 

The mean and the coefficient of variation have been calculated from the ap- 
proximate methods for the bimolecular reactions 2A -) B and A + B -) C. The 
results are given in Tables II and III together with the exact solutions. The sub- 
scripts s, 1 and 2, refer to the results obtained from the exact equations, and 
those obtained from Approximate Methods 1 and 2. Jachimowski et al. 
[69] have applied the second approximate method to the Michaelis-Menten 
scheme for enzyme-substrate reactions in biochemistry. 

Ishida, [65], has introduced another approximation which he has applied to 
the reaction 2A -+ B. This method treats a bimolecular process as a unimolecular 
process, but with a time dependent rate constant which is obtained from the 
deterministic case. The deterministic rate of the bimolecular reaction 2A -+ B 
is expressed in the form 

(111-112) = k(2n)2, dt 

where 2n denotes the number of reactant molecules at time t and k the rate 
constant. Solving Equation (111-112) under the initial condition that 2n = 2no 
at t = 0, we obtain 

(III-113) 2n = 2no 
1 + k(2no)t 

or if we set 2n = N, this becomes 
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(11I-114) N = No 
1 + kNot 

From Equation (III-113) the probability that any one of n reactant molecules 
undergoes a chemical transformation during the time interval (t, t + At) is given 
by 

jAnj kNO (III-115) An = kNo At 
+ o(At). 

n 1 + kNot 

If we set kNo/(1 + kNot) = k(t), then we have according to Equation (111-41) 

dP kN 
kNo (III-116) dP _ 

kN nP,(t) + (n + 1)Pn+ (t). dt 1 + kNot 1 + kNot 

Multiplying both sides of Equation (III-116) by n and summing over all values 
of n, we obtain the differential equation describing the mean value for the number 
of reactant molecules 

(111-117) dn> 
= 

_ 
o n)> dt 1 + kNot 

or 
d(N) kNO 

(111-118) d 
_ 

k (N) dt 1 + kNot 

whose solution is given by 

(111-119) (N) = o 

1 + kNot 

for the initial condition that N = No at t = 0. It should be noted that Equation 
(111-119) agrees "in the mean" with the result derived by the deterministic 
theory. If we multiply both sides of Equation (111-116) by n2 and sum over all 
values of n, we obtain as the differential equation for the second moment (n2) 

d(n_) 

kN 

kNo 
(111-120) dn - 2 kNo 2+ n dt 1 + kNot 1 + kNot 

which is transformed into the form, writing 2n = N and using Equation (111-119), 

d(N2 ) 
kN12 

No i) (III-121) + 2 < 

--Not(N2)=2k 

o dt 1 + kNot 1 + kNot 

Solving this under the initial condition that N = No at t = 0, we obtain 

(N2) (1 + 2k2t) 
(III-122) 

= (N)2 (1 + 2kat). 
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The variance a2(t)= (N2) - (N)2 is then 

(111-123) a2(t) = 2k2t(N>2, 

and consequently the coefficient of variation 6(t) = a(t)I(N) is 

(III-124) 6(t) = (2kt)-. 

This approximation of Ishida's can also be obtained by assuming that the 
coefficient of variation varies as (kt)+ instead of (ePt- 1)-. Note that all 
three of the above approximations yield essentially the same expression for (x2) 
for small kt. We have shown for the deterministic case that 1/n of the re- 
action is over when kt = (n - 1)/xo and so for all but the smallest values of xo, 
kt is indeed small for most of the course of the reaction. For extremely small 
x0, Ishida should use Equation (111-49) instead of Equation (111-112), as he 
points out in a footnote. If this is done, one obtains 

(X2> = (X)2e2k', 

which reduces to Equation (111-122) if only linear terms in kt are retained. Thi 
is to be compared with Equation (111-108). The only difference is a factor 
(x, - 1)/xo in the exponential. 

Unfortunately these seem to be the only approximations that have been used 
in the stochastic approach to chemical kinetics. The first has the appeal that it 
can perhaps be improved by truncating the hierarchy of moment equations at 
higher order, but one soon gets into difficult algebra. The rate of convergence 
of such a procedure is not at all clear. The second seems to have some potential, 
but its drawback is that it is not clear that the coefficient of variation has this 
behaviour for all reactions. It possibly does not. The most appealing is Ishida's 
which seems to be relatively easy to apply if one can solve for the deterministic 
mean and then integrate the k(t) derived from it. Substitution of this into Equation 
(111-45) then yields the generating function. 

Except for the second approximation which has been applied to one biochemical 
reaction [69], these have not been applied to any complex systems. This area 
is one that needs much development, not only in chemically oriented problems, 
but also in problems in the field of genetics, epidemics, and population studies. 

This concludes our discussion of elementary type reactions. Again we note 
that there are unfortunately few real applications of these to chemical or physical 
systems. On the other hand such simple models or slight extensions of them have 
found use in other fields. (See [14], Chapter 4). In the next section we shall discuss 
a selected group of more complicated processes which do in fact have direct 
application to physical or chemical systems. 
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IV. SELECTED APPLICATIONS 

In this final section we shall outline some of the many chemical kinetic situa- 
tions to which probability models have been applied. The selection is by no means 
exhaustive, but is chosen simply on the basis on the author's familiarity and bias. 

IV.A. Kinetics of reactant isolation [19] 

There are examples of systems in which species firmly attached to sites can 
react with one another. The reaction is usually confined to groups occupying 
adjacent sites. A classic example of such a system is the polymer, polyvinyl 
chloride, whose structure is [34] 

-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH--. 
I I I I I 

Cl Cl Cl Cl CI 

The addition of zinc to a solution of polyvinyl chloride will extract chlorines 
in a pair-wise manner to give, for example, for one zinc atom, 

CH2 

CH2-CH-CH-CH2-CH-CH2-CH-CH2-CH- 

C1 CI CI 

The next zinc atom might give 

CH2 Cl CH2 

-CH2-CH-CH-CH2-CH-CH2-CH-CH-. 

Now the lone chlorine atom has found itself isolated, since the zinc only extracts 
two adjacent chlorines. Such a result is called reactant isolation, and one wishes 
to predict the chlorine concentration left in the polymer as a function of time. 
It was shown by Flory in 1939 [33] that the fraction of chlorines unreacted should 
approach e-2, and this was used in fact by Marvel et al. [85] to determine the 
structure of polyvinyl chloride. Other examples are the condensation of the 
polymer of methyl vinyl ketone [33] and the vulcanization of natural rubber [81]. 
The vulcanization studies supply another example where a molecular structure 
was determined by a kinetic scheme. The complete time dependence of the pro- 
cess was recently derived by Cohen and Reiss [19] using a novel method of multi- 
plets, which will now be outlined. 

Consider a chain of N sites between which bonds are formed. A single un- 
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bonded site is referred to as a "singlet", a run of two sites as a "doublet", etc. In 
general, a run of n sites is termed an "n-tuplet". It should be noted that an "n- 
tuplet" may contain two distinct "(n -1)-tuplets", three distinct "(n- 2)-tuplets", 
etc. This is illustrated in Figure 6. 

4 TUPLET 

O---O O O O O O---o0 0 ~ 

DOUBLET - DOUBLET 

TRIPLET TRIPLET 

Figure 6 
An illustration of n-tuplets 

Consider an ensemble of M identical chains of N sites. Denote the number 
of n-tuplets in the jth chain at time t by C()(t). Let k(t)dt be the probability 
that a bond forms between two unreacted neighbours in the time interval (t, t + dt), 
the same for all pairs of neighbours. In most cases k may be assumed to be in- 
dependent of time, but it is no more difficult to consider it as depending on time. 
The rate of change of C /(t) with time is 

(IV-1) - dt) = k(t) {(n - 1) 
C() 

+ 2Cn( l1} 

The minus sign appears because the reaction is irreversible and n-tuplets can 
only be destroyed, never created. The first term on the right corresponds to the 
destruction of n-tuplets by the formation of a bond within the n-tuplet itself. 
Since there are (n - 1) possible bonds within an n-tuplet, the rate of destruction 
is proportional to k(t)(n - 1)C('. The second term on the right corresponds 
to the destruction of n-tuplets by the formation of a bond between either of its 
terminal sites and a site not belonging to an n-tuplet. 

The mean number of n-tuplets averaged over the M identical chains is 

(IV-2) C.(t) 
= M C)(t). 

j=1 

Summing (IV-1) over i and dividing by M yields 
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dC 
(IV-3) = k(t) {(n- 1)C, + 2C ,}. 

Initially there are N - n + 1 n-tuplets so that the initial conditions are 

(IV-4) Cn(O) = N- n + 1. 

By introducing the variable 

(IV-5) z = k(t)dt, 

Equation (IV-3) becomes 

(IV-6) = (n - 

1)C. 

+ 
2C.+1 dz 

whose solution, subject to Equation (IV-4) is, 

N-n [2e - 2] 
(IV-7) 

( 

= exp[-(n - 1)z I (N- n - s + 1) 
s=O s. 

The fraction of n-tuplets which survive, or the probability of survival of an n- 
tuplet, is 

Pn(z) = 
" 

N- n + 1 

(IV-s) N-) S [2e-' - 2]s = exp [-(n- 1)z] 1 - ) [2e 
-2] s=o N-n+l s! 

In the case of an infinitely long chain (N -+ oo), we have for all finite n, 

(IV-9) P.(z) 
= exp [-(n - 1)z] exp { -2[1 - exp(- z)]} . 

At infinite time (z -+ co), P1(oo) is 

(IV-10) Pl(oo) = e-2 

which is the result obtained by Flory [33]. 
If this problem were formulated in terms of the more obvious quantity, "runs", 

Equation (IV- 6) would involve summations on the right hand side and would 
be much more difficult to solve. The "multiplet" idea has also been used to ad- 
vantage in solving a formulation of the kinetics of polypeptide denaturation, 
which will be discussed later. Cohen and Reiss also considered a system in the 
form of a ring, end effects in a linear chain, the effect of diluents, and the genera- 
ting function for particle survival, but these will not be given here. To the best 
of my knowledge, however, the reversible process has not been solved. 
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IV.B. Reaction kinetics of a long chain molecule 

Consider a long chain molecule again, each segment of which carries a reactive 
substitutent or group. In many cases the reactivity of each substituent depends 
upon the states of its two nearest neighbours. For example, the reactivity might 
be greater if one or both neighbors have reacted than if neither has. We wish 
to formulate a model for this process which produces the average fraction of 
reacted groups at time t. Examples of such processes are hydrolysis rates of 
methylmethacrylate [28], and p-nitrophenyl methacrylate [94], [95]; pyrolysis 
of poly(t-butyl acrylate) [108]; and polypeptide denaturation [83], [109]. In 
1963 there were several advances in this area, [1], [5], [73], [74], [80], and some 
confusion or disagreement arose, but the problem was finally settled. The problem 
was later formulated in terms of multiplets in a study of polypeptide denaturation 
[90] and this will be outlined now. 

Consider the schematic model of a polypeptide a-helix, shown in Figure 7. 
Apparently the hydrogen on a nitrogen atom (amide hydrogen) bonds to the oxygen 

------ N- C --"v-y-- N- C N----- - C----'m--- N-C "v-- N- C -Av 
II I I 1 I 11 

I I I 

0 I 

Figure 7 
A schematic representation of a partially bonded polypeptide chain 

on a carbon atom (carboxyl oxygen) three sites down the chain. This forces the 
polypeptide molecule to assume a rather rigid helical structure (a-helix) [115], 
[120]. For simplicity we shall assume, however, that a given hydrogen atom 
bonds to its nearest neighbour carbonyl oxygen. Statistical mechanical studies 
on this system [40], [126] indicate that this is a satisfactory simplification. We 
can then represent a partially hydrogen bonded polypeptide molecule by a se- 
quence of zeros and ones, a zero standing for an unbonded hydrogen atom 
and a one standing for a bonded hydrogen atom. The section illustrated in Figure 
7 can then be described by 11011. We consider only an irreversible renaturation 
process, meaning that a completely unbonded chain becomes a completely 
helical chain. Due to steric factors (which can be understood with the aid of a 
model), it is relatively difficult for an unbonded segment between two un- 
bonded segments to become bonded; it is less difficult if one of its nearest neigh- 
bors is bonded, and very easy if both of its nearest neighbor hydrogen atoms 
are bonded. We shall denote the rate constants for these elementary steps by 

kt, 
k2, and kz so that 
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10001 ki10101, 

(IV-II) 10011 k 11011 

11011 k3/ 11111; 

k2 and k3 are perhaps similar in magnitude, and k, probably differs from either 
of these by an order of magnitude of a- or a-1, where a is the nucleation para- 
meter (' 10-3) of Gibbs and DiMarzio [40] and Zimm and Bragg [126]. 

We are interested in determining the decay with time of the number or fraction 
of segments unbonded, say. We now introduce the idea of a j-tuplet again. (See 
Figure 6.) We denote the number of j-clusters by Bj and the number of j-tuplets 
by Pj. Since there are j 1-tuplets in a j-cluster, j-1 2-tuplets (doublets) in a 
j-cluster, etc., one finds for the relation between the Pj and B,, 

P1 = BI+2B2+3B3 + -+NBN 

P2 = B2+ 2B3+ 3B4 + + (N - 1)BN 

(IV-22) P3 = B3 + 2B4 + 3B5 + 
"' 

+ (N - 2)BN 

PN = BN 
or 

N-f 

(IV-13) P = (i + 
1)By+i. i=0 

These equations may be inverted by inspection to give 

(IV-14) Bj = Pj - 2Pj+1 + Pj+2, 1<jN 
if we set P,, n > N, identically zero. 

It is now most convenient to proceed by deriving a set of equations for the 
rate of change of the number of j-tuplets, dP/idt, in terms of the number of 
j-clusters, By, and then transform this into a set of equations for the dPq/dt 
in terms of the Pj. Figure 6 serves as a reference for the derivation of the first 
few equations. Clearly, 

(IV-15) dP1/dt = - k3B, - 2k2B2 - 2k2B3 - kIB3 - 2k2B4 - 2k1B4 + ... 

= - kP, - 
2k2(P2 

- P,) - kz(P1 - 2P, + 
Ps), and 

(IV-16) dP2/dt = - 2k2B2 - 2k2B3 - 2ktB3 - 2k2B4 -4k1B4 +... 
= - 2k,(P2 - PF) - 2klP3. 
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The terms on the right-hand side of the first of Equations (IV-15) and (IV-16) 
are arrived at in the following manner: 2k2B2 since each of the two zeros in a 
2-cluster can transform with a rate constant k2; 2k2B3 since each of the two end 
zeros in a 3-cluster can transform with a rate constant k2; 

2kxB3 
because the 

one middle zero in a 3-cluster eliminates two 2-tuplets when it transforms; 2k2B4 
because of the two end zeros in a 4-cluster; 

4kxB4 
since each of the two middle 

zeros of a 4-cluster eliminates two dgublets upon transforming. Proceeding in 
a like manner, 

(IV-17) dP3/dt = - 2k2B3 - kB -2k2B4 - 4klB4 - 2k2B5 -7k1Bs+*** 

= - 2k2(P3 - P4) - 
kl(P3 

+ 2P4). 

The general pattern may not be apparent at this stage, but if several more equa- 
tions are written out the general term may be seen to be 

(IV-18) dPj/dt = - 2k2(Pj - Pj+ ) - kC[(j - 2)Pj + 2Pj+,], j 12. 

We place no upper bound on j since we assume that the chain is long enough 
to neglect an end effect, which manifests itself in separate equations for dPNIdt 
and dPN-, ldt. 

We are now faced with the problem of solving this system of equations. Assume 
that 

(IV-19) Pj(t) = e-jkl(t) 

where i(t) is to be determined. We substitute this into Equation (IV-18) to obtain 

(IV-20) 

d__.= 

2(k - k2)(1 - eL-kl )(t), 

which gives 

(IV-21) Pj(t) = e-jkt'exp (2(ki - k2)[t - (1 - e-k't)Ik]}, 

where we have used the initial condition P(O) = 1 for all finite j. The value I 
results from normalization, i.e., by dividing every P(t) by N - j. What we re- 
quire is an expression for 

Px(t), 
which is the total number of zeros, or the number 

of unbonded hydrogen atoms, as a function of time. This is obtained by sub- 
stituting P2(t) and P3(t) from Equations (IV-21) into Equation (IV-15) and 
solving the resultant first-order linear differential equation. Equation (IV-15) 
becomes 

dP_ 
(IV-22) + k3P1 = 2(k3 - k2)P2 + (2k2 - 

kx 
- k3)P3 

and 
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Px(t) 

= e-'' [2(k3- k2)e2(k2-k)"'/k e(k3-2k)t exp {2(kl -kk2)e-kLt dt 

(IV-23) 

+ (2k2 - k - 
k3)e2(k2-k)/" 

e(k-k-2k2)tex 
2• 
2(ki - 

k2) 
ek 

- 

} 
dt + k 

where k is an integration constant. Each of the integrals in Equation (IV-23) 
is of the form 

(IV-24) fe-at exp{be- c' dt. 

This may be converted to a well-known function, namely, the incomplete gamma 
function [30], by setting u = -be-', 

(IV-25) e-'atexp{be-c'}dt= l ualce-udt (-b)alcc fo- 

1 

c(b)a[y(a/c, - 
b) - y(a/c, - be-c)], 

c(- 
b~al 

where y(a, x) is the incomplete gamma function, 

(IV-26) y(a, x) = fu- I e-"du. 

With these substitutions, Equation (IV-23) becomes 

P(t) ek3t [1- 
2(k3 - k1)exp {2(k2 - k1)/k1} 

Pk2k(t) 
e 1 

k 12(k2-k3)/kt 

x y[2k2 - k3 ,2 -1 e-kt I 2k, 2- k32Q2 I 

(2k2 - k, - k3) exp {2(k2 - k)l/k)} 
(IV-27) k[2 2(k2+k1-k3)/k 

k, [ 1 
x [ .2k2 + - k , ,2 - ekt 

- 
[2k, 

+ k, k, 1)]) 
kl ' L\kl" 
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Equation (IV-27) can be simplified by first letting k2 = k3, letting k2/kI = x, 
and measuring time in units of k,, i.e., letting 

klt 
= z; k2 and k3 should be of 

similar magnitude, and equating them has very little effect on the results. Then 

(IV-28) 
P,(z) 

= e-x (+ 22(x -1)] 
{y[1+x,2(x-1)]-y[1+x,2(x -)e 

. 
Equation (IV-28) is 1)plotted in Figure 8 for various values of x. 
Equation (IV-28) is plotted in Figure 8 for various values of x. 
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Figure 8 
Fraction of unbonded polypeptide segments against k1t 

for various ratios of elementary rate constants 

It may be noted that the initial slope of PI(t) against kit is always -1; that 
is, the process starts off behaving as if it had a single relaxation time k1. Like- 
wise, the end of the reaction exhibits a single relaxation time k3. The physical 
meaning of this is that in all initial processes, an unbonded segment with un- 
bonded neighbors reacts to form a bond; whereas in all final steps, an unbonded 
segment neighbored by bonded segments reacts. Even though we only consider 
the polypeptide kinetics here, the general result is immediately applicable to the 
cases studied by Keller et al. We also point out related work by Pipkin and 
Gibbs [100] and Go [43], [44]. 

A very important extension of this, namely, the reversible case, has not, I be- 
lieve, been solved. 
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IV. C. Copolymerization statistics 

The last polymeric-type example we wish to discuss is a derivation of the degree 
of polymerization distribution (degree of polymerization is the number of mono- 
mer units in a polymer), the overall composition, and the compositional distri- 
bution for copolymers containing any number of different monomers [37], [115]. 
An initial system of two different kinds of monomers, say, will produce polymer 
chains of various lengths and various compositions. A number of papers have 
dealt with the degree of polymerization and compositional statistics of this 
process [20], [21], [22], [37], [50], [51], [79], [86], [98], [99], [104], and simply 
as a representative example, we present the work of Frensdorf and Pariser [37]. 
This should suffice to introduce the types of problems that have been considered. 

As a polymer chain grows from a solution containing monomers, the monomer 
units attach themselves to the active end of the chain (assuming, as usual, that 
there is only one). We shall assume that only the terminal units affect the rate 
of addition of the next monomer unit. We say that the growing chain is in a state 
i if its terminal unit is an i monomer and that it undergoes a transition to state j 
upon addition of a j monomer. We let the transition probability for this process 
be Pi; Pj can be related to the corresponding rate constants by 

(IV-29) P11 = 
kijMJ/(kiT + 

, 
kMj)), 

where 
kr, 

is the rate constant for termination of chains in state i, k,j is the rate 
constant for adding a j monomer to a chain ending in an i monomer, and 

MJ 
is the concentration of the j monomer. We write all these transition probabilities 
in a matrix Q 

IT 1 2 . 

I 0 0 I, 12 

T 0 1 0 0 

(IV-30) 
1 0 T1 Pll P12 

Q = 
2 0 T2 P21 P22 

where T, is the probability of termination of a chain ending in the ith monomer, 
and Ii is the probability-of reaction of the initiating species with the ith monomer. 
For a system of m different monomers, Q is a square stochastic matrix of order 
m + 2. 



456 DONALD A. McQUARRIE 

Determination of the DP distribution* requires finding P,' , the IT element 
of Q". The matrix element Pn) represents the probability of going from state 
I to state Tin exactly n steps. Since n + 1 steps are required to add n monomer 
units and because P•"n') includes all sequences of n or fewer monomer units, 
the desired distribution is 

(IV-31) F(n) = P(1+• - P" , 
where F(n) is the mole fraction of n-mers in the copolymer. 

Employing the standard expansion of Q, one writes 

(IV-32) =Q" = A A,, 

where the A1 are the m + 2 eigenvalues of Q, and 

(IV-33) A, = q,) (q, j> 

Here, j q,) and (q,j are the column and row eigenvectors of Q, respectively, 
and are defined by 

(IV-34) Qjq,) = Ajqi) 

(IV-35) (qi Q = 
(,q 

and 

(IV-36) (q, q,) = 1. 

A root of unity and one of zero can be factored out of the secular determinant 
and the problem is reduced to solving the submatrix P, given by 

P11 P12 P13 

P21 P22 P23 (IV-37) P 
- 

P23 

P31 P32 P33 

and finding its normalized eigenvectors, [p,) and (p J. 
The required element A(') of Aj is given by 

(IV-38) A = - [1/1,(1 - A,)].( p) (p t), 
where (i J is the row vector with elements I1,12, **,In, and It) the column vector 
with elements TI, T2, ..., 

Tm. Since 

(IV-39) T 
- 

= 1- 2 
Pi, 

it can be shown that 

* DP - degree of polymerization. 



Stochastic approach to chemical kinetics 457 

(IV-40) <p, tI = (1 - Ai)p, I1> 
where 1)> is the unit column vector of order m. 

It follows from Equations (IV-31), (IV-32), (IV-38), and (IV-40) that 

(IV-41) F(n) = (1 - A) . 'A 
p, 

p 1, 
where the summation is over the m roots of P. 

Equation (IV-41) shows that the DP for a copolymer of m different monomers 
is a combination of m binomial distributions. The mean of DP, N,, is easily 
obtained from Equation (IV-41): 

00 

(IV-42) g, = 1 nF(n) = X (1 - A,)-' i Pi> <(P II>. n=1 i 

Higher moments of the distribution can be obtained in an analogous fashion. 
To construct the generating function for the distribution of monomer 1, one 

proceeds in a fashion analogous to that used above for deriving the DP distri- 
bution. To this end a matrix Q, is defined, which is obtained from Q [Equation 
(IV-30)] by multiplying the column labeled 1 by the dummy variable s. Then 
the element PW() of Qn is made up of terms which each represent the prob- 
ability of going from state I to state T by a specific path multiplied by a power 
of s equal to the number of times state 1 has been crossed. The desired generating 
function for the distribution of monomer 1 in molecules of n monomer units 
is then given by an expression analogous to Equation (IV-41). The generating 
function for any other monomer is obtained in the same way, except that the 
elements of the appropriate column of Q are multiplied by s. 

The treatment is carried out like that leading from Equation (IV-31) to Equa- 
tion (IV-41). The generating function is then given by 

(IV-43) G(s, n) = [F(n)]- ,~1(ips,i (Ps,> i it) 

where the 
Ps,,i) 

and 
(ps,, 

are the eigenvectors corresponding to the roots 
A2, of the matrix P,, 

SsP11 P12 P13 1 
(IV-44) PS sP21 P22 P22 

It) is the column vector with elements T,T_, ,***, Tm, (isl the row vector with 
elements 

sl•,12,3, 
***,I I,, and [F(n)]-1 is the normalizing factor, chosen so that 

G(1,n) = 1. 
The compositional distribution described by G(s,n) enumerates how many 

copolymer molecules of DP = n contain a given number of units of monomer 1. 
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A problem of interest is how many molecules of the whole copolymer contain 
a specific mole fraction of monomer 1. This is not a discrete integral distribution 
and, hence, not readily expressed as a generating function. However, its moments 
can be obtained by suitably summing the moments of G(s,n) over all values 
of n by means of the DP distribution given in the previous section. 

A mathematical approach analogous to this one can obviously also be used 
in calculating bond-type distributions, for example, by applying the generating 
index s to matrix elements Pij and Pji bonds between units of monomers i and j. 

Many papers have appeared on this subject but Hijmans [50] seems to have 
the most complete discussion of this type of problem and various extensions 
of it. By using a generalization of Cauchy's theorem and the method of steepest 
descents he is able to express the results in compact form. He has shown that 
the distribution function for the fraction of molecules with a given composition 
is a product of an exponential distribution in the total number of monomers 
and a multidimensional Gaussian distribution in a set of variables which charac- 
terizes the relative deviation of the composition from its average. He and others 
have also considered the effect of the penultimate monomer on the various 
distributions. 

Recently Lauritzen et al. [79] have treated the even mote general case in 
which the addition of monomer is reversible. Only nearest-neighbor interactions 
are assumed and the rate constants aJ for addition of species j to a chain ending 
in species i, and Pfi, for the removal of species j from a chain ending in i, 
are assumed known and independent of chain length, except for those referring 
to the first step of the chain, which are distinct. The full kinetic equations for the 

growth of such chains are formulated and a solution obtained for steady-state 
conditions. It is shown that when the matrix of a'J/flJ is indecomposable and 

primitive, a solution of the equations which is independent of chain length always 
exists for sufficiently long chains, and computational methods for obtaining this 
solution for a relatively large number of components (of the order of 10) are 

presented. In addition, the relationship of 
c/Pf/l 

to the energetics of the sys- 
tem is derived. 

One problem in all these papers is that the transition probabilities are assumed 
to be constants. However, Equation (IV-29) shows that they do in fact depend 
upon the Mp, and as the chains grow the Mj, and hence the Pj change. Several 

experimental conditions allow this to be overcome, but in general, it seems that 
the Pj should depend upon n. So far as I know, this effect is untouched. 

IV.D. Random walk model of unimolecular decomposition 

In this section we treat an application of stochastic techniques to a microscopic 
treatment of unimolecular reactions due to Montroll and Shuler [92]. Theirs is 
a discrete random walk extension of a Brownian motion model used by Kramers 
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in 1940 [77]. Consider an ensemble of reactant molecules with quantized energy 
levels to be immersed in a large excess of chemically inert gas which acts as a 
constant temperature heat bath throughout the reaction. The reactant molecules 
are initially in a Maxwell-Boltzmann distribution, say, appropriate to a tem- 
perature To such that To < T, where T is the temperature. By collision with the 
heat bath molecules, the reactants are excited in a step-wise process onto their 
higher energy levels until they reach level N + 1 where they decompose and are 
irreversibly removed from the reaction system. The collisional transition pro- 
babilities per unit time W,,,, which govern the rate of transition of reactant mole- 
cules between levels with energies E, and Em are functions of the quantum num- 
bers n and m and can, in principle, be calculated in terms of the interaction of 
the reactant molecules with the heat bath. 

This corresponds to a one-dimensional random walk with an absorbing barrier, 
with the transition probabilities given by quantum mechanics. The time dependent 
distribution of the reactant molecules among the energy levels n = 0, 1, ---, N is 
then given by the fraction of walkers in state n. The rate of activation is inversely 
proportional to the mean first passage time to the (N + 1)th level. In general 
the quantum mechanical transition probabilities are quite difficult to obtain, but 
if the reactant molecules can be treated as simple harmonic oscillators (in a quan- 
tum mechanical sense), and if only weak interactions exist between the oscil- 
lators and heat bath molecules, an explicit calculation of the collisional transition 
probabilities can be carried out. This was done first by Landau and Teller [49]. 
If the transition probability per collision, Po0, for the transition 0 -+ 1 can be 
determined, then Landau and Teller showed that 

(IV-45) Pmn = [(m + 1)n,-I,m + mbn,+,,m]Pio 
= 

Pro,. 

Pm, is the probability per collision of a transition from state n to state m. Note 
that only transitions between neighboring levels are allowed. From the simple 
kinetic theory of gases, the transition probabilities per unit time, W,,, are given by 

Wn+• 
n = ZN*e-oP,n+l 

(IV-46) 
Wn1,n = N*Pn,n- 1. 

The quantity Z is the number of collisions per unit time suffered by the oscillator 
when the gas density is one molecule per unit volume, N is the total concentra- 
tion of heat bath molecules, and 0 = hv/kT, where h is Planck's constant, k the 
Boltzmann constant, T the absolute temperature, and v the fundamental vibra- 
tional frequency of the oscillators. 

The potential energy curve of the dissociating harmonic oscillators is taken 
to be that of a truncated harmonic oscillator with a finite number of equally 
spaced energy levels such that level N is the last bound level. The dissociation 
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or activation energy for the reaction is then EN+1 = hv(N + 1). This potential 
energy curve is shown in Figure 9. 

i N- I 

Fact 

x -------- O ---- 

Figure 9 
Potential energy diagram of the truncated harmonic oscillator model 

Let F(t) be the fraction of molecules which have not yet reached (N + 1) in 
the time interval (0, t). Then if x,(t) is. the fraction of molecules in level n, 

N 

(IV-47) F(t) = 
, 

x,(t). 
n=o 

Since particles are not conserved, this is a dishonest process. The fraction of 
molecules which dissociates in an infinitesimal time interval (t, t + bt) is 

(IV-48) - [F(t + bt)- F(t)] = - (dF/dt) bt. 

If P(t) is the distribution of first passage times for transitions past level N, the 
number of molecules which pass N in the interval (t, t + t) is P(t)bt. Then 
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dF d N 

(IV-49) P(t) = - 
d- o xn(t). 

dt dt n=o 

The mean first passage time is 

(IV-50) t = tP(t) dt = - t N x,(t) dt 
o dt 

n--n 
0 

(IV-51) = x,(t)dt. 
0 n=O 

The differential-difference transport equations which determine the Xn(t) are 

dxo (IV-52) 
dt 

- W0oxo + WolxI, 

dxj 
(V-53) 

Wj',j-IXj-I 
- (Wj-il j + 

Wi+I,j)xj 
-j 
j+ .xjl+1 

j = 
1,2,...,N- 1, 

(IV-54) dx WN,N-IXN-I - (WN-1,N + WN+1,N)XN. 

The distribution of first passage times P(t) can be found by summing these 
equations to give 

dN IV-55) P(t) - x(t) = (t) 
ndt .=0 

and the mean first passage time is 

(IV-56) I = WN+N tXN(t)dt. 

The model can be generalized to the case in which transitions may occur to other 
than nearest neighbor levels. This would be necessary in models more sophis- 
ticated than the truncated harmonic oscillator where other than nearest neighbor 
transitions were allowed. 

Let us write Equations (IV-52), (IV-53), (IV-54) in the form 

(IV-57) dX(t) = AX(t) dt 

where X(t) is a vector with components xo(t), x(t), **,,xN(t). The solution is 

(IV-58) X(t) = eA'X(O). 

Now express the exponential matrix as a linear combination of the characteristic 
matrices of A, the fj(A)'s which satisfy the relations 
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Af (A) = Ajj(A) j = 0,1,2,**, N 
(IV-59) fk(A)fj(A) 

= 
kjf j(A) 

N 

I f (A) = I, 
j=0 

where I is the identity matrix and the Aj's are the eigenvalues of A, Since the first 
of these equations implies that G(A)fj(A) = 

G(ij)fj(A), 
then 

N 

(IV-60) eAtI = e"' 
. 

fj(A) 
j=O 

N N 

(IV-61) = E eA(t) = 1 efj(A) 
j=o j=o 

and 

0o 
N 

oN (IV-62) X(t) dt = ~ eAtdt fj(A) X(O) 
f0d ]j=0 

N N 
(IV-63) = - A72- 'f (A) X() = - A-'fj(A)X(O) 

j=0 j=O 

(IV-64) = - A- X(O) 

((IV-65) 
- )N+1 (IV-65) {aNI + a,_ A + 

... 
+ AN} X(O). det A 

In the last line we have made use of the Cayley-Hamilton theorem and the aj's 
are the coefficients in the secular equation of A. In particular 

(IV-66) aN = (_)N A 202A 
... i-li+ + "' N 

N 

(IV-67) = (_)NdetA AE i 
I = (-)Ndet A tr A-' 

i=O 

Let <(i AIj> be the elements in the ith row and jth column of the matrix A'. 
Then the mean first passage time from an initial jth state is 

oo N N 

(IV-68) i = x,(t)dt = - (i< A-1 IJ> O n=0 1=0 

(IV-69) (_)N+1 N 'N 

detA Vt=1o =o , 

When all the molecules are initially in the ground state and when det A is a 
continuant, Montroll and Shuler [92] show that Equation (IV-69) reduces to 

f = - trA-1 
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We now explicitly consider the model of the unimolecular decomposition, 
that of a truncated harmonic oscillator. Using the Landau-Teller quantum me- 
chanical transition probabilities, we write 

dxn (IV-70) n = K {ne- Xn- 
- [n + (n + 1)Xe]x + (n + 1)x,+, 

n = 0, 1,2,, N- 1, 

(I V-71) d = K {Ne-xN - N + (N + 1)e-] x,, 

where K = Plo of Equation (IV-45) and depends only on the coupling betwen 
molecules and heat bath. These equations can be symmetrized by introducing 
y = x, exp (In 0) which gives 

dY 
(IV-72) dY 

_ 
BY 

dt 

where B is now a symmetric matrix. Using the symmetric and continuant 

properties of B, Montroll and Shuler show that 

(IV-73) Kt = -KctrB-' 

(IV-74) =Y. ejo + + + 

As N -+ oo, 

(IV-75) t = e(N+1) 1)2 
1 + e- + o(N-2) 

(N + 1)(e-0 - 1) N(1 - e-0) 

The standard theories of chemical kinetics are equilibrium theories in which a 
Maxwell-Boltzman distribution of reactants is postulated to persist during a 
reaction [124]. The equilibrium theory first passage time is the N -+ o0 limit 
in Equation (IV-75). Corrections to it then are to be expected when the second 
term in Equation (IV-75) is no longer negligible, i.e., when N is not much greater 
than e-o(1 - e-)-1'. The mean first passage time and rate of activation deviate 
from their equilibrium value by more than 10 percent when 

(IV-76) N(1 - e-0) < 10e-0, 

or roughly when Eacva,,,,on/kT < 10. This result is in agreement with other statis- 
tical mechanical estimates of this effect. 

Montroll and Shuler were also able to solve Equations (IV-70) and (IV-71) 
for x,(t). They found that 

N 

(IV-77) x,(t) = 
, 

aj(l,(pj)exp {(p(e-0 - l) tK} , j=o 
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where the 1,(z) are Gottlieb polynomials [47] and the ,j are the zeros of lN,+ (z). 
By means of the orthogonality relations of the Gottlieb polynomials, the 

aj are found to be given by 

(IV-78) aj = x(O) 1,(pj) en"/ • (j)en. 
n=O 1=0 

When all the molecules are initially in state m, 

(IV-79) x,(t) = 
N 

1.()1(j)e exp{p(e--1) tK}. -o , I 
(1)Nese 

s=O 

When x,(O) is a Boltzmann distribution with an initial temperature such that 
the population of levels greater than N is completely negligible, 

N [ _ e-(0o-0) p 
/N} (IV-80) xn(t) 

= 1 {ln(!j) J e 
-o 

l((j)emo exp{-uj(1-e-0)tK. 
j=0 

- eOo m=O 

Using Equation (IV-55) for P(t), mean first passage times may then be calculated 
and compared to either the equilibrium result (N -+ oc) to test the range of 
validity of this assumption or to experiment. The agreement with experiment 
is not very good [13], [111] but then again the model outlined here is only a 
first step. The obvious refinement is the use of a more realistic model for the 
oscillators and a calculation of transition probabilities for strong interactions. 
Kim [75] has studied an anharmonic oscillator model, but no numerical results 
have appeared. He did consider in some detail, however, the conditions under 
which the macroscopic rate law 

dc 
(IV-81) - = kc 

is valid. 

IV. E. Kinetics of biological macromolecules 

In this section we summarize some recent work [112], [127], [128] con- 
cerning the kinetics of DNA replication and demonstrate how even such complex 
phenomena can be given a useful treatment by means of relatively simple sto- 
chastic methods. The DNA molecule plays a central role in genetic reproduc- 
tion and consists of two long linear strands intertwined in the form of a double 
helix [115]. Each strand is made up of four complex bases whose arrangement 
contains the genetic information required for the transformation of proteins used 
in the cell. The two strands are held together by hydrogen bonds which must 
be broken in order for the helix to unwind; this in turn is necessary for the DNA 
molecule to self-replicate. The new (or daughter) DNA molecules are made by 
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copying the old (or parent) chains using the latter as a template. It is now common- 
ly agreed, on the basis of considerable experimental work [15], that for in vivo 
systems this template replication has a "Y" configuration as shown in Figure 10. 
This implies a simultaneous (enzymatic) unwinding of the parent helix and the 
formation of the daughter helices. It appears likely that the continued replication 
of the daughter helices plays a role in the further opening of the parent helix 
and, conversely, if the unwinding rate is not sufficiently large relative to the po- 
lymerization rate along the template then replication can be repressed by lack 
of accessible template sites. The model we shall describe provides a basis for 
studying this competitive process. 

Figure 10 
The " Y" model for a replicating double helix with an enzyme activated region of length L base 

pairs, and instantaneous number of accessible template sites 1(t) 

In order to focus our attention on this question and to formulate a simple 
kinetic model for DNA replication, it is sufficient to ignore the specific sequence 
structure of the molecule and consider the parent and daughter helices to be 
homopolymeric. The well-known fact that the sequence of four bases in each 
daughter is an exact complementary copy of the parent is not an essential feature 
in studying the coupled unwinding and replication mechanisms. 

The role of the enzymes in these processes must be treated phenomenologically, 
since explicit details of enzymatic reactions are not known as yet. Fortunately 
this can be done quite naturally by means of stochastic methods. Indeed one of 
the great virtues of this approach to biological (as well as other) problems is 
its ability to summarize quite readily complex (and perhaps not well-understood) 
details of the process. 

The model of Zimmerman and Simha can be described as follows. Each double- 
stranded (homopolymeric) parent template molecule is presumed to have length N. 
At any time t a given base pair at site position j along the template (say measured 
from the left end in Fig. 10, j = 1, 2, ..., N) either still possesses an intact hydro- 
gen bond, or this bond has been broken providing a free template site, or 
the site possesses incorporated monomer in a newly replicated daughter helix. 
To avoid unessential details we assume both daughter helices are simul- 
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taneously replicated in an identical manner, so that it is sufficient to consider 
either one. Following current understanding of DNA replication it is assumed 
that replication occurs only in one direction from one end of the template with 
a single growing center for each daughter. Zimmerman and Simha have developed 
a kinetics for multicenter growth along a simple linear template [127] but such 
complications are not required for the present application. It is supposed that 
monomer reaches the template at each position j with equal probability by means 
of a first order diffusion process with effective rate constant kdiff and is deposited 
if the site is empty. Further, if this site is adjacent to the growing chain ends, 
incorporation with daughter helices will occur, characterized by a first order 
process with rate constant k. One can also allow for unincorporated monomer 
desorption but this simply causes the expected shift (slowing) of the time scale 
and for simplicity will be omitted here. Experimental evidence indicates that 
depolymerization of dimers and higher order species need not be considered. 

Replication occurs by means of single monomer addition to each of the two 
growing chains at the junction of the "Y", which therefore moves (see Figure 
10) to the right during the process. The parent helix, under the influence of the 
enzyme unwinds ahead of these growing chains leaving a region of expected 
length 1(t) in which the base pair hydrogen bonds have been broken. The enzyme 
is incorporated phenomenologically in the model by supposing that it has an 
effective region of action along the template encompassing a fixed number of 
sites L. This region begins at all times at the junction of the Yand extends through 
the unbound portion of the parent helix into the bound portion as shown sche- 
matically in Figure 10. Unwinding of the parent helix can take place only within 
this region, where it occurs for a given base pair with effective rate constant ko. 
Since the enzyme is pushed along by the replicating daughters, the latter drive 
the unwinding process by continuously permitting new portions of the bound 
helix to react with the enzyme. This is the essential feature of the model that 
couples the unwinding and replication mechanisms. When in this region of enzyme 
activity a hydrogen bond is broken at a location less than or equal to some crit- 
ical number c of template sites from the end of the bound part of the parent 
helix, it is supposed that all base pairs between it and this end open instantaneously. 
All these template sites are then available to receive the diffusing monomer and 
thus participate in the replication of the daughter helixes. A base pair which 
opens at a distance greater than c positions from the unbound end causes no 
further breaking of hydrogen bonds and is, therefore, isolated from the replicating 
chains. The model assumes an ensemble of equal-length parent helices each one 
of which is activated initially by an enzyme according to the first order rate pro- 
cess h(t)= keexp(-ke(t)). For certain technical reasons, and without loss of 
generality, it is supposed that the initiation mechanism results in the formation 
of a dimer. 

The kinetics of the replicating daughters can be described in terms of a set 
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of elementary probabilities Aj(t), j = 2,3, 
...,N 

which give the likelihood for 
any given replicating molecule that each of the two growing daughter helices 
has reached the jth template site at time t. In order to write down differential 
equations for the Aj(t) it is convenient to introduce a function t(t) which gives 
the probability of transition from daughter helices of length j to those of length 
j + 1 in the time interval [t, t + dt]. As the notation indicates, •,(t) 

turns out to 
be independent of j, which greatly simplifies the treatment of the system of equa- 
tions for the Aj(t). These are 

dX2(t) _ 

dt 

(IV-82) dAj+1(t)= t(t)(A2(t)- Aj+(t)), 
2 jN- 2 

dt 

dAN(t) 
dt 

This familiar set of equations leads to a Poissonian type of distribution for the A. 

wt) W(t)j 

ji(t) 
= h(t) * e 

-' 
w(t) - 2j N - 1 

(IV-83) (j - 2)0' 
e o w(tYl 

2N(t) = h(t) * e- N-2 W, 
i=N-2 i! 

where h(t) is the enzyme arrival distribution defined earlier, * is the convolution 
operator and 

(IV-84) w(t) = fo(t) dt . 

The probability that no growth has occurred for a given template is just 
o(t) = 1 - J' h(t) dt. One can then compute the conversion (C), number aver- 

age degree of polymerization (P,) and weight average degree of polymerization 
(P,) in the usual fashion from the moments 

N N 

so that j=2 j=2 
N N N 

(IV-85) 
1 

j: jA jit : j2A 

J 
=_ .=2 

P =22 

j=2 

The interesting problem then is the determination of the transition probability 
Ifr(t). 
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Clearly there are three independent events which must take place in order 
for each of the daughter helices to increase their length by one base pair: 

(1) An empty template site immediately adjacent to the growing chains must 
be available, 

(2) There must be a monomer unit present in this site through diffusion, 
(3) The polymerization, that is incorporation, of this unit in the growing 

chain must take place. 
The probability for the first of these events can be written in the form 1 - 0o(t), 

where 
•o(t) 

is the probability that at time t there are no unbound base pairs avail- 
able. Since a first order diffusion process has been assumed, the probability de- 
noted by p(t) that a monomer unit has diffused to any position along the template 
is simply p(t) = 1 - exp (- kdifft). The probability that the adjacent monomer 
will be incorporated in the interval [t, t + dt] is just kpo 0dt, so that we have 
finally for the transition probability in this interval 

(IV-86) i/(t)dt = kpop(t) (1 - o0(t))dt. 

If the unwinding rate ko is large compared with kpol then clearly o0 will be 
very small and 

,(t) 
reduces to kpotp(t) which leads immediately to a simple ex- 

plicit solution of the problem. In the contrary case one must find o0(t) which 
it turns out requires a complete description of the kinetics of the unwinding 
process. For this purpose one introduces the quantities )k(t), k = 0,1,...,L, 

(0o having already been defined) which give the probability that there are k succes- 
sive pairs of unbound template sites at time t. The index k is defined relative 
to the moving enzyme and replicating system; for example, k = 0 always refers 
to the position just ahead of the growing daughter helices. Using the 01k(t) one 
can immediately obtain the function 1(t) (see Figure 10) which gives the expected 
length of the region of unbound base pairs as 

L 

(IV-87) 1(t) = I kA~k(t). 
k=l 

To describe the fluctuations of the length of the region it is necessary to calculate 
the second moment kI= k2qkk(t). To correspond to the assumption that the 
initiation of polymerization is by means of a dimer, it is assumed that 02(0) = 1 
and 4k(O) = 0 for all other k. Thus, from Equation (IV-87), 1(0) = 2. The 
differential equations for the 4k are considerably more complicated than those 
for the ij, but they are formulated in the same way by consideration of the 
mechanisms which affect the length of the region of unbound base pairs. For 
example, for the values of k satisfying c + 1 ? k < L- c, one finds 

(IV-88) d() = 
ko Pkp(t) 

- 
(cko 

+ 

kpo) 

p(t)) 4k(t) + 

kpolp(t) 

4+ 1(t). 
dt 

p- 
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Each of the terms on the right in Equation (IV-88) can be understood phy- 
sically as follows. The first sum represents the c ways that k unbound base pairs 
can be obtained from k - 1, k - 2, ---,k - c unbound pairs at the previous 
instant of time. The second term represents ways of losing a region of k unbound 
base pairs through further unwinding (which can occur in c independent ways 
corresponding to the c pairs ahead of the k unbound pair) or through "using up" 
one of the unbound template sites by polymerization. The transition probability 
for this is kpo0p(t) and not kpo1p(t)(1 - 4•(t)), since for the values of k being 
considered (c + 1 ? k ? L- c) we can be assured of at least two empty template 
sites (c being always ? 1). The last term represents a positive contribution to the 
formation of a region of length k from one of length k + 1 through polymeri- 
zation. Similar differential equations can be written for other regions of the index 
k. In each case the equation is linear (see (IV-88) for example) but with variable 
coefficients, and a closed solution is possible only in special cases (see [128]). 

One such situation is when c = 1 and t is taken large enough for p(t) to be re- 
placed by its asymptotic value kpol. The system of equations for the Pk in this 
case is similar to others which arise in a variety of stochastic models (see [24]). 
In fact the problem then is formally equivalent to a single-server queuing problem 
[114] where the function 1(t) gives the length of the "queue" and the polymeri- 
zation process is "served" by unwinding the parent helix. 

In the general case for any c and variable coefficients a general numerical 
solution is quite readily obtained [128] permitting a complete evaluation of 
the effect of all parameters on the kinetics. It turns out that the critical rate para- 
meter is the dimensionless ratio K= kpol/ko and this together with the quantity 
c provide the most interesting variables to explore in the numerical calculations. 
We shall give a few typical results from [128] here for the case when 
ke/kdiff = 0.5, kpol/kdiff = 100 and L = 15. 

In Figure 11 is plotted the dispersion ratio P,IP, for the DNA polymerization 
process as a function of the percent conversion. Considering first the four curves 
for c = 1 and various K values one observes that the distribution is narrowest 
for the larger K, that is when the rate of the polymerization process is large com- 
pared to that of the unwinding process. In this case these two processes are highly 
coupled and the replication is hindered by a relatively slow unwinding of the 
the parent helix. Figure 11 shows that greater homogeneity is obtained through 
the action of the unwinding mechanism as a regulation for the replication. 
Looking now at the curve for c = 2, K = 10.0 we see that increasing c quite nat- 
urally provides more available template sites and therefore broadens the distri- 
bution for a fixed value of K. 

The time dependent competition between the unwinding and replicating me- 
chanisms in this model can most conveniently be described in terms of the func- 
tion 1(t) defined by Equation (IV-87). When values of 1(t) are large the replica- 
tion proceeds unhindered; when l(t) < 1 replication is at least temporarily halted. 
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The dependence of 1(t) on the conversion for c = 1 and various x values is shown 
in Figure 12. In each case there is an increase in I from its initial value to a maxi- 
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mum whose magnitude and location depend upon K (see the dotted line in Figure 
12. After reaching its maximum, I declines, the more rapidly the larger the K, 
and this effect depends critically on K particularly in the region about K = 1.0 

(when kpol and ko are essentially the same). Thus for the larger K (say, K > 2) 
there is a brief moment during the early stages of replication where the open 
template region is large, but then the relatively rapid polymerization prccess 
"catches up" with the slow unwinding and the length of the open region sharply 
diminishes. For small K the maximum I achieved is essentially the length of the 
effective region of the enzyme L (which equals 15 in this case). For K = 0.4 this 
maximum is maintained throughout the replication, and hence the unwinding 
and polymerization processes are effectively uncoupled. As K increases the maximum 
achieved is reduced to about 12 for K = 2.0 and finally to 2.4 for K = 10.0. The 
condition K = 2.0 is critical for the unwinding as can be observed from Figure 

:12, both in regard to the rapid decline of I from its maximum and the asymptotic 
value of unity. For all larger K, I falls below one and the polymerization is on 
the average inhibited during virtually the entire replication process. 

The dependence of the function I on c is depicted in Figures 13a and 13b for 

KC = 2.0 and 10.0, respectively. In the former the effect of increasing c is almost 

completely present already for c = 2 when the situation is strikingly different 
from c = 1. Thus for K = 2.0 a value of c = 2 is more than sufficient to uncouple 
the polymerization and unwinding mechanisms. For K = 10.0 however (Figure 
13b), the effect of increasing c is more gradual, and the polymerization is sub- 

stantially hindered when c < 4. In this case the critical asymptotic value of unity 
occurs between c = 2 and c = 3. It is interesting to note in this connection that 
for typical DNA systems experimental evidence suggests that c is on the order 
of 5. Zimmerman and Simha have also found that the parameter L has little 
effect on the results as long as it is larger than some small minimal value, say 
between 5 and 10. This would seem to support the current belief that the number 
of active enzyme sites on the template is quite small. 

In summary, calculations using this model clearly indicate how the unwinding 
of the DNA parent can sensitively influence the replication of daughter helices. 
This may well be the major means for the enzymatic control of DNA replication 
and thus protein synthesis in the cell. 

IV.F. Miscellaneous applications 
In this last section wewish to describe very briefly several additional applications. 

For one reason or another (mostly space) it was decided not to devote a whcle 
section to each one, but they are interesting and important enough not to be 
omitted. 

a) Theory of nonrandom degradation of linear chain molecules 
There have been a large number of papers published (see [115] for earlier 

references) on the theory of degradation or depolymerization of long chain mole- 
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cules. Under the action of heat, light, ultrasonics, or suitable chemical reagents, 
polymer molecules will degrade or break up. An important problem in polymer 
chemistry is to study the kinetics of the process and the final distribution of sizes. 
Early work assumed that all the initial polymer molecules had the same degree 
of polymerization and that the reactivity of every bond in a molecule is the 
same. It can be argued that the first restriction is not too important, but for 
chemical reasons the second assumption can be quite unsatisfactory. Over the 
years these conditions have been relaxed, and we refer to Amemiya [2], [3] for 
the solutions to the rate equations for this process in which the initial distri- 
bution of lengths is arbitrary and the rupture of a bond is non-random. The 
results however are long and formal, and to my knowledge have not been studied 
numerically or compared to experiment. 
b) Multiple zone reactions 

In certain physical systems reactions may proceed in a number of small isolated 
zones, but the experimental observation is the overall chemical change. An ex- 
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ample is the creation by irradiation of free radicals in polymers, which are trapped 
in the solid state at temperatures so low that reaction is impossible. By then 
heating the solid to a higher temperature the free radicals acquire sufficient energy 
to overcome the diffusional barriers for reaction and recombination begins. 
The physical picture is equivalent to having a number of bottles containing re- 
action mixtures of varying, small, initial concentrations and in which all the 
reactions start at the same time. If the reaction in each bottle is bimolecular, 
say, will the observed rate of decrease of the total number of reactant molecules 
be second-order? This type of problem is discussed by Dole and Inokuti [29], 
who found that if the initial concentrations in the reaction zones are random, 
the overall observed reaction rate is second-order. In other cases, they found, 
a transition from overall second-order to overall first-order as the reaction pro- 
ceeded. 
c) Nucleation theory 

A vapor, when compressed to the point where its pressure exceeds its vapor 
pressure at that temperature, will condense to form liquid droplets, so that the 
final stable pressure is just the equilibrium vapor pressure. This condensation 
usually and readily takes place on dust particles, the walls, or ions formed by 
extraneous cosmic radiation or the like. Under extremely clean and ion-free 
conditions, however, it is possible to avoid condensation and achieve a metastable 
state in which the actual pressure of the vapor is greater than its equilibrium 
vapor pressure at that temperature Such a state is possible since the dust or ion 
nuclei on which the vapor molecules readily condense and grow are absent, and 
vapor molecules must form clusters of themselves to act as nuclei. Such a process 
is called homogeneous nucleation. Homogeneous nucleation theory has been 
formulated as a birth and death process in which the states of the system cor- 
respond to specified numbers of molecules in a cluster. The transition probabilities 
for this process are not linear or quadratic, but fractional powers. This seems 
to complicate matters enormously and most treatments assume a steady-state 
condition. Recently, however, several papers have appeared which explicitly treat 
the non-steady state behavior. We refer mainly to Courtney [23] who has solved 
a 100 or so difference-differential birth and death equations numerically on a 
computer. He was then able to study the effect of the steady-state assv•nTtion on classical homogeneous nucleation theory [31], [61]. We also refer to Andres 
and Boudart [4] who calculated the mean time to attain steady-state by a methcd 
similar to that of Montroll and Shuler [92] given in Section IV.D. We lastly 
point out the work of Goodrich [45] who treated nucleation formally as a birth 
and death process and was able to calculate lag times. This work constitutes 
perhaps the most complete treatment of nucleation from a stochastic standpoint 
and is of great interest. In view of the complex nature of the rate equations 
here, this is an example of a system in which approximate techniques can be quite 
useful. 
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d) Statistical thermodynamics 
It was mentioned in the introduction that one of the reasons for formulating 

stochastic models for various processes was to seek an understanding of non- 
equilibrium or irreversible thermodynamics. In a series of papers by Hill [54]-[60], 
entitled "Studies in irreversible thermodynamics", he has formulated a stochastic 
model for a simple statistical mechanical system (lattice gas) immersed in a heat 
bath. Rate equations are derived and solved for the means and variances of the 
stochastic variables, and these are used to study the validity of the usual force- 
flux equations and the reciprocal relations of irreversible thermodynamics. He 
has also found certain restrictions concerning the relative rates of attainment 
of equilibrium with the surroundings and with internal processes. Statistical 
mechanics is used to provide the equilibrium properties of the model system 
and the connection between chemical potentials and kinetic parameters. He 
then extends the lattice model to one that can exchange molecules with two 
heat baths and applies it to membrane transport phenomena, of great interest 
in biology. By means of the exactly solvable model, Hill is able to study the 
thermodynamics of membrane transport. In one of the papers in this series [54] 
he introduces the idea of a diagrammatic representation of steady state fluxes 
for unimolecular systems. Work of a similar nature has been published by Ishida 

[67] who tries to formulate stochastically the nonequilibrium thermodynamics 
of chemical reactions. He shows that the relation between entropy and fluctua- 
tion is obtainable from such stochastic considerations. 
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Abstract
Stochastic chemical kinetics describes the time evolution of a well-
stirred chemically reacting system in a way that takes into account
the fact that molecules come in whole numbers and exhibit some
degree of randomness in their dynamical behavior. Researchers are
increasingly using this approach to chemical kinetics in the analysis
of cellular systems in biology, where the small molecular populations
of only a few reactant species can lead to deviations from the predic-
tions of the deterministic differential equations of classical chemical
kinetics. After reviewing the supporting theory of stochastic chem-
ical kinetics, I discuss some recent advances in methods for using
that theory to make numerical simulations. These include improve-
ments to the exact stochastic simulation algorithm (SSA) and the
approximate explicit tau-leaping procedure, as well as the develop-
ment of two approximate strategies for simulating systems that are
dynamically stiff: implicit tau-leaping and the slow-scale SSA.
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Reaction-rate equation
(RRE): the set of coupled,
first-order, ordinary
differential equations
traditionally used to
describe the time evolution
of a well-stirred chemical
system

1. INTRODUCTION

The most accurate way to depict the time evolution of a system of chemically re-
acting molecules is to do a molecular dynamics simulation, meticulously tracking
the positions and velocities of all the molecules, and changing the populations of the
species appropriately whenever a chemical reaction occurs. Chemical reactions in this
approach are viewed as distinct, essentially instantaneous physical events, and they
are generally of two elemental types: unimolecular, occurring as a result of processes
internal to a single molecule, and bimolecular, occurring as a result of a collision
between two molecules. (Trimolecular and higher order reactions are approximate
representations of sequences of two or more elemental reactions.)

From a classical mechanics viewpoint, one might suppose that such a system is
deterministic, in that a given initial state always leads to the same state at some
specified later time. There are three reasons why this is not so: First, even if the sys-
tem evolved deterministically with respect to the positions, velocities, and molecular
populations of the species, it would not evolve deterministically with respect to the
species populations alone. Second, quantum indeterminacy unavoidably enters; e.g.,
in a unimolecular reaction we can never know exactly when a molecule will trans-
form itself into a different isomeric form. Third, chemical systems are usually not
mechanically isolated; rather, they are in contact with a heat bath, whose essentially
random perturbations keep the system in thermal equilibrium at some temperature.

In view of the fact that molecular populations in a chemically reacting system
are integer variables that evolve stochastically, it is remarkable that chemical kinetics
has traditionally been analyzed using a mathematical formalism in which continuous
(real) variables evolve deterministically: Traditional chemical kinetics holds that in a
well-stirred, thermally equilibrated chemical system, the number of molecules Xi of
each chemical species Si (i = 1, . . . , N ) evolves in time according to a set of coupled
ordinary differential equations (ODEs) of the form

d Xi

dt
= fi(X1, . . . , XN) (i = 1, . . . , N ) (1)

where the functions fi are inferred from the specifics of the various reactions. This
set of equations is called the reaction-rate equation (RRE). It is usually expressed in
terms of the concentration variables Zi ≡ Xi/�, where � is the system volume, but
that scalar transformation is not important here. Even more remarkable is that for
systems of test-tube size or larger, the RRE seems to work quite well. But if the system
is small enough that the molecular populations of at least some of the reactant species
are not too many orders of magnitude larger than one, discreteness and stochasticity
may play important roles. Whenever that happens, and it often does in cellular systems
in biology (1–7), Equation 1 does not accurately describe the system’s true behavior.

Stochastic chemical kinetics attempts to describe the time evolution of a well-
stirred chemically reacting system in a way that takes honest account of the system’s
discreteness and stochasticity. In this chapter I briefly review the theoretical foun-
dations of stochastic chemical kinetics and then describe some recent advances in
numerical-simulation strategies that are supported by this theory.
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State-change vector: the
change in the vector of the
species’ molecular
populations induced by a
single occurrence of a
particular reaction

Propensity function: the
function whose product
with dt gives the probability
that a particular reaction
will occur in the next
infinitesimal time dt

2. STOCHASTIC CHEMICAL KINETICS: THE CHEMICAL
MASTER EQUATION AND THE STOCHASTIC
SIMULATION ALGORITHM

Let us consider a well-stirred system of molecules of N chemical species {S1, . . . , SN},
which interact through M chemical reactions {R1, . . . , RM}. We assume that the sys-
tem is confined to a constant volume � and is in thermal (but not chemical) equilib-
rium at some constant temperature. We let Xi(t) denote the number of molecules
of species Si in the system at time t. Our goal is to estimate the state vector
X(t) ≡ (X1(t), . . . , XN(t)), given that the system was in state X(t0) = x0 at some initial
time t0.

The justification for the tacit assumption that we can describe the system’s state
by specifying only the molecular populations, ignoring the positions and velocities of
the individual molecules, lies in the conditions responsible for the system being well
stirred. The fundamental assumption being made is that the overwhelming majority
of molecular collisions that take place in the system are elastic (nonreactive), and
further that the net effect of these elastic collisions is twofold: First, the positions of
the molecules become uniformly randomized throughout �; second, the velocities
of the molecules become thermally randomized to the Maxwell-Boltzmann distri-
bution. To the extent that this happens, we can ignore the nonreactive molecular
collisions, the simulation of which would occupy most of the computation time in a
molecular dynamics simulation, and concern ourselves only with events that change
the populations of the chemical species. This simplifies the problem enormously.

The changes in the species populations are of course a consequence of the chemical
reactions. Each reaction channel Rj is characterized mathematically by two quantities.
The first is its state-change vector νj ≡ (ν1 j , . . . , νNj), where νij is the change in the
Si molecular population caused by one Rj reaction, so if the system is in state x and
one Rj reaction occurs, the system immediately jumps to state x + νj. The other
characterizing quantity for Rj is its propensity function aj, which is defined so that

a j (x) dt �= the probability, given X(t) = x, that one Rj reaction will occur

somewhere inside � in the next infinitesimal time interval [t, t + dt). (2)

Definition 2 can be regarded as the fundamental premise of stochastic chemical ki-
netics because everything else in the theory follows from it via the laws of probability.
The physical rationale for Definition 2 for unimolecular and bimolecular reactions
can be briefly summarized as follows.

If Rj is the unimolecular reaction S1 → product(s), the underlying physics, which
is usually quantum mechanical, dictates the existence of some constant c j, such that
c jd t gives the probability that any particular S1 molecule will so react in the next
infinitesimal time dt. It then follows from the laws of probability that if there are
currently x1 S1 molecules in the system, the probability that some one of them will
undergo the Rj reaction in the next dt is x1 · c jd t. Thus the propensity function in
Equation 2 is aj(x) = c jx1.

If Rj is a bimolecular reaction of the form S1 + S2 → product(s), kinetic theory
arguments and the well-stirred condition together imply the existence of a constant c j,
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Chemical master equation
(CME): the equation that
determines the probability
that each species will have a
specified molecular
population at a given future
time

such that c jd t gives the probability that a randomly chosen pair of S1 and S2 molecules
will react according to Rj in the next infinitesimal time dt (8–11). The probability
that some one of the x1x2 S1-S2 pairs inside � will react according to Rj in the next
dt is therefore x1x2 · c jd t, and that implies that the propensity function in Equation 2
is aj(x) = c jx1x2. If instead the bimolecular reaction had been S1 + S1 → product(s),
we would have reckoned the number of distinct S1 molecular pairs as 1

2 x1(x1 −1), and
so obtained for the propensity function aj(x) = c j

1
2 x1(x1 − 1).

Evaluating c j completely from first principles is a challenging task, requiring spe-
cific assumptions to be made about how the reaction Rj physically occurs. Unimolecu-
lar c j ’s and bimolecular c j ’s are quite different from each other. For example, whereas
a unimolecular c j is independent of the system volume �, a bimolecular c j is inversely
proportional to �, reflecting the fact that two reactant molecules will have a harder
time finding each other inside a larger volume. It turns out that for a unimolecular
reaction, c j is numerically equal to the reaction-rate constant kj of conventional deter-
ministic chemical kinetics, whereas for a bimolecular reaction, c j is equal to kj/� if the
reactants are different species, or 2kj/� if they are the same species (8–11). However,
these results should not be taken to imply that the mathematical forms of the propen-
sity functions are just heuristic extrapolations of the reaction rates of deterministic
chemical kinetics. The propensity functions are grounded in molecular physics, and
the formulas of deterministic chemical kinetics are approximate consequences of the
formulas of stochastic chemical kinetics, not the other way around.

Although the probabilistic nature of Equation 2 precludes making an exact pre-
diction of X(t), we might hope to infer the probability

P (x, t | x0, t0) �= Prob {X(t) = x, given X(t0) = x0}. (3)

It is not difficult to derive a time-evolution equation for P (x, t | x0, t0) by applying
the laws of probability to the fundamental premise (Equation 2). The result is the
chemical master equation (CME) (10–12):

∂ P (x, t | x0, t0)
∂t

=
M∑

j = 1

[aj(x − νj)P (x − νj, t | x0, t0) − aj(x)P (x, t | x0, t0)]. (4)

In principle, the CME completely determines the function P (x, t | x0, t0). But a close
inspection reveals that the CME is actually a set of coupled ODEs, with one equation
for every possible combination of reactant molecules. It is therefore not surprising that
the CME can be solved analytically for only a few simple cases, and even numerical
solutions are prohibitively difficult in other cases.

It is also difficult to infer anything about the behavior of averages such as
〈h(X(t))〉 ≡ ∑

x h(x)P (x, t | x0, t0) if any of the reaction channels are bimolecular. For
example, if we multiply the CME (Equation 4) through by x and then sum over all x,
we get

d 〈X(t)〉
dt

=
M∑

j = 1

νj〈aj(X(t))〉. (5)

If all the reactions were unimolecular, the propensity functions would all be linear
in the state variables, and we would have 〈aj (X(t))〉 = aj (〈X(t)〉), so Equation 5 would

38 Gillespie

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
7.

58
:3

5-
55

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
on

 0
9/

23
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV308-PC58-02 ARI 21 February 2007 11:10

reduce to a closed ODE for the first moment 〈X(t)〉. But if any reaction is bimolecular,
the right-hand side of Equation 5 will contain at least one quadratic moment of the
form 〈Xi(t)Xi ′ (t)〉, and Equation 5 would then be merely the first of an infinite, open-
ended set of equations for all the moments.

In the hypothetical case in which there are no fluctuations—i.e., if X(t) were a
deterministic or sure process—we would have 〈h(X(t))〉 = h(X(t)) for all functions h,
and Equation 5 would then reduce to

dX(t)
dt

=
M∑

j = 1

νjaj(X(t)). (6)

This is precisely the RRE (Equation 1), with the functions fi(X) ≡ ∑
j νij aj(X) now

explicitly rendered. As a set of coupled ODEs, Equation 6 characterizes X(t) as a
continuous, deterministic process. But while this shows that the RRE would be valid
if all fluctuations could be ignored, it does not provide any justification for doing that.
Below I discuss how, and under what conditions, the discrete, stochastic CME de-
scription approximately gives rise to the continuous, deterministic RRE description.

Because the CME (Equation 4) can rarely be solved for the probability density
function of X(t), perhaps we should look for a way to construct numerical realizations
of X(t), i.e., simulated trajectories of X(t) versus t. This is not the same as solving the
CME numerically, as that would give us the probability density function of X(t) in-
stead of a random sample of X(t). The key to generating simulated trajectories of X(t)
is not the function P (x, t | x0, t0), but rather a new probability function p(τ, j | x, t),
which is defined as follows:

p(τ, j | x, t) dτ
�= the probability, given X(t) = x, that the next reaction in the

system will occur in the infinitesimal time interval
[t + τ, t + τ + dτ ), and will be an Rj reaction. (7)

Formally, this function is the joint probability density function of the two random
variables time to the next reaction (τ ) and index of the next reaction ( j ), given that the
system is currently in state x. It is not difficult to derive an exact formula for p(τ, j | x, t)
by applying the laws of probability to the fundamental premise (Equation 2). The
result is (8–11)

p(τ, j | x, t) = aj(x) exp(−a0(x) τ ), (8)

where

a0(x) �=
M∑

j ′=1

aj ′ (x). (9)

Equation 8 is the mathematical basis for the stochastic simulation approach. It implies
that τ is an exponential random variable with mean (and standard deviation) 1/a0(x),
while j is a statistically independent integer random variable with point probabilities
aj(x)/a0(x). There are several exact Monte Carlo procedures for generating samples
of τ and j according to these distributions. Perhaps the simplest is the so-called
direct method, which follows by applying the standard inversion generating method
of Monte Carlo theory (11): We draw two random numbers r1 and r2 from the uniform
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Stochastic simulation
algorithm (SSA): a Monte
Carlo procedure for
numerically generating time
trajectories of the molecular
populations in exact
accordance with the CME

distribution in the unit interval, and take

τ = 1
a0(x)

ln

(
1
r1

)
, (10a)

j = the smallest integer satisfying
j∑

j ′=1

aj ′(x) > r2 a0(x). (10b)

With this generating method (or any mathematically equivalent one), we have the
following stochastic simulation algorithm (SSA) for constructing an exact numerical
realization of the process X(t) (8, 9):

0. Initialize the time t = t0 and the system’s state x = x0.
1. With the system in state x at time t, evaluate all the aj(x) and their sum a0(x).
2. Generate values for τ and j using Equations 10a,b (or their equivalent).
3. Effect the next reaction by replacing t ← t + τ and x ← x + νj.
4. Record (x, t) as desired. Return to Step 1, or else end the simulation.

The X(t) trajectory produced by the SSA may be thought of as a stochastic ver-
sion of the trajectory that would be obtained by solving the RRE (Equation 6). But
note that the time step τ in the SSA is exact and not a finite approximation to some
infinitesimal dt, as is the time step in a typical ODE solver. If it is found that every
SSA-generated trajectory is practically indistinguishable from the RRE trajectory,
then we may conclude that microscale randomness is ignorable. But if the SSA tra-
jectories are found to deviate significantly from the RRE trajectory, or from each
other, then we must conclude that microscale randomness is not ignorable, and the
deterministic RRE does not provide an accurate description of the system’s true
behavior.

Because the SSA and the CME are each derived without approximation from
the fundamental premise (Equation 2), they are logically equivalent to each other.
But even when the CME is intractable, the SSA is easy to implement; indeed, as
a numerical procedure, the SSA is simpler than most procedures that are used to
numerically solve the RRE (Equation 6). The catch is that the SSA is often very
slow, essentially because it insists on simulating every individual reaction event. The
mathematical reason for this slowness can be traced to the factor 1/a0(x) in Equation
10a, which will be small if any reactant population is large.

To illustrate the foregoing ideas, consider the simple reaction

S
c−−→ Ø. (11)

The propensity function for this reaction is a(x) = c x, and the state-change vector is
ν = −1. The RRE (Equation 6) reads d X/dt = −c X, and the solution to this ODE
for the initial condition X(0) = x0 is

X(t) = x0e−ct(RREsolution). (12)

The CME (Equation 4) reads

∂

dt
P (x, t | x0, 0) = a(x + 1)P (x + 1, t | x0, 0) − a(x)P (x, t | x0, 0).
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X(t)

100

80

S        Ø

60

40

20

0
0 1 2 3 4 5 6 

t

c = 1,  X (0) = 100

Figure 1
Simulating the simple
isomerization reaction
(Equation 11). The thin
light blue line shows the
solution (Equation 12) of
the reaction-rate equation
(RRE). The two dashed
gray lines show the
one-standard-deviation
envelope
〈X(t)〉 ± sdev {X(t)} of
Equations 14a,b as
predicted by the solution of
the chemical master
equation (CME) (Equation
13). The red and blue jagged
curves show the trajectories
produced by two separate
runs of the stochastic
simulation algorithm (SSA).

Because P (x0 + 1, t | x0, 0) ≡ 0, we can solve this equation exactly by successively
putting x = x0, x0 − 1, . . . , 0. The result is

P (x, t | x0, 0) = x0!
x!(x0 − x)!

e−cxt(1 − e−ct)x0−x (x = 0, . . . , x0), (13)

which we recognize as the probability density function for the binomial random
variable with mean and standard deviation

〈X(t)〉 = x0e−ct, (14a)

sdev{X(t)} =
√

x0e−ct(1 − e−ct). (14b)

Note that 〈X(t)〉 is identical to the solution (Equation 12) of the RRE; this will always
be so if all the propensity functions are linear in the populations, but not otherwise.
The SSA for this reaction is simple: In state x at time t, we draw a unit-interval
uniform random number r , increase t by τ = (1/ax) ln(1/r), decrease x by 1, and
then repeat. Figure 1 shows numerical results for c = 1 and x0 = 100.

3. ELABORATIONS ON AND IMPROVEMENTS
TO THE STOCHASTIC SIMULATION ALGORITHM

The version of the SSA described above is the one originally presented in References
8 and 9. A number of earlier works applied similar if not equivalent procedures to
specific model systems (13–19) but paid little attention to developing the supporting
theory. In this section I focus on some later elaborations on and improvements to the
SSA.
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One elaboration of the SSA already noted in Reference 8 is an alternative to the
direct method (Equation 10) for generating values of τ and j . Called the first-reaction
method, it begins by drawing M random numbers r1, . . . , rM from the unit-interval
uniform distribution and computing

τj ′ = 1
aj ′ (x)

ln

(
1
rj ′

)
( j ′ = 1, . . . , M); (15a)

then it takes

τ = the smallest of the {τj ′ }
j = the index of the smallest {τj ′ }

}
. (15b)

Heuristically, τ1, . . . , τM are putative times to the next firings of the respective reaction
channels; however, we accept only the earliest of those and discard the rest. It can be
proved (8) that this procedure, like the direct method, generates values for τ and j
in exact accord with the joint density function (Equation 8). However, if the system
has many reaction channels, this method will be computationally less efficient than
the direct method.

A generalization of the direct and first-reaction methods that includes both as spe-
cial cases is L. Lok’s (unpublished manuscript) first-family method. The M reactions
are partitioned into L families {F1, . . . , FL} and then relabeled so that the Ml reactions
in family Fl are {Rl

1, . . . , Rl
Ml

}. Each family Fl is then viewed as a pseudoreaction with
propensity function al

0(x) ≡ ∑Ml
j = 1 al

j (x). To generate the time τ to the next reaction
event and the index pair (l, j ) that identifies that reaction, we draw L + 1 random
numbers r1, . . . , rL+1 from the uniform distribution in the unit interval. We use the
first L of these to compute

τl ′ = 1
al ′

0 (x)
ln

(
1
rl ′

)
(l ′ = 1, . . . , L); (16a)

then we take
τ = the smallest of the {τl ′ }
l = the index of the smallest {τl ′ }

}
, (16b)

and finally

j = the smallest integer satisfying
j∑

j ′ = 1

al
j ′ (x) > rL+1 al

0(x). (16c)

Heuristically, Equations 16a,b generate the time step τ to, and the index l of, the next
firing family, and Equation 16c then decides which reaction in Fl actually fires. It can
be proved (L. Lok, unpublished manuscript) that this procedure generates values for
τ and j = (l, j ) in exact accord with the joint density function (Equation 8). It reduces
to the direct method if all the reactions are taken to be members of one family, and it
reduces to the first-reaction method if each reaction is taken to be a family unto itself.
For intermediate partitionings, the method may afford bookkeeping advantages when
M is large.

A reformulation of the SSA that, for large N and M, significantly increases its speed
as compared with the direct method is Gibson & Bruck’s (20) next-reaction method.
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Essentially a heavily revised version of the first-reaction method, the next-reaction
method saves the putative next firing times of all reaction channels in an indexed
binary tree priority queue, which is constructed so that the firing time of each parent
node is always earlier than the firing times of its two daughter nodes. The time and
index of the next occurring reaction are therefore always available at the top node of
the queue. The indexing scheme and the binary-tree structure of the queue facilitate
updating the queue as a result of changes caused by occurring reactions. With added
effort, we can even make the next-reaction method consume only one uniform random
number per additional reaction event, in contrast to the two required by the direct
method. Although the next-reaction method can be significantly faster than the direct
method, it is much more challenging to code. For more details, see References 20
and 21.

Lok & Brent (22) have developed a stochastic simulation software package called
Moleculizer that uses a slightly simplified version of the next-reaction method, but
with a unique twist: Reaction channels and species are introduced only when they are
needed, and removed when they are not needed. The target application for Mole-
culizer is the simulation of the pheromone-response mechanism in yeast, a chemical
system that entails a potentially enormous number of species and reaction channels.
Lok showed that, at least when using the SSA, it is not necessary to introduce all
the reactions and species at the beginning of a simulation, and for the yeast system
in particular, a just-in-time introduction of the reactions and species makes feasible
an otherwise infeasible simulation. Lok also observes that this just-in-time strategy
cannot be used with the RRE, which is noteworthy because the RRE too becomes
unwieldy when enormous numbers of species and reaction channels are involved; thus
we have yet another reason for using stochastic simulation instead of deterministic
simulation on biological systems. For further discussion of these points, see Reference
22.

Cao et al. (21) recently introduced a modified direct method that often makes the
direct method competitive in speed with the next-reaction method. These authors
observed that if the reaction channels are indexed so that reactions Rj with larger
propensity functions are assigned lower index values j , then the average number of
terms summed in the computation (Equation 10b) is minimized. The consequent
gain in speed can be significant for systems with many reactions and a wide range of
propensity function values, a common circumstance in biological models. The modi-
fied direct method starts off with a relatively short prerun using the direct method in
which the average sizes of the propensity functions are assessed. Then it reindexes the
reactions accordingly and resumes the simulation, at a usually much-greater speed.
See Reference 21 for details.

McCollum et al. (23) have recently proposed a further improvement on the direct
method in what they call the sorting direct method. Similar to the modified direct
method, the sorting direct method seeks to index the reaction channels in order of
decreasing values of their propensity functions so as to optimize the search in Equation
10b. But the sorting method does this dynamically, and without the need for a prerun,
by using a simple bubble-up tactic: Whenever a reaction channel fires, the index of
the firing channel is interchanged with the index of the next lower indexed channel
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Tau-leaping: an
approximate way of
accelerating the SSA in
which each time step τ

advances the system
through possibly many
reaction events

Leap condition: an
accuracy-assuring
restriction on tau-leaping
that requires τ to be small
enough that no propensity
function changes by a
significant amount

(if there is one). Doing this repeatedly tends to establish the desired index ordering.
This tactic not only eliminates the prerun of the modified direct method, but it also
accommodates any changes in the relative sizes of the propensity functions that might
develop as the simulation proceeds.

H. Li & L.R. Petzold (unpublished manuscript) have recently proposed the log-
arithmic direct method, another novel twist on the direct method. Its strategy is to
collect and store the partial sums of the propensity functions during the computa-
tion of the full sum a0 in Equation 9. The value of j in Equation 10b can then be
found rapidly by conducting a binary search over those partial sums. Although the
logarithmic direct method (24) may not always result in as great a speed gain as the
sorting direct method (23) or the optimized direct method (21), it can avoid a po-
tential accuracy problem that may afflict those other two methods. Arranging the
reaction indices in order of decreasing size of the propensity functions does make
the linear search Equation 10b go faster, but it also makes that search potentially less
accurate; e.g., if we were carrying k decimals in the sum on the left side of Equation
10b and the highest-indexed propensity function happened to be k orders of mag-
nitude smaller than aM, then numerical truncation results in RM never firing at all.
For maximal numerical accuracy in executing Equation 10b, reactions with smaller
propensity functions should be assigned lower index values—just the opposite of what
the modified and sorting direct methods do. The logarithmic direct method is not
susceptible to this problem because it does not depend on any ordering scheme for
the reaction indices; indeed, with the logarithmic direct method, the ordering could
deliberately be arranged to achieve maximum accuracy. It might also be possible to
overcome the inaccuracy problem by using Lok’s first-family method, grouping reac-
tions with very small propensities together into a family F1 and all the other reactions
into a family F2: Most of the time the selection in Equation 16b falls to family F2,
but on those rare occasions when it falls to F1, the subsequent search in Equation
16c is accomplished without involving the larger-valued propensity functions, so no
truncation errors arise.

Improvements to the SSA along the lines described above are certainly beneficial,
but any procedure that simulates every reaction event one at a time, no matter how
efficiently it does that, will simply be too slow for many practical applications. This
prompts us to look for ways to sacrifice some of the exactness of the SSA in return for
greater simulation speed. One way of doing that is to use an approximate simulation
strategy called tau-leaping.

4. TAU-LEAPING: THE BRIDGE
TO THE REACTION-RATE EQUATION

With the system in state x at time t, let us suppose there exists a τ > 0 that satisfies
the following leap condition: During [t, t + τ ), no propensity function is likely to
change its value by a significant amount. With aj(x) remaining essentially constant
during [t, t + τ ), it then follows from the fundamental premise (Equation 2) that the
number of times reaction channel Rj fires in [t, t + τ ) is a Poisson random variable
with mean (and variance) aj(x) τ . Therefore, to the degree that the leap condition is
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Chemical Langevin
equation (CLE): a
differential equation driven
by zero-mean Gaussian
noise that describes
tau-leaping when the
reactant populations are
sufficiently large

satisfied, we can approximately leap the system ahead by a time τ by taking (25, 26)

X(t + τ ) .= x +
M∑

j = 1

Pj(aj(x)τ )νj, (17)

where x = X(t), and Pj(mj) is a statistically independent Poisson random variable with
mean (and variance) mj.

Equation 17 is the basic tau-leaping formula. In the next section below I discuss
how we can use it to perform faster stochastic simulations. But for now, let us suppose
that τ is not only small enough to satisfy the leap condition, but also large enough
that the expected number of firings of each reaction channel Rj during τ is � 1:

aj(x) τ � 1 for all j = 1, . . . , M. (18)

Then, denoting the normal (Gaussian) random variable with mean m and variance σ 2

by N (m, σ 2), and invoking the mathematical fact that a Poisson random variable with
a mean and variance that is �1 can be approximated as a normal random variable
with that same mean and variance, we can further approximate Equation 17 as

X(t + τ ) .= x +
M∑

j = 1

Nj(aj(x)τ, aj(x)τ ) νj = x +
M∑

j = 1

[
aj(x)τ +

√
aj(x)τNj(0, 1)

]
νj.

The last step here invokes the well-known property of the normal random variable
that N (m, σ 2) = m + σN (0, 1). Collecting terms gives us what is known as the chem-
ical Langevin equation (CLE) or Langevin leaping formula (25),

X(t + τ ) .= x +
M∑

j = 1

νjaj(x)τ +
M∑

j = 1

νj

√
aj(x)Nj(0, 1)

√
τ , (19)

where x = X(t), and each Nj(0, 1) is a statistically independent normal random vari-
able with mean 0 and variance 1. Again, this equation is valid only to the extent
that during τ , no propensity function changes its value significantly, yet every reac-
tion channel fires many more times than once. It is usually possible to find a τ that
satisfies these opposing conditions if all the reactant populations are sufficiently large.

In the theory of continuous Markov processes, it can be shown that the CLE
(Equation 19) can also be written in the white-noise form (25, 27)

dX(t)
dt

.=
M∑

j = 1

νj aj(X(t)) +
M∑

j = 1

νj

√
aj(X(t)) �j(t) . (20)

Here the �j(t) are statistically independent Gaussian white-noise processes, satisfying
〈�j(t) �j ′ (t ′)〉 = δjj ′ δ(t−t ′), where the first delta function is Kronecker’s and the second
is Dirac’s. Equation 20 is just another way of writing Equation 19; the two equations
are mathematically equivalent. Equations of the form of Equation 20, with the right
side the sum of a deterministic drift term and a stochastic diffusion term proportional
to Gaussian white noise, are known as Langevin equations or stochastic differential
equations. In most occurrences of Langevin equations in science and engineering
applications, the form of the stochastic diffusion term is postulated ad hoc; here,
however, it has been derived. Continuous Markov process theory also implies that

www.annualreviews.org • Stochastic Simulation of Chemical Kinetics 45

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
7.

58
:3

5-
55

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
on

 0
9/

23
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV308-PC58-02 ARI 21 February 2007 11:10

Thermodynamic limit:
the infinite-population,
infinite-volume,
finite-concentration limit in
which the stochastic CLE
reduces (usually) to the
deterministic RRE

the probability density function P (x, t | x0, t0) of the random variable X(t) in the CLE
Equations 19 and 20 obeys a well-defined partial differential equation called the
chemical Fokker-Planck equation (CFPE). References 25, 27, and 28 give a derivation
and discussion of the CFPE.

The thermodynamic limit is defined as the limit in which the species popula-
tions Xi and the system volume � all approach infinity, but in such a way that the
species concentrations Xi/� stay constant. As this limit is approached, all propensity
functions grow in direct proportion to the size of the system. This is obvious for a uni-
molecular propensity function of the form c jxi; for a bimolecular propensity function
of the form c jxixi ′ , this follows because c j is inversely proportional to �. Therefore, as
the thermodynamic limit is approached, the term on the left side of the CLE (Equa-
tion 20) and the first term on the right side both grow like the system size, whereas
the second term on the right grows more slowly as the square root of the system size.
In the full thermodynamic limit, the last term becomes negligibly small compared
with the other terms, and the CLE (Equation 20) reduces to the RRE (Equation 6).
Thus we have derived the RRE from the fundamental stochastic premise (Equation
2). The approximations made in this derivation are schematized in Figure 2, which
summarizes the theoretical structure of stochastic chemical kinetics (29).

5. THE EXPLICIT TAU-LEAPING
SIMULATION ALGORITHM

The basic tau-leaping formula (Equation 17) suggests an obvious strategy for approx-
imately doing stochastic simulations: In the current state x, we first choose a value
for τ that satisfies the leap condition. Next, we generate for each j a sample kj of the
Poisson random variable with mean aj(x) τ , by using, for example, the numerical pro-
cedure described in Reference 30. (Because the Poisson random numbers k1, . . . , kM

are statistically independent, they could be generated simultaneously on M parallel
processors, which would result in a substantial gain in computational speed.) Finally,
we update the state from x to x + ∑

j kj νj. If the values generated for the kj are suffi-
ciently large, this approximate procedure will be faster than the exact SSA. But several
practical issues need to be resolved to effectively implement this strategy: First, how
can we estimate in advance the largest value of τ that satisfies the leap condition?
Second, how can we ensure that the generated kj-values do not cause some Rj to fire
so many times that the population of some reactant is driven negative? Finally, how
can we arrange it so that tau-leaping segues efficiently to the SSA?

The method originally suggested in Reference 26 for estimating the largest value
of τ that satisfies the leap condition has undergone two successive refinements (31,
32). The latest τ -selection procedure (32) is not only more accurate than the earlier
procedures, but also faster, especially if M is large. It computes the largest value of τ

for which the estimated fractional change �τ aj/aj in each propensity function during
τ is bounded by a user-specified accuracy-control parameter ε (0 < ε 
 1). However,
it does this in an indirect way: It chooses τ so that the estimated fractional change
�τ xi/xi in each reactant population is bounded by an amount εi = εi(ε, xi) (except
that no xi is required to change by an amount less than one), where the functions
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ajdt = probability that R j will fire in next dt

CME

CFPE CLE

RRE

SSA Tau-leaping Discrete and stochastic

Continuous and stochastic

Continuous and deterministic

aj   =  constant during τ, ∀j 

ajτ  >> 1, ∀j 

Xi        ∞,Ω         ∞
Xi /Ω =  consti , ∀i

Figure 2
Logical structure of stochastic chemical kinetics. Everything follows from the fundamental
premise at the top via the laws of probability theory. Inference routes that are exact are shown
by solid arrows. Inference routes that are approximate are shown by dotted arrows, with the
condition justifying the approximation indicated in braces immediately to the right.
Solid-outlined boxes are exact results: the chemical master equation (CME) and the stochastic
simulation algorithm (SSA). Dashed-outlined boxes are approximate results: the tau-leaping
formula, the chemical Langevin equation (CLE), the chemical Fokker-Planck equation
(CFPE), and the reaction-rate equation (RRE). The condition justifying the arguments leading
from the fundamental premise to tau-leaping is called the leap condition, and the condition
justifying the arguments leading from the CLE to the RRE is called the thermodynamic limit.

εi have been chosen so that �τ aj/aj for every j is then bounded by the stipulated
amount ε. As is shown in Reference 32, the algebraic forms of the functions εi(ε, xi)
that accomplish this are quite simple, and they can easily be inferred by inspection at
the outset of the simulation. Enforcing the bound

|�τ xi| ≤ max {εixi,1} (21)

is accomplished by first noting from the basic tau-leaping formula (Equation 17) that

�τ xi
.=

∑
j
Pj(ajτ )νij.

Because the statistically independent Poisson random variables Pj(ajτ ) have means
and variances ajτ , the means and variances of �τ xi are

〈�τ xi〉 .=
∑

j
νij(ajτ ), var {�τ xi} .=

∑
j
ν2

ij (ajτ ). (22)

www.annualreviews.org • Stochastic Simulation of Chemical Kinetics 47

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
7.

58
:3

5-
55

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
on

 0
9/

23
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV308-PC58-02 ARI 21 February 2007 11:10

Condition 21 is deemed to be adequately fulfilled if it is satisfied by both 〈�τ xi〉 and√
var{�τ xi}. The resulting set of inequalities yields an efficient, explicit formula for

the largest permissible value of τ (32).
As for keeping the generated random numbers kj from driving the Rj reactant

populations negative, several strategies have been proposed. Tian & Burrage (33)—
and, independently, Chatterjee et al. (34)—proposed approximating the unbounded
Poisson random numbers kj with bounded binomial random numbers. But it turns
out that it is usually not the unboundedness of the Poisson kj’s that produces negative
populations, but rather the lack of coordination in tau-leaping between different
reaction channels that separately decrease the population of a common species. Cao
et al. (35) have proposed a different approach that resolves this difficulty and also
establishes a smooth connection with the SSA. In their approach, we first identify as
critical all those reactions with nonzero propensities that are currently within nc firings
of exhausting one of its reactants, nc being a user-specified integer. All other reactions
are called noncritical. The noncritical reactions are handled by the regular Poisson
tau-leaping method, and a maximum leap time τ ′ is computed for them using the
procedure described in the preceding paragraph. For the critical reactions, we use
the direct method formulas Equations 10a,b to estimate the time τ ′′ to, and index jc of,
the next critical reaction. The actual time step τ is then taken to be the smaller of τ ′ and
τ ′′; if the former, no critical reaction fires, and if the latter, only one critical reaction
(Rjc ) fires. Because the total number of critical reactions firing during τ is never greater
than one, it is impossible for any critical reaction to drive any population negative.

If nc is taken so large that every reaction becomes critical, the foregoing procedure
reduces to the exact SSA. This is fortunate because although tau-leaping theoretically
becomes exact (and hence equivalent to the SSA) as τ → 0, it also becomes grossly
inefficient in that limit. This is because when τ is small, the Poisson random numbers
kj =Pj(ajτ ) usually all are zero, resulting in a small tau-leap with no reactions firing.
It is not efficient to do tau-leaping when τ is less than a few multiples of 1/a0(x), the
expected next time step in the SSA. But by using a reasonable value for nc (e.g., between
5 and 50), along with a reasonable value of ε (e.g., between 0.01 and 0.06), large leaps
are taken whenever possible, and a gradual transition to the SSA occurs automatically
as needed for accuracy. Finally, if we write the code for generating a Poisson random
number with mean (and variance) m so that when m � 1, it generates instead a normal
random number with mean and variance m, then a smooth transition from tau-leaping
to the more computationally efficient Langevin leaping will occur automatically.

Reference 32 gives a more detailed description of the current explicit tau-leaping
procedure. Tests indicate that for many systems in which the molecular populations
of at least some of the reactant species are large, it produces significantly faster sim-
ulations than the SSA with only a slight loss of accuracy.

6. SIMULATING STIFF SYSTEMS

A system of ODEs is said to be stiff if is characterized by well-separated fast and slow
dynamical modes, the fastest of which is stable. The solution space of a stiff ODE has
a slow manifold, on which the state point moves slowly, and off which the state point
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Slow-scale SSA (ssSSA):
an approximation to the
SSA for systems with fast
and slow reactions in which
only the latter are explicitly
simulated

moves rapidly toward the slow manifold. Researchers have devoted much effort over
the years to understanding and overcoming the computational problems posed by
stiff ODEs (36) because such equations arise in many practical contexts. Stiff RREs
in particular are quite commonplace.

Stiffness is just as computationally troublesome in the stochastic context. When
the SSA simulates a stiff system, it moves along as usual, one reaction at a time,
oblivious to the stiffness. But because the great majority of the reactions are the
usually uninteresting fast ones, the simulation proceeds slowly from a practical point
of view. The explicit tau-leaping algorithm also performs as advertised on stiff systems.
But because the τ -selection procedure that keeps the algorithm accurate restricts τ

to the timescale of the system’s fastest mode, then even those leaps seem frustratingly
small. I conclude by describing two recently developed strategies for simulating stiff
chemical systems: the implicit tau-leaping algorithm and the slow-scale SSA (ssSSA).

6.1. The Implicit Tau-Leaping Algorithm

A well-known strategy for numerically solving a stiff ODE d x/dt = f (x) is to replace
the explicit updating formula xt+�t = xt + f (xt)�t with an implicit formula, such as
xt+�t = xt + f (xt + �t)�t (36). The latter equation of course has to be solved to obtain
xt+�t at each time step. But even when that can only be done numerically (Newton
iteration is usually used), the extra effort is usually more than compensated by the
ability to use much-larger values of �t for the same degree of accuracy.

The tau-leaping formula (Equation 17), where x = X(t), is obviously an explicit
updating formula. To make it implicit by replacing x in the argument of the Poisson
random variable with X(t+τ ), however, raises some serious questions in the context of
Markov process theory, where updates are supposed to be past-forgetting; moreover,
even if that replacement could be justified theoretically, there appears to be no way to
solve the resulting equation for X(t + τ ). Rathinam et al. (37) have proposed a partial
implicitization, in the following implicit tau-leaping formula:

X(t + τ ) .= x +
M∑

j = 1

[Pj(aj(x)τ ) − aj(x)τ + aj(X(t + τ ))τ ]νj. (23)

In this formula, the mean of the Poisson random variable Pj(aj(x)τ ) is subtracted
out and replaced by its value at the later time t + τ , but the variance has been left
unchanged. The advantage of this formula is that, once the Poisson random numbers
have been generated using the current state x, the equation can then be solved for
X(t + τ ) using the same (deterministic) numerical techniques developed for implicit
ODE solvers (36). Noninteger values for the components of X(t+τ ) can be avoided by
rounding the quantity in brackets in Equation 23 to the nearest nonnegative integer
and then recomputing X(t + τ ) directly from Equation 23 (37).

Tests of this implicit tau-leaping strategy show that it produces significantly faster
simulations than the explicit tau-leaping formula (Equation 17) for stiff systems,
but with one major qualification: Formula 23 excessively damps the fluctuations in
the fast components of X(t). Rapid fluctuations of the state point transverse to the
slow manifold naturally occur in a stochastically evolving system, as can be seen in
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simulations made with the exact SSA. But Equation 23 suppresses these fluctuations.
However, we can restore the properly fluctuating fast variables whenever desired by
taking a succession of much shorter explicit tau-leaps or SSA steps, a tactic called
downshifting. For more details, see Reference 37.

Cao & Petzold (38) subsequently proposed a trapezoidal implicit tau-leaping for-
mula, which has the same form as Equation 23 except that a factor of 1/2 appears in
front of each of the last two terms in the brackets. Tests suggest that the trapezoidal
formula often gives more accurate results than Equation 23 for a given value of τ .

6.2. The Slow-Scale Stochastic Simulation Algorithm

A different approach to stochastically simulating stiff chemical systems is one that
was inspired by the well-known Michaelis-Menten approximation in deterministic
chemical kinetics (39). Several different ways of realizing this approach have been
proposed (40–48), but all are rooted in the same basic idea of eliminating the fast
entities through a kind of quasi-steady-state approximation (41). Arguably the clearest
articulation of this approach, at least as regards its theoretical justification within
stochastic chemical kinetics, is the ssSSA of References 42 and 45.

The ssSSA proceeds in a series of steps, the first of which is to make a provisional
partitioning of the reaction channels R = {R1, . . . , RM} into fast and slow subsets,
Rf and Rs. Assigned to Rf are those reactions whose propensity functions tend to
have the largest values. All the other reactions are assigned to Rs. If it is not obvious
how to make this partitioning, then it may be that the system is not really stiff, and
therefore not a candidate for the ssSSA. In any case, this provisional partitioning of
the reactions will later be subjected to an acceptance test.

The second step is to partition the species S = {S1, . . . , SN} into fast and slow
subsets, Sf and Sf, according to the following rule: Any species whose population gets
changed by a fast reaction is classified as a fast species; all other species (if there are
any) are classified as slow. This rule induces a partitioning of the process X(t) into a
fast process Xf(t) and a slow process Xs(t). Note the subtle but important asymmetry
that a fast species can get changed by a slow reaction, but a slow species cannot get
changed by a fast reaction.

The third step defines the virtual fast process X̂f(t) as the fast species popu-
lations evolving under only the fast reactions Rf; i.e., X̂f(t) is Xf(t) with all the
slow reactions switched off. The virtual fast process X̂f(t) is a Markov process,
whereas the real fast process Xf(t) is generally non-Markovian, and hence practically
intractable.

Next we require that two stochastic stiffness conditions be satisfied: First, X̂f(t)
must be stable, in that it approaches as t → ∞ a well-defined time-independent ran-
dom variable X̂f(∞). This is the counterpart to the deterministic stiffness requirement
that the fastest dynamical mode be stable. Second, the approach X̂f(t) → X̂f(∞) must
be effectively accomplished in a time that is small compared with the expected time
to the next slow reaction. This is a more precise specification of the degree of sepa-
ration that must exist between the timescales of the fast and slow reactions. If we find
these two stiffness conditions are satisfied, then our original classification of the fast
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reactions is deemed acceptable; otherwise we must try another set of fast reactions,
or else we must conclude that the system is not really stiff, and the ssSSA cannot be
applied.

With the stochastic stiffness conditions satisfied, we now invoke the slow-scale
approximation—a result that can be mathematically derived from the fundamental
premise (Equation 2) (42). The slow-scale approximation states, in essence, that we
can ignore the fast reactions and simulate the system one slow reaction at a time,
provided we replace the propensity function of each slow reaction by its average with
respect to the asymptotic virtual fast process X̂f(∞). More precisely, if P̂ (yf, ∞ | xf, xs)
is the probability that X̂f(∞) = yf given that X(t) = (xf, xs), then the propensity func-
tion a s

j (x
f, xs) of each slow reaction Rs

j at time t can be approximated on the timescale
of the slow reactions by

ā s
j (x

f, xs) ≡
∑

yf

P̂ (yf, ∞ | xf, xs) a s
j (y

f, xs). (24)

The ssSSA thus proceeds by simulating, in the manner of the SSA, the slow reactions
using the propensity functions (Equation 24) and ignoring the fast reactions. We can
exhibit the populations of the fast species whenever desired by Monte Carlo sampling
the probability function P̂ .

The approaches of References 43, 44, 47 and 48 differ from the ssSSA approach
described above in the way the averages (Equation 24) are computed and the way in
which the fast-species populations are generated. All rely on making relatively short
SSA runs of the virtual fast process between the slow reactions.

Although the ssSSA can be challenging to implement, it has been successfully
applied to a number of simple stiff systems (42), as well as the prototypical Michaelis-
Menten system (45) that is so ubiquitous in enzymatic reactions. These applications
showed increases in simulation speed over the exact SSA of two to three orders of
magnitude with no perceptible loss of simulation accuracy.

7. OUTLOOK

The robustness and efficiency of both the SSA and the explicit tau-leaping algorithm
have been considerably improved in the past few years, and those procedures seem
to be nearing maturity. However, there is still room for improvement on the stiffness
problem. Such improvement may come in the form of refinements to the implicit
tau-leaping procedure and the ssSSA, and a clarification of the theoretical connection
between those two approaches for dealing with stiff systems. Also needed are robust,
adaptive strategies for deciding during a simulation when to use which simulation
method. There is also a need for a better understanding of several foundational
issues, such as how the reaction constants c j are to be derived in the context of
diffusional kinetics, and what are the effects of the molecular-crowding conditions
usually present in living cells. Finally, the problem of how best to simulate systems that
are not well stirred, a problem that is not addressed in this review, holds a great many
challenges.
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SUMMARY POINTS

1. The SSA is a procedure for numerically simulating well-stirred chemically
reacting systems by stepping in time to successive molecular reaction events
in exact accord with the premises of the CME.

2. The ability of the SSA to take proper account of the discrete, stochastic na-
ture of chemical reactions makes it better suited to cellular chemical kinetics
than the traditional RRE because in cellular systems the small numbers of
molecules of some key reactants can amplify the effects of discreteness and
randomness.

3. Because the SSA simulates every successive molecular reaction event that
occurs in the system, it is often too slow for practical simulation of realistic
cellular systems.

4. An approximate speedup to the SSA is provided by tau-leaping, in which
time is advanced by a preselected amount τ and the numbers of firings of the
individual reaction channels are approximated by Poisson random numbers.

5. If the expected number of firings of each reaction channel during a tau-leap is
much greater than one, the Poisson random numbers are well approximated
by normal random numbers, and the result is equivalent to a Langevin-type
equation called the CLE.

6. In the thermodynamic (macroscopic) limit, the noise terms in the CLE
become negligibly small and the CLE reduces to the conventional RRE,
thereby establishing deterministic chemical kinetics in the context of
stochastic chemical kinetics.

7. For stiff systems—which evolve on both fast and slow timescales with the
fastest modes being stable—accuracy in tau-leaping requires τ to be small
on the fastest timescale, which makes even tau-leaping seem too slow.

8. Two acceleration procedures for stiff systems are implicit tau-leaping, which
mirrors the implicit Euler method in ODE theory, and the ssSSA, in which
the fast reactions are skipped over and only the slow reactions are directly
simulated using specially modified propensity functions.
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