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Abstract
The nonlinear dynamics of biochemical reactions in a small-sized system on the
order of a cell are stochastic. Assuming spatial homogeneity, the populations
of n molecular species follow a multi-dimensional birth-and-death process on
Z

n. We introduce the Delbrück–Gillespie process, a continuous-time Markov
jump process, whose Kolmogorov forward equation has been known as the
chemical master equation, and whose stochastic trajectories can be computed
via the Gillespie algorithm. Using simple models, we illustrate that a system of
nonlinear ordinary differential equations on R

n emerges in the infinite system
size limit. For finite system size, transitions among multiple attractors of the
nonlinear dynamical system are rare events with exponentially long transit
times. There is a separation of time scales between the deterministic ODEs
and the stochastic Markov jumps between attractors. No diffusion process can
provide a global representation that is accurate on both short and long time
scales for the nonlinear, stochastic population dynamics. On the short time
scale and near deterministic stable fixed points, Ornstein–Uhlenbeck Gaussian
processes give linear stochastic dynamics that exhibit time-irreversible circular
motion for open, driven chemical systems. Extending this individual stochastic
behaviour-based nonlinear population theory of molecular species to other
biological systems is discussed.
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1. Introduction

Recent studies of biochemical reaction systems in a mesoscopic volume such as a cell have
firmly established the chemical master equation (CME) as the basis of an analytical theory
for cellular dynamics [1–7]. A system’s volume V is a natural parameter in the theory: an
ideal elementary chemical reaction A + B → C has a rate constant k with the dimension of
[Time]−1×[Concentration]−1. In the CME, the probability of this reaction occurring in an
infinitesimal�t is the dimensionless k(nAnB/V )(�t), when there are nA and nB molecules of
types A and B, respectively. With increasing system size, V , the stochastic dynamics predicted
by a CME has been mathematically shown to approach the deterministic solution of the kinetic
differential equations based on the law of mass action for homogeneous chemical reactions [8].
The CME, therefore, ‘is not an alternative to the deterministic kinetics, it is a more complete
kinetic description which is capable of modelling reactions with and without fluctuations’, for
systems with small and large V [9].

In this review, I would like to take this new perspective a step further. A great many
nonlinear systems of ordinary differential equations (ODEs) one studies describe dynamics
of populations of one type or another. Examples include molecular species in biochemical
reactions, cell and virus populations in immunology, human populations in demography and
biological species in ecology. At the mechanistic level, all these dynamics are concerned with
birth and death of individuals whose basic unit is 1. Therefore, every such dynamic model
based on a nonlinear deterministic ODE system has a corresponding stochastic counterpart
based on a birth-and-death process (BDP). If a nonlinear ODE system is defined on R

n, the
corresponding BDP is defined on Z

n. First-order ODEs correspond to Markov jump processes
with continuous time [10, 11].

Ever since the work of Einstein, Smoluchowski, Langevin, and Kramers, stochastic
differential equations (SDEs), also known as diffusion processes by probabilists [12], have
always been considered as the stochastic counterpart of ODEs [13, 14]. However, as anyone
who has developed an SDEmodel for an applied problem knows, the choice for the coefficient
Γ(x) in an SDE dx(t) = b(x) dt + Γ(x) dW (t) is almost always rather arbitrary. (The
only exception is the guiding principle for fluctuating equilibrium dynamics based on the
fluctuation–dissipation theory which we shall discuss later.) A BDP, however as we shall see,
provides a rather complete stochastic description for the dynamics from mechanisms based on
statistics of an individual’s behaviour. There is no artificial separation of the deterministic b(x)

and stochasticΓ(x)W (t) as in aSDE. (See section 7.3. This is called ‘intrinsic noise’ in cellular
biochemistry.) Evenmore important, aswe shall discuss in section 4.4, is the ‘diffusion theory’s
dilemma’ that invalidates the diffusion-model approach to nonlinear stochastic population
dynamics.

TheBDP theory provides further insights into the theory of nonlinear population dynamics
extensively studied since the 1970s. There is a fundamental concept that does not exist in
the theory of deterministic nonlinear dynamics, the concept of ‘rare events’: something that
occurs with a very small probability, but on an evolutionarily long time scale, it will occur
with probability one! We have recently argued that [15] this emergent stochastic transition
among different attractors, on the time scale beyond the infinity of the deterministic dynamics,
is one of the origins of ‘complexity’ [5]. It is these dynamics that exhibit ‘dynamic symmetry
breaking’ [16] and ‘singular points’ at which the dynamics are truly unpredictable [17], giving
rise to complex dynamics with high information content [16].

It is safe to say that statistical inference is currently one of the key approaches to
complex systems and their dynamics. Bioinformatics and statistical genomics are dominant
applied mathematics in cellular molecular biology. The above nonlinear stochastic dynamic
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Figure 1. A pictorial introduction of the Kramers’ barrier crossing problem in nonlinear, stochastic
dynamics. Deterministic dynamics always go ‘downhill’ toward lower values of E(x). Therefore,
any dynamics with initial positive x(0) < x∗

3 will end at x
∗
1 , and with x(0) > x∗

3 will end at x
∗
2 .

After reaching a stable fixed point, x∗
1 or x∗

2 , there will be no possibility of leaving. However,
with stochastic elements in the dynamics, there are possibilities to go ‘uphill.’ With exceptional
luck, continuous uphill movement leads to a transition between the two domains of attraction.
Exceptional luck means the barrier crossings occur only on an extremely long time scale. x∗

3
has been called the ‘singular point’ by James Clerk Maxwell since ‘influences whose physical
magnitude is too small to be taken account of by a finite being, may produce results of the greatest
importance’ [17].

perspective, however, clearly suggests that statistical approaches, while they can be powerful
in representing data with statistical significance, cannot be useful in understanding the
rare events. In fact, the very existence of multistabilities, i.e. alternative attractors,
cannot be inferred from ‘normal’ statistical data. Mechanistic deterministic models can
predict the existence of alternative attractors. Mechanistic stochastic models can further
estimate the lifetime of an attractor. The actual time of the rare transition, however,
is a random variable with exponential distribution, which is memoryless in defiance of
causality.

Proving global asymptotic stability of a dynamical system, of course, has always been
the ultimate goal of engineering. However, with increasing complexities, this becomes a
less and less feasible task even in traditional engineering. On the other hand, one of the
best understood ‘rare events’ is discrete chemical reactions in terms of Kramers’ theory [18].
Recently in [19] we have shown that the nonlinear bifurcation theory of Thom–Zeeman’s
catastrophe, the phase transition theory from statistical mechanics, and Kramers’ theory of
barrier crossing (also known as decay of metastable states [20, 21]) are three different aspects
(e.g. deterministic, steady state and kinetic) of a rare event. All these classical theories are
called for in BDP dynamics.

Figure 1 shows the canonical pictorial introduction of the problem of ‘barrier crossing’ as
a rare event. From a deterministic nonlinear dynamics standpoint, this system has three fixed
points, two stable (x∗

1 and x∗
2 represented by the filled circles) and one unstable (x

∗
3 represented

by the open circle). Barrier crossing requires movement against the deterministic force (shown
by the arrows) which are low probability events. However, it is the cumulation of these unlikely
events that leads to ‘spectacular’ or ‘disastrous’ phenomena in complex, stochastic nonlinear
dynamical systems.

Our discussion of the nonlinear stochastic dynamics of biochemical reactions is organized
in this paper as follows.
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In section 2, using a simple example from mesoscopic chemical reaction systems, we
introduce the ‘bottom-up’ approach to stochastic population dynamics based on mechanisms
at the individual’s level. The example illustrates how nonlinear, bistable behaviour emerges
from such a dynamical model. The analysis of stochastic dynamics gives rise to the concept
of multiple time scales.

Section 3 provides a systematic treatment of the Ornstein–Uhlenbeck Gaussian process
as the linear stochastic process near a fixed point of a dynamical system. In a nutshell,
the stability, i.e. hyperbolicity, of a fixed point is determined by the stationary probability
distribution f st(x), and the type of a fixed point, i.e. node versus focus, etc, is determined by
the stationary, divergence-free circulation jst(x).

Section 4 presents the widely practiced ‘top-down’ approach based on SDEs and related
diffusion processes. We suggest, however, that when approximating the large, but not infinite,
population limit of a BDP with bistability, diffusion theory encounters a dilemma. It can
provide a faithful representation for either the stationary behaviour or the fluctuating ‘downhill’
dynamics, but not both. We further illustrate the intimate relation of this problem to several
other issues: the Keizer’s paradox [22], Kurtz’s convergence theorem with finite time [8], and
van Kampen’s conditional diffusion equation [23, 24].

Section 5 gives a brief discussion of two types of bistability in a mesoscopic chemical
reaction system: that with amacroscopic, deterministic nonlinear counterpart, and that without.
It is shown that their difference can be understood from the volume dependence of the transition
rates between the two attractors.

In section 6, we show how insights from studying stochastic, nonlinear chemical reaction
systems can be useful to the studies of other population dynamics. We try to establish some
kinetic isomorphism between chemical dynamics and ecological dynamics.

Section 7 concludes the paper with some discussions and outlooks.
In the appendices, we have given some details of the mathematical results used in the main

text. Much of this material is not found in the literature.

2. Nonlinear stochastic population dynamics: the individual-based approach

In this section, we present the theoretical development of stochastic models for nonlinear
chemical reaction dynamics. The approach here is ‘bottom-up’ since we use an individual’s
stochastic behaviour as the starting point, considering one individual molecule at a time.
As we shall see, this approach is in sharp contrast to the ‘top-down’ approach of
section 4.

The approach we advance is general for any chemical and biochemical reaction system.
However, we shall not present the theory in its most general form that often obscures the
insights. Rather, we shall use a simple example to illustrate the theoretical approach. Let us
consider the biochemical reaction system given by

A + 2X
α1�
α2
3X and X

β1�
β2

B. (1)

This nonlinear chemical reaction system is known as the Schlögl model [25, 26]. The
autocatalytic step in fact is widely observed in cellular biochemistry such as Src family kinase
signalling, Rabaptin-5 mediated Rab5 GTPase activation in endocytosis, Xenopus oocyte
maturation via a mitogen-activated protein kinase (MAPK) pathway, and self-regulating gene
networks [4, 5, 27, 28].
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2.1. Analysis of the deterministic dynamics

According to the law of mass action [29, 30], the nonlinear differential equation for x(t), the
concentration of the molecular species X in (1), is [19, 26, 31, 32]

dx

dt
= β2b − β1x + α1ax2 − α2x

3, (2)

where a and b represent the concentrations of chemical species A and B, which are assumed
to be sustained at constant values. Any biochemical system in living organisms has to have
at least one ‘source’ and one ‘sink’ species. This feature has been called an open driven
chemical system. A system in contact with only a single material reservoir is called grand
canonical system according to Gibbs [33, 34]. The latter necessarily approaches a ‘dead’
chemical equilibrium.

Non-dimensionalizing equation (2) with new variables and parameters

z = β1x

β2b
, τ = β1t, σ = α2 (β2b)2

β31
, γ = aα1β1

α2β2b
, (3)

we have
dz

dτ
= 1− z + σ

(
γ z2 − z3

) = f (z). (4)

It is easy to show that for a wide range of parameter values, f (z) = 0 has three positive roots,
corresponding to dz

dτ = f (z) having two stable fixed points and one unstable fixed point. See
figure 2(a).

Equation (4) exhibits bistability when the parameter pair (σ, γ ) is in the region bound by
the curve in parametric form with

σ = z − 2
z3

and γ = (2z − 3)z
z − 2 . (5)

Figure 2(b) shows that the region in which bistability exists has a cusp at σ = 1
27 , γ = 9.

The nonlinear dynamics exhibits the canonical saddle-node bifurcation and Thom–Zeeman’s
catastrophe [29].

2.2. The CME and stochastic models

There are four elementary reactions in system (1). In an aqueous solution, the occurrence
of a reaction is a random event with exponentially distributed waiting time. The stochastic
dynamics of the number of molecule X, n(t), therefore, is a one-dimensional BDP. As a
continuous-time Markov process, the BDP has its Kolmogorov forward equation, the CME,
in the form [7, 26]

d

dt
p(n, t) = p(n − 1, t)μn−1 − p(n, t) (μn + λn) + p(n + 1, t)λn+1, (6)

in which

μn(V ) = α1an(n − 1)
V

+ β2bV and λn(V ) = α2n(n − 1)(n − 2)
V 2

+ β1n, (7)

are the birth and death rates of the process. Note both are functions of the system’s size V .
For this simple system, it is not difficult to show heuristically that in the limit of V → ∞

and n → ∞, but n/V → x, the stochastic dynamics following the BDP becomes the solution
to the ODE

dx

dt
= μ(x) − λ(x), (8)
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Figure 2. Nonlinear chemical reaction system (1) can exhibit bistability. (a) Fixed points of
the ODE in equation (4), z∗, are obtained from f (z) = 0, as a function of σ with λ = 20:
σ = (z∗ − 1)/(γ − z∗)/z∗2. (b) The region of parameter space (σ, λ) in which the ODE is bistable
has a cusp at σ = 1

27 , γ = 9. In the statistical physics theory of phase transition, the cusp is also
known as a critical point [19].

with

μ(x) = lim
n→∞

μn(n/x)

n/x
= α1ax2 + β2b and λ(x) = lim

n→∞
λn(n/x)

n/x
= α2x

3 + β1x.

Equation (8) is exactly equation (2). See [8] for a rigorous, general proof of the important
limit theorem that connects the BDP following the CME and the ODE according to the law of
mass action. Also see [35] for an alternative proof.

Because the problem is one-dimensional, the stationary probability distribution to
equation (6) is readily obtained:

pst(n; V ) = pst(0)
n∏

k=1

μk−1(V )

λk(V )
, (9)

where pst(0) is determined by normalization of the probability distribution.
The distribution (9) has several important properties:

(i) Its extrema are located at n∗ where μn∗−1 = λn∗ . An extreme corresponds to, therefore, a
fixed point of the ODE, where μ(x) = λ(x).

(ii) One can obtain an asymptotic expansion when V, n → ∞ and n/V → x:

pst(n; V ) −→ f st(x; V ) = e−V φ(x), where φ(x) =
∫ x

0
ln

[
λ(v)

μ(v)

]
dv. (10)

Note that when V → ∞, the f st(x, V ) converges to the global minimum of φ(x).
(iii) The function φ(x) is a Lyapunov function for the ODE (8):

dφ(x(t))

dt
= dφ(x)

dx

dx

dt
= {μ(x) − λ(x)} ln

(
λ(x)

μ(x)

)
� 0. (11)

The rhs is equal to zero iff μ(x) = λ(x). While this result might not be too surprising
in the case of one-dimensional dynamics, differentiable φ(x) can be obtained for many
higher dimensional chemical reaction systems without detailed balance. φ(x), known as
the large deviation rate function in the theory of probability, is a Lyapunov function for
the ODEs from the mass-action law! [36, 37]
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For the non-dimensionalized Schlögl model, one has

φ(z) =
∫ z

0
ln

(σu2 + 1)u

σγ u2 + 1
du = z ln

(σz2 + 1)z

σγ z2 + 1
+
2√
σ
arctan

(√
σz
)

− 2√
σγ

arctan
(√

σγ z
)− z. (12)

(iv) The two basins of attraction should be understood as two states of the chemical reaction
system (1). They are the ‘emergent properties’ of the stochastic nonlinear population
dynamics. For a given system, one could be in one of the states for a very long time. Still,
the elementary operations at the individual level dictate the existence of the other state.
This is a perspective that one cannot gain from pure statistical inference.

While the ODE predicts the existence of bistability, it cannot provide an estimation for
the stability of the states. The stability can be obtained from the BDP by computing the
mean first passage times (MFPTs). For the simple one-dimensional system, let n∗

1 and n∗
2

be the two peak positions and n∗
3 the trough position of p

st(n), then [24]

Tn∗
1→n∗

2
=

n∗
1∑

n=0

n∑
m=n∗

1+1

pst(n)

λmpst(m)
+

n∗
2−1∑

n=n∗
1+1

n∗
2∑

m=n+1

pst(n)

λmpst(m)
. (13)

In the case of V → ∞, equation (13) becomes (appendix B.2)

Tx∗
1→x∗

2
≈ 2πeV (φ(x∗

3 )−φ(x∗
1 ))

λ(x∗
3 )
√−φ

′′
(x∗
1 )φ

′′
(x∗
3 )

. (14)

This time grows exponentially with system size V . Transitions between the two domains
of attraction (DoA) are rare events.

(v) A comprehensive theory emerges from analysing this simple model. There are three
different time scales in the nonlinear, stochastic population dynamics: (1) the time scale
of individual reactions, the α’s and β’s, which we call the molecular signalling time scale
tms in the context of cellular biochemistry, (2) the time scale of nonlinear network dynamics
tnd and (3) the time scale on which the transitions between the DoA occurs, i.e. Tx∗

1→x∗
2

and Tx∗
2→x∗

1
, which we call cellular evolution tce. In nonlinear deterministic dynamics, a

long time means t � tnd but it is still	 tce. On this time scale, a system settles into one
attractor depending on the initial state. However, on the time scale t � tce, the system
will establish a probability distribution between the two DoA.

(vi) There is a great separation of time scales between tnd and tce for a system with large
populations. In this case, on the time scale � tnd but 	 tce, the system’s behaviour
is captured by a bifurcation diagram, such as that in figure 2(a). However, on the time
scale � tce, the stationary probability distribution given in equation (10) shows that the
global minimum of φ(x) will have probability of almost 1, while other minimum will
have only probability ∝ e−cV where c is a positive constant. Therefore, for large systems
with t � tce, the bifurcation diagram in figure 2(a) has to be modified by the Maxwell
construction [19, 32]. This is the subject of phase transition theory in statisticalmechanics.

3. Ornstein–Uhlenbeck processes: linear analysis of stochastic dynamics

One very useful method for analysing nonlinear dynamical systems is the local, linear analysis
of fixed points. For nonlinear stochastic dynamics, the corresponding linear analysis is the
theory of Gaussian–Markov processes, also known as Ornstein–Uhlenbeck processes. The
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subject has been extensively studied by physicists such as Einstein, Chandrasekhar, Ornstein–
Uhlenbeck–Wang, Onsager–Machlup, Lax, Keizer, Fox, and many others [13, 38, 40, 41].
Recent work has paid particular attention to the issue of time irreversibility and the breakdown
of detailed balance in Gaussian processes [42, 43].

We consider linear SDE in the vector form

dx(t) = Bx(t) dt + Γ dW (t), (15)

in whichB andΓ are n×n constant matrices and x andW are n-dimensional column vectors.
W (t) contains n independent standard Brownian motions.

SDE (15) can be analysed by using several different methods, including the direct method

x(t) = eBt

(
x(0) +

∫ t

0
e−BsΓ dW (s)

)
, (16)

and the Fourier transform method

− iωx̃(ω) = Bx̃(ω) + Γ̃ξ(ω), (17)

in which

x(t) =
∫ ∞

−∞
x̃(ω)e−iωt dω and

dW (t)

dt
=
∫ ∞

−∞
ξ̃(ω)e−iωt dω. (18)

The Fourier transform of independent white noise satisfies〈
ξ̃

∗
(ω)̃ξ

T
(ω)
〉 = I, (19)

the identity matrix, where 〈· · ·〉 is the ensemble average.
The stationary x(t) has a multivariate Gaussian distribution

f st(x) = 1

(2π)n/2 det
1
2 (Ξ)

exp

(
−1
2
xTΞ−1x

)
(20)

in which the symmetric matrix Ξ is the covariant matrix satisfying the Lyapunov matrix
equation [44]

BΞ + ΞBT = −A with A = ΓΓT. (21)

3.1. Power spectrum of a stationary OU process with circulation

A stationary x(t) has not only a distribution, given in equation (20), but also temporal
correlation. One way to characterize the temporal dynamics is by the power spectrum. From
equation (17) we have [45]

x̃∗(ω) = [iωI − B]−1 Γ̃ξ
∗
(ω) and x̃T(ω) = −ξ̃

T
(ω)ΓT [iωI +B]−T . (22)

Thus, we have the power spectra for a multi-dimensional, stationary OU process

Θ(ω) �
〈
ξ̃

∗
(ω)̃ξ

T
(ω)
〉 = − [iωI − B]−1 A [iωI +B]−T . (23)

In other words,

Θ−1(ω) = BTA−1B + ω2A−1︸ ︷︷ ︸
symmetric

+iω
(
A−1B − BT A−1)︸ ︷︷ ︸

anti-symmetric

. (24)

In [42], it was shown that a stationary OU process is time-reversible iffA−1B = BTA−1,
and furthermore Ξ = 1

2B
−1A. Therefore, a time-reversible OU process has

Θ(ω) = [B2 + ω2I
]−1

A. (25)
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We see that, in this case, the power spectraΘ(ω) is a real symmetricmatrix and has a Lorentzian
form with its peak located at ω = 0 [46, 47].

When A−1B 
= BTA−1, the anti-symmetric term in equation (24) indicates that the
stationary x(t) has a circular motion [48]. This circular motion can be best illustrated by
considering the stationary Fokker–Planck equation (FPE) for the SDE (15):

∂f (x)

∂t
= ∇ ·

(
1

2
A∇f (x) − Bxf (x)

)
= 0. (26)

Integrating equation (26) once,

1
2A∇f st(x) − Bxf st(x) = −jst(x) with ∇ · jst(x) = 0. (27)

This can be rewritten as

1
2∇ ln f st(x) − A−1Bx = −A−1jst(x)f −1(x). (28)

Symmetry,A−1B = BTA−1, meansA−1Bx is a gradient force. Then by the uniqueness
of the solution to the linear elliptic equation, jst = 0 and ln f st(x) = xTA−1Bx+const. That
is 2Ξ = B−1A.

IfA−1B 
= BTA−1, then jst 
= 0. In fact,

jst(x) = (B + 1
2AΞ−1)xf st(x). (29)

The divergence-free jst(x) represents certain circular motion, which occurs only when a vector
field is non-gradient.

It is easy to verify that the jst(x) and ∇ ln f st(x) are orthogonal to each other [43]:

∇ ln f st(x) · jst(x) = xTΞ−1 (B + 1
2AΞ−1)xf st(x)

= 1
2x

T
(
Ξ−1B − BTΞ−1)xf st(x) = 0. (30)

3.2. The Green–Kubo–Zwanzig relation

Because the SDE in (15) is linear, it is also easy to obtain

Ex0 [x(t)|x(0) = x0] = eBtx0, (31)

where Ex0 [· · · |x(0) = x0] is the conditional ensemble average with given initial x(0) = x0.
Then the stationary time correlation function matrix is, for t � 0,

Est
[
Ex0 [x(t)|x(0) = x]xT

] = Est
[
eBtxxT

] = eBtΞ. (32)

Therefore,

Gxx(t) = 〈x(τ )xT(τ + t)〉 =
{
ΞeB

Tt t � 0,
e−BtΞ t � 0.

(33)

We note that

Gxx(−t) = GT
xx(t). (34)

For time-reversible processes, BΞ = ΞBT. Hence,Gxx(−t) = GT
xx(t) = Gxx(t) [49].

The Green–Kubo–Zwanzig formula concerns the mathematical relation between the
transport coefficients and the integrals of the time-correlation function of the velocity [46, 50].
In the case of multi-dimensional Gaussian processes, the velocity is simply v(t) = Bx(t) and
〈v(τ )vT(τ+t)〉 = BGxx(t)B

T, where the correlation functionmatrixGxx(t) = 〈x(τ )x(τ+t)〉
is the Fourier transform ofΘ(ω). Assuming all the eigenvalues ofB have negative real parts,
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the integral of the time-correlation function is the spectrum value of the process at ω = 0.
Therefore, from equation (23) we have∫ ∞

−∞
〈v(τ )vT(τ + t)〉 dt = B

(∫ ∞

−∞
Gxx(t) dt

)
BT = BΘ(0)BT = A. (35)

Note that in this version, the Green–Kubo–Zwanzig formula requires no time-reversibility. It
is a consequence of a linear stochastic dynamical system.

However, if one considers only t � 0, then∫ ∞

0
〈v(τ )vT(τ + t)〉 dt = −BΞB−TBT = −BΞ. (36)

In this case, the rhs is 12A if and only ifB−1A is symmetric, i.e. the Gaussian process is time
reversible.

3.3. Gaussian processes in a plane

In nonlinear dynamical systems, local linear stability analysis near a fixed point in a plane has
provided great insights into the nature of fixed points. In this section, we shall carry out a
similar analysis for Gaussian OU processes in a plane.

We consider the two matrices

B =
(

b11 b12

b21 b22

)
, A =

(
a11 a12

a12 a22

)
, (37)

whereA is positive definite. Solving theLyapunovmatrix equation (21)we have the covariance
matrix

Ξ = − 1

2(b11 + b22) det(B)
×

⎛⎜⎜⎝
(b11b22 − b12b21 + b222)a11 −b21b22a11 + 2b11b22a12
−2b12b22a12 + b212a22 −b11b12a22

−b21b22a11 + 2b11b22a12 b221a11 − 2b11b21a12
−b11b12a22 +(b211 + b11b22 − b12b21)a22

⎞⎟⎟⎠ .

(38)

Thus,

Ξ−1 = − 2

(b11 + b22)(det(A) + δ2)

×

⎛⎜⎜⎝
b221a11 − 2b11b21a12 b21b22a11 − 2b11b22a12
+(b211 + b11b22 − b12b21)a22 +b11b12a22
b21b22a11 − 2b11b22a12 (b11b22 − b12b21 + b222)a11

+b11b12a22 −2b12b22a12 + b212a22

⎞⎟⎟⎠ , (39)

in which

δ = b11a12 + b12a22 − b21a11 − b22a12

b11 + b22
.

Note that −(b11 + b22) > 0 for a stable fixed point.
What is the relationship between theB, the linear stability matrix, and theΞ−1, the inverse

of covariance matrix, that constitutes the quadratic form 1
2x

TΞ−1x? We make the following
observations:

(a) The determinants of B and Ξ−1 have same sign:

det
(
Ξ−1) = 4 det(B)

det(A) + δ2
. (40)
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(b) The hyperbolicity of the fixed point of ẋ = Bx is in agreement with the quadratic function
φ(x) = 1

2x
TΞx = − ln f st(x) + const. This can be shown from

ẋT · ∇φ(x) = xTBTΞ−1x = − 1
2x

TΞ−1AΞ−1x � 0. (41)

However, the nature of a stable fixed point, i.e. being a node or a focus, is determined by
the sign of the discriminant

Tr2(B) − 4 det(B). (42)

This information is not contained in the symmetric Ξ−1 whose discriminant is always
greater than zero. To see whether the eigenvalues of B are complex, we turn to the
divergence-free jst(x).

(c) jst(x) = 0 ⇐⇒ A−1B = BTA−1.
(d) Since A is positive definite, we have a real, symmetric matrix A

1
2 . If B has a pair of

complex eigenvalues, then A− 1
2BA

1
2 has a pair of complex eigenvalues, and therefore

A− 1
2BA

1
2 
=
(
A− 1

2BA
1
2

)T
= A

1
2BTA− 1

2 . That is,A−1B 
= BTA−1. If the fixed point
is a focus, then the Gaussian process is time-irreversible for any A.

(e) IfB has all real eigenvalues and is diagonalizable, then ∃Q such thatQ−1BQ is diagonal:
Q−1BQ = QTBTQ−T. One can choose A = QQT and have A−1B = BTA−1. If the
fixed point is a node, then ∃A such that the Gaussian process is time-reversible.

(f) For an irreversible stationary process, its power spectrum can exhibit a peak at ω > 0,
indicating inherent frequency [51]. Spectral peaking, however, is only a sufficient
condition for irreversibility, but a not necessary condition. For planar Gaussian processes,
we have from equation (23)

Θ(ω) = B−1AB−T + iωB−1 (B−1A − AB−T)B−T

− ω2
(
B−3AB−T − B−2AB−2T +B−1AB−3T) +O

(
ω3
)
. (43)

Therefore, a condition for�11(ω) having an off-zero peak is its curvature at ω = 0 being
positive

d2�11(0)

dω2
= ((b12b21 − 2b222 − 2b11b22

)
b12b21 − b422

)
a11

+
(
b211 + b222 + 2b21b21

) (
2b12b21a12 − b212a22

)
� 0. (44)

The rhs can be rewritten as

− (b21, −b12) A

(
b21

−b12

)
︸ ︷︷ ︸

positive

(
b211 + b222 + 2b12b21

)

+ a11 (b11b22 − b12b21)
2 + a11

(
b221 − b222

) (
b211 + b222 + 2b12b21

)
. (45)

We see that the second term in (45) is positive since a11 > 0. If b12 and b21 have opposite
signs, and

(
b211 + b222

)
+b12b21 < 0, then the first term in (45) also becomes positive. But under

this condition,

Tr2(B) − 4 det(B) < − 2b11b22 + 3b12b21 � 2|b11b22| + 3b12b21
�
(
b211 + b222

)
+ 3b12b21 < 0.

We shall show next, however, that it is actually possible to find anA such that for aB with
a node, the corresponding OU stationary process has a power spectrum with its peak at ω > 0.
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Figure 3. A planar linear dynamical system with a stable node (eigenvalues −2 and −3), when
coupled to a white noise, becomes a time-irreversible OU Gaussian process exhibiting strong
rotational motion. The power spectrum �11(ω), adopted from [45], shows an off-zero peak.
(Figure provided by Dr Jia-zeng Wang.)

3.4. Noise-induced strong circular motion in a plane: an example

A Gaussian process is time irreversible iff jst(x) 
= 0. A non-zero jst indicates a certain kind
of circulation in the dynamics of x(t). Power spectral peaking is only a sufficient but not
necessary condition for the circulation. Only when the circular motion is sufficiently ‘strong’
will its power spectrum exhibit an off-zero peak [51].

The presence of noise can induce strong circulation in an ODE system with only a node
and no hint of any circular motion in the deterministic dynamics. We borrow the example
given in [45], considering

B =
(−4 1

−2 −1
)

and A =
(
1 0
0 1

)
. (46)

The two eigenvalues of B, −2 and −3, are both real. However, the curvature of �11(ω) at
ω = 0 according to equation (44) is 10. Figure 3 shows the power spectrum.

Noise-induced circulations, or oscillations, have been extensively studied in the past
in connection with the phenomena called stochastic resonance and coherence resonance.
See [51–53] for studies from the perspective of irreversible stationary stochastic processes.
The example in (46) and figure 3 is perhaps the most elementary version of this interesting
phenomenon.

4. Diffusion theory of nonlinear population dynamics with fluctuations

The SDE,

dx(t) = b(x) dt + Γ(x) dW (t), (47)

and the diffusion process it defines, is widely used to represent stochastic dynamics of natural
and engineering systems [10, 13, 14, 24]. This is a much researched mathematical subject in
both pure and applied mathematics.
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Dynamics with fluctuations have been extensively studied in statistical physics, ever since
the work of Einstein, Smoluchowski and Langevin, respectively, in 1905, 1906 and 1908. But
it was mathematician K Itô who finally unified the mathematics of Einstein and Smoluchowski
in terms of partial differential equations, and Langevin’s approach in terms of SDEs (47). The
description of the stochastic dynamics by diffusion processes is universal forMarkov processes
with continuous paths [14].

Still, one should note that the diffusion theory was conceived, in physics, as a ‘correction’
to deterministic dynamics. It is a phenomenological approach to stochastic fluctuations with
a clear ‘top-down’ characteristic. When modelling with a diffusion process, it is almost
always the case that one is uncertain about how to choose the Γ. It is worth noting that
when modelling an equilibrium process in physics and chemistry, this problem was solved by
the so called fluctuation–dissipation theory [45]. The Γ is not determined from the physical
mechanism of the problem, but rather from requiring the stationary process to agree with
known physics—Boltzmann’s law, Onsager’s regression hypothesis and time reversibility.

With such a rich history, it is natural for one to be interested in representing the dynamics
of large, but not infinite, populations with diffusion processes [54, 55]. In particular, one may
ask if the diffusion process description, which has enjoyed great successes in physics, can be
the appropriate model for the CME in macroscopic volume with fluctuations? The answer
turns out to be a surprising ‘no’ [56, 57]. The diffusion processes can fail to provide a global
approximation for the nonlinear stochastic dynamics of a bistable population with birth and
death [22, 26, 56, 57]. The crux of the matter turns out to rest precisely with the rare events. A
rare event occurs with exponentially small probability e−cV and exponentially long time e+cV ,
where c > 0 and V is the system’s size. The diffusive stochastic processes with continuous
trajectories are not accurate enough global representations [58].

As a mathematical result, this has been known for a long time. Kurtz’s 1971 limit theorem
is only valid for finite time due to precisely this problem [8]. van Kampen has repeatedly
emphasized that a diffusion approximation can only be obtained for master equations with
small individual jumps [23, 24]. He actually developed a sophisticated treatment of diffusion
approximations for the master equation, order-by-order, called system-size expansion [24,
chapter 10]. This theory provides a satisfying approximation for the stochastic relaxation
in the limit of large V . It is shown that the only mathematically valid diffusion process
one can derive from a CME is a Gaussian process conditioned on a given deterministic
solution to the corresponding ODE (see appendix A). Both excluded the rare jumps between
multiple nonlinear attractors. This approach, thus, does not address how to obtain a stationary
distribution with multistability.

In the present review, we shall revisit this problem from a different perspective. From
Kurtz’s theorem and van Kampen’s system-size expansion, we know that in the limit of
large system size, one can obtain a diffusion approximation near a fixed point, as we
have done in section 3. This approximation, however, underestimates the time for barrier
crossing (see equation (63)). On the other hand, it is also possible to obtain a different
diffusion approximation which gives the correct, global stationary distribution. But this one
misrepresents the downhill dynamics. We call this ‘diffusion theory’s dilemma’ [58].

4.1. A simple example

We again use the example of a one-dimensional BDP in equation (6), which resembles a
difference scheme of a diffusion equation of Fokker–Planck type:

∂f (x, t)

∂t
= 1

2

∂2

∂x2
(A(x)f (x, t)) − ∂

∂x
(b(x)f (x, t)) . (48)
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If we identify x = n/V , and dx = 1/V , then the Kramers–Moyal expansion [10, 24, 40],
truncated at the second-order, yields

A(x) = μ(x) + λ(x)

V
and b(x) = μ(x) − λ(x). (49)

Since the A(x) term is on the order of 1
V
, equation (48) can also be written as

∂f (x, t)

∂t
= ∂

∂x

(
μ(x) + λ(x)

2V

∂f

∂x
− (μ(x) − λ(x))f (x, t)

)
, (50)

with the divergence form for the diffusion. The difference is in the b(x) term on the order of
O(1/V ), which is negligible.

The stationary distribution to equation (50) is readily obtained as

f̃ st(x) = e−V φ̃(x), where φ̃(x) = 2
∫ x

0

λ(v) − μ(v)

λ(v) + μ(v)
dv. (51)

Now comparing the φ̃(x) with the φ(x) in equation (10), we see that they are not identical.
However, both have the same extrema x∗

d

dx
φ̃(x∗) = d

dx
φ(x∗) = 0 at μ(x∗) = λ(x∗). (52)

In fact, both have identical curvature near an extreme

d2

dx2
φ̃(x∗) = d2

dx2
φ(x∗) = 1

μ(x∗)

(
dλ(x∗)
dx

− dμ(x∗)
dx

)
. (53)

This means both have identical linear Gaussian dynamics near a fixed point. Equation (50) is
a good approximation for the local dynamics.

φ̃(x) and φ(x) can have very different global behaviour [26, 56]. To illustrate this, let us
consider the particular example where

μ(x) = α1ax2 + β2b and λ(x) = α2x
3 + β1x (54)

with α1 = 6, α2 = 1.2, β1 = 5.37, β2 = 0.25, a = 1 and b = 1.4. Figure 4 shows φ(x) as
a solid blue line and φ̃(x) as a dashed orange line. The two functions are indeed very similar
(figure 4(a)); however, a careful inspection shows that the φ(x∗

1 ) < φ(x∗
2 ) but φ̃(x∗

1 ) > φ̃(x∗
2 )

(figure 4(b)). Therefore, when V → ∞, the f st(x) → δ(x − x∗
1 ) but f̃

st(x) → δ(x − x∗
2 ).

4.2. Keizer’s paradox

The disagreement between φ̃(x) andφ(x) in figure 4 illustrates that a naive, truncatedKramers–
Moyal expansion of the BDP (6) in the form of FPE (50) yields good local approximations
near every fixed point, but cannot provide a globally satisfying approximation for sufficiently
long times with uniform convergence of V → ∞ with respect to ∀t . This failure is intimately
related to the rare events that connect the bistability of the corresponding ODE.

The issue can be further elucidated by an even simpler model. Keizer [40] discussed the
autocatalytic reaction system with

A +X
α1�
α2
2X and X

β−→ B. (55)

The ODE following the law of mass action is

dx

dt
= α1ax − α2x

2 − βx. (56)
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Figure 4. A comparison between the φ(x) = −(1/V ) ln f st(x), in solid blue, obtained from
equation (6) in the limit of large volume, given by equation (10), and the φ̃(x) = −(1/V ) ln f̃ st(x),
in dashed orange, obtained from the diffusion approximation of theCME(6). For theSchlöglmodel,
even though these two functions can be quite similar as shown in (a), a careful inspection in (b)
shows that their global minima are different. It is at the left well for φ(x) and at the right well
for φ̃(x). This difference in the infinite-volume limit becomes very significant: the probability
approaches to 1 at the global minimum.

For parameters α1a − β > 0, this is in fact the celebrated logistic equation in population
dynamics, with growth rate α1a − β and carrying capacity x∗ = α1a−β

α2
. The ODE has two

fixed points: unstable x = 0 and stable x∗.
In the chemical reaction context, Keizer observed that the ODE’s stable steady state is

inconsistent with the stationary distribution of the CME model for the reaction system (55).
The CME is again a BDP with

μn = α1an and λn = α2n(n − 1)
V

+ βn. (57)

Because μ0 = 0, the n = 0 is an absorbing state of the BDP, and its stationary distribution
has probability 1 for n = 0, i.e. extinction. But the x = 0 is an unstable fixed point of
the ODE!

The resolution to these seemingly paradoxical results is simple [22, 40]. As indicated in
section 2.2, system (55) again has a separation of the nonlinear network dynamics time scale
tnd and the cellular evolution time scale tce. The fixed point of the ODE is for t � tnd, but
it is still t 	 tce. For t � tce, the system will be n = 0 with probability 1. However, for
tnd 	 t 	 tce, the system has a quasi-stationary distribution centred around the non-zero
x∗. One can obtain this distribution as the eigenfunction associated with the largest non-zero
eigenvalue of the CME. The eigenvalue, which∝e−cV (c > 0), gives the time scale for reaching
extinction.

Noting that fromKramers’ theory, all barrier crossing rare events involve an exponentially
slow ‘climbing’ to a saddle point and then a rapid ‘descending’ afterward (see appendix B).
Keizer’s paradox, therefore, is also at the root of the failure in section 4.1. The ODE predicts
an infinitely long time for the climbing, but the FPE (50) predicts a time that is too short for
the climbing.



R34 Invited Article

4.3. The tale of two diffusion equations

Hänggi et al [56] proposed a different FPE that gives the correct stationary distribution

∂f (x, t)

∂t
= 1

V

∂2

∂x2

(
μ(x) − λ(x)

lnμ(x) − ln λ(x)
f

)
− ∂

∂x
((μ(x) − λ(x)) f ) . (58)

It is not difficult to show that the stationary solution to equation (58) is the same as that in
equation (10).

The ‘physics rationale’ for equation (58) is based onOnsager-type transport law as follows.
First, the stationary distribution for the CME (6), in the limit of large V , is

pst(x) = exp

{
−V

∫ x

ln

(
λ(z)

μ(z)

)
dz

}
. (59)

The stochastic potential for the system is φ(x) = −(1/V ) lnpst(x) and the thermodynamic
force is F(x) = −dφ(x)/dx = ln(μ(x)/λ(x)). The macroscopic ODE should be velocity ×
frictional coefficient = force,

dx

dt
= μ(x) − λ(x) = η−1(x)F (x). (60)

Therefore, this yields

η−1(x) = μ(x) − λ(x)

lnμ(x) − ln λ(x)
. (61)

And the diffusion coefficient ∝ η−1(x). This relation ensures the logarithm of the stationary
distribution being∝ −φ(x). This approach, therefore, amounts to enforcing the deterministic
kinetics and the stationary distribution. In a one-dimensional system, these two constraints
essentially determine a FPE.

The twodiffusion equations in (50) and (58) have the samedriftb(x)given in equation (49),
but different diffusion coefficients,

AKM(x) = μ(x) + λ(x) and AHGTT(x) = 2(μ(x) − λ(x))

lnμ(x) − ln λ(x)
, (62)

where subscriptsKMandHGTTstand forKramers–Moyal and the authors of [56], respectively.
The two diffusion coefficients are the same near x∗ where μ(x) = λ(x), i.e. the fixed

point of the b(x):

μ − λ

ln(μ/λ)
≈ λ

[
1 +

(μ/λ) − 1
2

− (μ/λ − 1)2
12

+ · · ·
]

≈ μ + λ

2
. (63)

However, away from the fixed point of b(x), HGTT’s diffusion coefficient is always smaller
than that of Kramers–Moyal’s.

The HGTT diffusion, unfortunately, is not the full solution to the problem. First, it is not
clear how to generalize this approach to higher dimensional problems. More importantly, it
actually poses a dilemma. As an approximation to the CME, the Kramers–Moyal’s diffusion
gives the same finite time dynamics as the CME with large V , but a wrong stationary
distribution. On the other hand, the HGTT diffusion gives the correct stationary distribution,
but awrong conditional diffusion equation for thefinite timedynamics, as shown in appendix A.
The HGTT diffusion does give the correct mean time for downhill dynamics, as does the KM
diffusion, since the mean time for downhill is independent of diffusion (see equation (B.3)).
However, the variances and distributions of the downhill times are different from the correct
KM diffusion.

Therefore, no diffusion processes, with any possible A(x) and b(x), will give a satisfying
representation of the dynamics predicted by a CME with bistability in the limit of V → ∞.
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The origin of this difficulty is the tremendous separation of time scales in the ‘uphill’ and
‘downhill’ motion. For a unistable system, uphill motion will only lead to an exponentially
small probability which can be safely neglected. However, for systems with multi-stability, the
exponentially small probability is responsible for establishing the correct probability between
the two stochastic attractors. This difficulty renders the diffusion theory not capable of
reasonably representing nonlinear stochastic population fluctuations. Rather, a hybrid model
that combines continuous diffusion with discrete Markov jump processes is required.

4.4. Diffusion theory’s dilemma

The problem can be evenmore tellingly stated as follows. According to the standard derivation
of the diffusion equation from a discrete state and discrete time Markov chain with forward
probability p, backward probability q = 1− p, spacing δ and time step τ [59],

D = p + q

2

δ2

τ
and b = (p − q)

δ

τ
. (64)

Or

p = Dτ

δ2
+

bτ

2δ
and q = Dτ

δ2
− bτ

2δ
. (65)

We see that if both the diffusion coefficientD and the drift rate (bias) b exist, then in the limit
of τ and δ → 0, p/q → 1. In other words, diffusion theory assumes that in the very small
spatial and temporal scale, the motion is purely random without bias. This feature, as we shall
see, is inconsistent with the CME in the limit of V → ∞.

If the p and q (
= p) exist, then in the limit of τ and δ → 0, we have D/b → 0. The
diffusion is negligible. This is Kurtz’s theorem [8].

It seems to us that the stochastic trajectory of theCME in the thermodynamic limit, depends
on one’s perspective. It is either a smooth, deterministic function of time, or a discontinuous
stochastic function of time. There is really no diffusion process like behaviour. Thus we
coined the term ‘diffusion theory’s dilemma.’

4.5. Diffusion theory’s dilemma and exponentially small asymptotics

The discussion so far has explained why the CME in general does not converge to a proper
diffusion. As in the law of large numbers, the proper limit is a system of deterministic
ODEs [8]. To have a proper diffusion, one has to ‘eliminate’ the ‘mean value.’ The situation is
completely analogous to the sum of N identical, independently distributed random variables,
YN = X1 + X2 + · · · XN . There is simply no way to capture both the mean value and the
variance of YN with a single scaling. The scaling for the law of large numbers is N−1, while
for the Central Limit Theorem it isN−1/2. This is precisely the idea behind the van Kampen’s
system-size expansion, order-by-order [23, 24].

However, we still need to explain why the asymptotic form of the FPE with 1/V diffusion
coefficient gives an erroneous stationary distribution. The insights from the present work
point to this. The asymptotic order in the equation is singular. The stationary solution contains
exponentially small asymptotics e−cV (c > 0). This is thewell-understood singularly perturbed
linear two-point boundary value problem [60].

To give a better feel for the exponentially small asymptotics, let us consider the master
equation with μn = μ and λn = λ. Then the MFPT from n to zero, with reflecting boundary
at n, is [10, 24]

Tn = 1

μ − λ

(
1− (λ/μ)n

(λ/μ)n − (λ/μ)n+1

)
+

n

λ − μ
. (66)
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Figure 5. Comparison between the MFPTs in a BDP with constant birth and death rates, μ and λ,
and corresponding Brownian motion with a constant driftD = (μ+λ)δ2/2 and V = (μ−λ)δ. Tn

is obtained from the discrete model and T̃n is obtained from the corresponding diffusion process
with x = nδ. θ = λ/μ < 1 indicates the process to the absorbing state 0 is ‘uphill.’ With longer
and longer ‘climbing’, i.e. larger n, the two times diverge exponentially.

Now if we consider the distance between n to n + 1 being δ, and let δ → 0 and n → ∞, but
nδ → x, then we have a FPE,

∂f (x, t)

∂t
= D

∂2f

∂x2
− V

∂f

∂x
, (67)

where D = (μ + λ)δ2/2 and V = (μ − λ)δ. The corresponding MFPT for this problem
is [10, 24]

Tx = 1

V

[
D

V

(
e

V
D

x − 1
)

− x

]
. (68)

To compare the two results in equations (68) and (66), we rewrite equation (68) using x = nδ

to obtain

T̃n = (μ + λ)

2(μ − λ)2

(
e
2(μ−λ)n

(μ+λ) − 1
)
+

n

λ − μ
. (69)

Comparing T̃n and Tn in equations (69) and (66) we have

Tn

T̃n

=
(

1−θn

θn−θn+1

)
− n

(1+θ)

2(1−θ)

(
e
2(1−θ)n

(1+θ) − 1
)

− n
, (70)

where θ = λ/μ. We then have

lim
n→∞

Tn

T̃n

=
{∞ θ < 1,
1 θ � 1.

(71)

We note that θ > 1 means the motion from positive x to zero is downhill. θ < 1 means the
motion from positive x to zero is uphill. The diffusion approximation for the master equation
breaks down for the uphill dynamics! Figure 5 shows the ratio Tn/T̃n as a function of θ and
finite n.

We see that for the case of downhill dynamics (θ > 1), both Tn and T̃n approach n/(λ−μ),
where λ − μ is the velocity. For the case of uphill dynamics (θ < 1), both ∼ecn, but with
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different, positive c’s. In fact we have

lim
n→∞

1

n
ln

Tn

T̃n

= − ln θ − 2(1− θ)

1 + θ
> 0. (θ < 1). (72)

We see the two expressions in equation (63) appear again here.
When θ � 1, we indeed have that Tn/T̃n converges with order 1/n:

lim
n→∞ n ln

Tn

T̃n

=
{
1 θ = 1,
1
2 θ > 1.

(73)

This is at the heart of both examples. The stationary probabilities between two peaks are
determined by the ratio of two exponentially long times to transition (back and forth), or two
rare events with exponentially small probabilities. In other words, if an approximation can
not give the ‘exponent’ correctly, then it is not a meaningful ‘approximation"! In probability
theory, this is the domain of the large deviation theory [19, 61].

4.6. The Delbrück–Gillespie process versus the Wright-Fisher model

The dynamic model for a mesoscopic, homogeneous chemical or biochemical reaction system
is a stochastic process with birth and death. Any stochastic Markov process has two different
mathematical representations: its stochastic trajectories and its time-dependent probability
distribution following a Kolmogorov forward equation. In the context of the present review,
they are the Gillepie algorithm [2] and the CME [62], respectively. While these two views of a
stochastic process are mathematically equivalent, each only gives a partial understanding. For
this reason, we would like to introduce the term Delbrück–Gillespie to refer to the stochastic
process itself.

Tan [54, p 271] extensively discussed the conditions for a valid diffusion approximation
(48) of finite BDPs like (6). A similar analysis is presented in appendix C. It showed that the
necessary condition for a master equation to converge to a non-degenerate diffusion is

ln

(
μn−1(V )

λn(V )

)
∼ O

(
1

V

)
= dx. (74)

This form yields a stationary probability density f st(x) which is properly supported on all x.
When this condition is not met, as in the CME, one has

ln

(
μn−1(V )

λn(V )

)
=
(

V ln
μ(x)

λ(x)

)
dx.

The V on the rhs gives rise to the form f st(x) = e−V φ(x), which in the limit of V = ∞ will
have x only supported at the global minimum of φ(x).

The population genetic models, on the other hand, have long enjoyed their fruitful
relationship with the diffusion processes [54, 55, 63]. There is indeed a significant difference
between the chemical reaction system and the genetic system. The random sampling in discrete
genetic models is equivalent to a long-range diffusion, not just among the nearest neighbours.
Hence it has a valid diffusion equation in the limit of large sample size, with both diffusion
and drift terms being finite. This suggests in the infinite population size, deterministic limit,
its nonlinear dynamics for the number density has the form dx/dt = b1(x)V + b0(x), where
the term b1(x)V means the individual reaction is aware of the size of the entire system. This
is a volume-dependent rate.

This is indeed the case for the discrete population genetic drift model of Wright and
Fisher [54, 55, 63]. But it does not arise from chemical kinetics in an ideal solution. The
issue is as follows. In population genetic models, the conditional variance of an individual
step is much greater than that in a Delbrück–Gillespie process. It is on the same order as the
conditional expectation. In a chemical reaction, the former is a higher order infinitesimal.
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5. Nonlinear and stochastic bistabilities

A basin of attraction around a stable fixed point in a deterministic nonlinear dynamical system
corresponds to a peak in its stochastic counterpart. The converse is not necessarily true. A
stochastic CME can have peaks that do not correspond to fixed points in the deterministic
system of ODEs. We call the latter stochastic stability and the former nonlinear stability.

Consider the following autocatalytic reaction system [4, 5]

E + χE∗ k1−→(χ + 1)E∗ and E∗ k2�
k3

E, (75)

in which χ can be either 1 or 2. This model resembles Keizer’s logistic system in equation (55)
and the Schlögl system in equation (1). Assuming the system’s volume is V and there are N

total number of E and E∗ molecules, the stationary probability distribution for the number of
E∗, pn, satisfies the steady-state CME [4, 19, 27]

(N − n + 1)

(
k1(n − 1) · · · (n − χ)

V χ
+ k3

)
pn−1

−
[
(N − n)

(
k1n · · · (n − χ + 1)

V χ
+ k3

)
+ k2n

]
pn + k2(n + 1)pn+1 = 0.

(76)

Solving the equation yields

pn = p0

n−1∏
�=0

(N − �)

(� + 1)

(
k1� · · · (� − χ + 1)

k2V χ
+

k3

k2

)
, (77)

where p0 is a normalization factor. Let x = n/N be the fraction of E∗ among E and E∗. The
probability distribution can be written as

lnp(x) = lnp0 +
x−δ∑

z=0,δ
ln

[
(1− z)(θz · · · (z − χδ + δ) + η)

(z + δ)

]
, (78)

where η = k3/k2, δ = 1/N , and θ = (k1/k2)(N/V )χ .
When the system size tends to infinity,V andN → ∞,N/V tends to a finite concentration

Et , and δ → 0, we have an integral expression of the probability distribution

ln f (x) = const +N

∫ x

0
ln

[
(1− z) (θzχ + η)

z

]
dz, (79)

with continuous x ∈ [0, 1], The distribution f (x) has its extrema at the roots of the equation

(1− x) (θxχ + η)

x
= 1. (80)

The extrema of f (x)match precisely with the macroscopic steady states from the law of mass
action

dx

dt
= (k1(Etx)χ + k3) (1− x) − k2x = 0. (81)

Equation (80) gives only monostability for χ = 1 and the possibility of bistability for χ = 2.
This is the macroscopic behaviour of the chemical reaction system in (75). However, for
smaller system sizes, the distribution in equation (77) can in fact have two peaks even for
χ = 1, if δ > η. In this case, the peak locations of the distribution pn are at n∗

1 = 0 and at n∗
2,

the larger root of the quadratic equation

θ
(
n∗
2

)2 − N(θ − 1− η)n∗
2 + (N − N2η) = 0. (82)
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Figure 6. − lnpn (the ordinate) as a function of n (the abscissa) and δ. (a) χ = 1, θ = 1.5,
η = 0.0001. The peak locations, the smaller root of equation (82), are at z = 0.002, 0.0008, and
0.0001 for δ = 0.001, 0.0005, 0.00015, respectively. (b) χ = 2, θ = 10, η = 0.001. The peak
locations are at z = 0.14, 0.125, and 0.114, respectively. With increasing system’s size, i.e., δ → 0,
the lifetime of the state in (a) decreases while in (b) it increases. (a) is called stochastic bistability
and (b) is called nonlinear bistability.

Figure 6(a) shows the − lnpn for three different values of δ. We see that the stability of the
‘energy well’ at n = 0 decreases when δ tends to zero. The well disappears when δ < η. In
contrast, for χ = 2, figure 6(b) shows the stability of the energy well at n = 0 increases when
δ tends to zero.

The distinction between nonlinear and stochastic bistabilities is related to the concept
of ‘enthalpic barriers’ in the Arrhenius theory of the chemical reaction rate [64], k =
e−�H 1/kBT +�S1/kB in which �H 1 and �S1 are called activation enthalpy and entropy,
respectively. With decreasing temperature, i.e. decrease the thermal randomness, the rate
of crossing an enthalpic barrier decreases exponentially if �H 1 > 0 but increases if
�H 1 < 0.

6. Kinetic isomorphism and general population dynamics

While we have so far focused on biochemical reaction kinetics, the theory of nonlinear,
stochastic multi-dimensional BDPs we developed in the present paper could and should
be applied to many other population dynamics [65]. In this section, we shall establish a
kinetic isomorphism between chemical reaction systems and general population dynamics
such as predator-and-prey, competition, and cannibalism. By doing so, our understanding
and development of the stochastic, nonlinear biochemical dynamics can be easily transferred
to the studies of many other population systems in ecology, infection epidemics, and
sociology1.

1 It seems to us that a distinct feature of sociological dynamics is the possibility of ‘volume-dependent rate’ discussed
in section 4.6, due to the rapid information exchange and government control in modern society.
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6.1. The three types of predation functional responses

In mathematical ecology [66], the predation functional response characterizes the rate of prey
consumed as a function of the density of the prey population under a constant environment
including the predators. There are three widely used types of functional responses. Let r be
the rate and x be the prey population density, then the three types are

r1(x) ∝ x, r2(x) ∝ x

a + x
, and r3(x) ∝ xn

an + xn
(n > 1). (83)

The most important distinction between type I and types II and III is that the latter have a
saturation effect. When there is a sufficiently large population of prey, more than enough for
all the predators, the rate of consumption of the prey levels off.

These three different types of functional responses in equation (83) can be precisely
represented by the following three types of chemical reactions, respectively:

X + A
α→ B, X + A

α
�
β

XA
δ→ B, and nX + A

α
�
β

XnA
δ→ B, (84)

with the corresponding ODEs according to the law of mass action

dx

dt
= −αax,

dx

dt
= − δax(

β+δ
α

)
+ x

, and
dx

dt
= − δaxn(

β+δ
α

)
+ xn

, (85)

where a is the total concentration of molecular species A, which is kept constant in the
reaction. The derivation for the expressions in equation (85) from chemical kinetic schemes
in equation (84) involves singular perturbations and can be found in many enzyme kinetic
textbooks [7].

It is interesting to note the correspondence between type III response and the molecular
cooperativity. In ecological systems, type III response is associated with learning, that is,
the natural improvement of a predator’s searching and attacking efficiency as prey density
increases.

6.2. Birth and death rates in multi-prey predation

Let us now consider the case of one predator population Y who has n different possible prey
species Xi , 1 � i � n. Let the consumption rate of Xi , per Y , in the absence of all the other
Xj ’s (j 
= i, 1 � j � n) be type II functional response,

aixi

1 + aiτixi

,

where ai is the attack rate and τi is called handling time. In the presence of all the Xi , one
then has ([67], section 7.2)

dxi

dt
= −xi

(
aiy

1 +
∑n

j=1 aj τjxj

)
and

dy

dt
= y

( ∑n
i=1 eiaixi

1 +
∑n

i=1 aiτixi

)
, (86)

where ei is known as consumer efficiency. The first equation is the death rate of the prey
population Xi caused by the predator, and the second equation is the birth rate of the predator
with multiple preys.

In biochemical reaction terms, the predator Y is an autocatalytic enzymewhich transforms
the various Xi into Y , where

Xi + Y
αi�
βi

XiY
κi→ A + Y and Xi + Y + A

φi�
ψi

XiYA
δi→ Xi + 2Y. (87)
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If we set the concentration of A, a = αi

βi
× ψi

φi
, and assume the binding steps are in rapid

equilibrium, then the chemical kinetic equations for the concentrations of Xi and Y are

dxi

dt
= −

κi

(
αi

βi

)
xiy

1 +
∑n

i=1
αi

βi
xi

and
dy

dt
= y

⎛⎝∑n
i=1 δi

(
αi

βi

)
xi

1 +
∑n

i=1
αi

βi
xi

⎞⎠ . (88)

Comparing equation (88) with equation (86), we have

αi

βi

= aiτi, κi = 1

τi

, δi = ei . (89)

6.3. Four planar population systems

Here we consider the dynamics of two interacting populations is a planar nonlinear system and
give the chemical kinetic equivalences of several well-known examples. Almost all textbooks
on differential equations and in mathematical biology discuss such systems [29, 66].

Lotka–Volterra’s predator–prey model. The widely studied model for predator and prey
dynamics was originally developed as a system of chemical reactions containing autocatalysis,

A
k1→ X, Y

k2→ B and X + Y
k3→ 2Y. (90)

The corresponding ODEs from the law of mass action are given in equation (92) with
k̃3c = k4 = k3. In ecological terms, X and Y are the prey and predator, respectively. The
prey is the sole food of the predator, and it has a linear grow rate of k1a in the absence of the
predator. In the absence of the prey, the predator has a death rate of k2.

In an ecological context, there is no fundamental reason for the two xy terms in
equation (92) to be equal. Hence, the faithful chemical reaction representation for the predator–
prey model is

A
k1→ X, Y

k2→ B, X + Y + C
k̃3→ X + 2Y and X + Y

k4→ D + Y. (91)

With the concentrations for chemical species X, Y, A, B, C being x, y, a, b, c, we have

dx

dt
= (k1a) x − k4xy and

dy

dt
= −k2y +

(̃
k3c
)
xy. (92)

See [68, 69] for a recent study of a generalization of the Lotka–Volterra systemwith a chemical
perspective, which yields new insights to the classic problem.

Competition model. The second widely studied type of planar population dynamics involves
a competition between two species. In chemical kinetic terms,

A +X
k1→ 2X, X +X

k2→ C, X + Y
k3→ Y + E,

B + Y
k4→ 2Y, Y + Y

k5→ D, X + Y
k6→ X + F. (93)

The mass-action kinetic equations for dynamicalX and Y , with constant populations ofA and
B, are

dx

dt
= (k1a) x − k2x

2 − k3xy and
dy

dt
= (k4b) y − k5y

2 − k6xy. (94)

Both X and Y , in the absence of the competition, have logistic growth. Species X has a linear
growth rate of k1a and carrying capacity of

k1a
k2
, and species Y has k4b and

k4b
k5
. Equation (94)

is precisely the equations in section 3.5 of [29].
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Mutualism or symbiosis. Murray [29] also presented a model for symbiosis in which species
X and Y are in cooperation. In this case, the signs of the xy terms in equation (94) are positive
rather than negative. The chemical reaction system that yields such dynamics is

A +X
k1→ 2X, X +X

k2→ E, X + Y + C
k3→ 2X + Y,

B + Y
k4→ 2Y, Y + Y

k5→ F, X + Y +D
k6→ X + 2Y. (95)

The corresponding ODEs are

dx

dt
= (k1a) x − k2x

2 + (k3c) xy and
dy

dt
= (k4b) y − k5y

2 + (k6d) xy. (96)

Models of cannibalistic demography. Asingle populationwith cannibalismcanbe ‘modelled’
by the following chemical reaction system, known as energy relay [70],

2X + E
k1→ X + E∗, A + E∗ k2→ X + E∗, E∗ k3→ E. (97)

Let the concentrations for X and E∗ be x and e∗, and the total E and E∗ together is a constant
et . Then, the law of mass action gives us

dx

dt
= −k1(et − e∗)x2 + k2ae∗ and

de∗

dt
= k1(et − e∗)x2 − k3e

∗. (98)

Treating E and E∗ as an ‘enzyme’ following the Michaelis–Menten kinetics, we have
dx

dt
= (k1et ) (k2 − k3)

k1x2 + k3
x2. (99)

A juveniles and adults two-age model with cannibalism of juveniles by adults [71] can be
understood as a predator–prey system (adult as predator, juvenile as prey) with a population
transfer from juveniles to adults, such that

A
k1→ X, Y

k2→ B, X + Y + C
k3→ X + 2Y,

X + Y
k4→ D + Y and X

k5→ Y, (100)

in which X and Y are the juveniles and adults. Therefore, we have

dx

dt
= (k1a) x − k4xy − k5x and

dy

dt
= k5x − k2y +

(̃
k3c
)
xy. (101)

7. Discussion and outlook

7.1. Nonlinear, stochastic biochemical dynamics as a new paradigm

Currently, there are mainly two mathematical approaches to biological systems and
phenomena. One is based on principles and mechanisms and the other is based on data.
Research on protein molecular dynamics and on the Hodgkin–Huxley equation of excitable
cells belongs to the the first kind, while statistical research on bioinformatics, ecology,
economics, etc belong to the second kind. In between, there are modellers who struggle
to develop mathematical principles from the data. Mathematical biologists are a large group
of modellers. Accordingly, modelling of biological dynamics has been roughly divided into
deterministic and statistical approaches. The study of cellular biochemical dynamics, as a
paradigm, offers a new perspective on biological dynamics.

The nonlinear, stochastic cellular biochemical dynamics offers a new mathematical
framework for dynamics that encompasses both deterministic and statistical aspects of
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modelling. The benefits go further than this. Perhaps one of the most important insights
is the emergence of rare events which has infinitesimal probability to occur in a regular time
scale, but it will occur with probability 1 on an evolutionary time scale. Rare events can be
understood by neither classical deterministic mathematics nor normal statistics. The only tool
we know of is mechanistic stochastic modelling.

Cancers, ecological catastrophes, stock market crashes, and sociopolitical revolutions are
all rare events. It is these rare events that are truly unpredictable in the classical sense, giving the
appearance of free will [16]. John Hopfield called it dynamic symmetry breaking. James Clerk
Maxwell has said, ‘It is manifest that the existence of unstable conditions renders impossible
the prediction of future events, if our knowledge of the present state is only approximate, and
not accurate. At these (unstable) points, influences whose physical magnitude is too small to
be taken account of by a finite being, may produce results of the greatest importance. All great
results produced by human endeavour depend on taking advantage of these singular states
when they occur.’ [17]

7.2. Stochastic dynamics in terms of multi-dimensional BDPs and diffusion processes

Stochastic processes have gradually become an indispensable and powerful mathematical
description of biological dynamics, from cellular biochemical to ecological systems. Yet,
comparedwith the understanding of nonlinear deterministic dynamical systems, our current in-
depth knowledge of applied stochastic processes are still rather limited. This is particularly true
for stochastic processes with time-irreversibility. Time-reversible processes are appropriate
models for equilibrium dynamics. Stochastic dynamics of living systems have to be time-
irreversible [33, 34, 48].

The interaction between the stochastic aspect and the nonlinear aspect of dynamics creates
complex behaviour. This is a subject that is yet to be fully explored. Markov processes, the
stochastic counterpart of first-order ordinary differential equations, have two equally valid
mathematical representations, the trajectories and the Kolmogorov forward equations. For
diffusion processes that have beenwidely employed in physics and chemistry, these correspond
to SDEs and the FPE [72]. For multi-dimensional BDPs, they correspond to the Lebowitz–
Gillespie algorithm [2, 73] and master equations, respectively.

The Delbrück–Gillespie process is the stochastic counterpart of the deterministic mass-
action kinetics. It is a full range analytical theory of dynamics of homogeneous chemical and
biochemical reaction systems. It is more than either the wildly popular Gillespie algorithm
or the CME alone. It has an emergent nonlinear differential equation system as well as the
emerging stochastic jump dynamics on an evolutionary time scale [5].

Since the pioneering work of Einstein, Smoluchowski, Langevin and Kramers, the
diffusion process, with its continuous but everywhere non-differentiable trajectory, has become
the dominant mathematical theory for stochastic processes. The physicists’ approach to
stochastic dynamics, however, is markedly ‘deterministic centric.’ The entire stochastic
enterprise of statistical physics is to understand macroscopic, deterministic behaviour from
the atomic nature of matters.

The stochasticity has always been considered merely as ‘fluctuations.’ In fact, physicists
have long believed that there is no stochasticity in a macroscopic world. This view, of course,
has been justified by the lawof large number in the theory of probability. This perspective, aswe
have shown in the present paper, needs to be modified to embrace a macroscopic complexity
with variations and stochastic jumps [16]. The law of large numbers, it turns out, requires
an infinitely long time and large system. For mesoscopic systems [74], there are stochastic
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dynamics beyond the deterministic limit [15, 19], and for macroscopic systems, stochasticity
occurs on an evolutionary time scale.

Finally, in biological and many other non-mechanical systems, a BDP is a more
fundamental approach to stochastic dynamics than the continuous diffusion. Certainly, it
is more consistent with all the deterministic differential equation models based on number
density, be it individuals, organisms, cells or molecules. The diffusion approach, however,
is only phenomenological. It has to rely on additional information to specify the diffusion
coefficient. This is why the fluctuation–dissipation relations are so essential in equilibrium
statistical physics.

7.3. Intrinsic and extrinsic fluctuations: stochastic processes versus random dynamical
systems (RDSs)

According to van Kampen [24], ‘internal or intrinsic fluctuations are caused by the fact that
the system itself consists of discrete particles; it is inherent in the very mechanism by which
the system evolves.’ External or extrinsic noises, on the other hand, often reside in systems’
parameters or environments. The distinction between these two types of randomness in a
dynamic process can be best illustrated if one considers two trajectories with different initial
conditions, and asks if the two dynamics utilize two different, independent sequences of
realizations of random events, or the same sequence. In the theory of RDSs [75], it is the
latter. A SDE can be interpreted as both. However, a Delbrück–Gillespie (DG) process does
not fit the RDS perspective. The random process underlying a DG process is a time-changed
Poisson process. To consider two DG processes with same realization of a Poisson process
can only come from a globally synchronized clock [5]. Therefore, the fluctuations in the DG
process are due to intrinsic noise. There is no separation between the deterministic nonlinear
dynamics and the stochastic fluctuations.
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Appendix A. Conditional diffusion equation

Let us consider the SDE

dXt = b(Xt) dt + ε
√

A(Xt) dBt, X0 = x0. (A.1)

Let ξ(t) be the deterministic solution to the ODE

dξ(t)

dt
= b(ξ(t)), ξ(0) = x0. (A.2)

Then we can consider

Yt = Xt − ξ(t)

ε
, Y0 = 0. (A.3)

which satisfies the SDE

dYt = b(εYt + ξ(t)) − b(ξ(t))

ε
dt +
√

A(εYt + ξ(t)) dBt . (A.4)
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The probability density function for Yt satisfies the time-inhomogeneous FPE

∂

∂t
fY (y, t) = 1

2

∂2

∂y2
(A(εy + ξ(t))fY ) − ∂

∂y

(
b(εy + ξ(t)) − b(ξ(t))

ε
fY

)
. (A.5)

For small ε, equation (A.5) can be approximated as

∂

∂t
fY (y, t) = A(ξ(t))

2

∂2fY

∂y2
− b′(ξ(t))

∂ (yfY )

∂y
. (A.6)

In particular, if the deterministic solution to (A.2) asymptotically approaches a fixed point
x∗, and if we choose X0 = x∗, then equation (A.6) is simplified to the FPE for an Ornstein–
Uhlenbeck Gaussian process,

∂

∂t
fY (y, t) = A(x∗)

2

∂2fY

∂y2
− b′(x∗)

∂ (yfY )

∂y
. (A.7)

Appendix A.1. Gaussian solution to the conditional diffusion

To solve equation (A.6), we introduce

〈Yt 〉 =
∫ ∞

−∞
yfY (y, t) dy, 〈Y 2t 〉 =

∫ ∞

−∞
y2fY (y, t) dy, (A.8)

then we have
d

dt
〈Yt 〉 = b′(ξ(t))〈Yt 〉, 〈Y0〉 = 0,

d

dt
〈Y 2t 〉 = A(ξ(t)) + 2b′(ξ(t))〈Y 2t 〉, 〈Y 20 〉 = 0,

〈Yt 〉 = 0,

〈Y 2t 〉 =

⎧⎪⎪⎨⎪⎪⎩
b2 (ξ(t))

∫ t

0

a (ξ(s))

b2 (ξ(s))
ds, ξ ′(t) 
= 0

A(x∗)
2|b′(x∗)|

(
1− e−2|b′(x∗)|t

)
, ξ(t) ≡ x∗, b′(x∗) < 0.

(A.9)

It is easy to verify that the solution to equation (A.6) is

fY (y, t) = 1√
2π〈Y 2t 〉

exp

(
− y2

2〈Y 2t 〉
)

. (A.10)

Appendix A.2. Linear fluctuation theory according to conditional diffusion

If the ξ(t) is near a stable fixed point of the b(x), then ξ(t |x0) = x∗ + (x0 − x∗)e−βt where
β = |b′(x∗)|. Furthermore, b(ξ(t)) ≈ −β(x0 − x∗)e−βt . Then equation (A.9) gives

〈Y 2t 〉 = A(x∗)
2β

(
1− e−2βt

)
. (A.11)

And the autocorrelation function for the stationary process is

〈XτX0〉st =
∫ ∞

∞
dx0f

st(x0)x0ξ(τ |x0)
= 〈X〉stx∗ (1− e−βτ

)
+ 〈X2〉ste−βτ . (A.12)

Therefore,

〈�Xτ�X0〉st = 〈(�X)2〉ste−βτ . (A.13)
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These results have been obtained many times in the theory of stochastic linear relaxation, in
the work of L Onsager, M Lax, T L Hill and J Keizer. We see that the conditional diffusion
shares the same principle. The stochastic dynamics is a ‘correction term’ to the deterministic
behaviour.

Appendix B. The mean first passage time (MFPT)

Appendix B.1. MFPT for a 1D diffusion process

The MFPT T for a diffusion process with diffusion coefficient A(x)/2 and drift b(x), from x1
to x2, satisfies [10, 14, 24]

d

dx

A(x)

2

dT (x)

dx
+ b(x)

dT (x)

dx
= −1, dT (x1)

dx
= 0, T (x2) = 0, (B.1)

Tx1→x2 =
∫ x2

x1

e−φ(x) dx
∫ x2

x

eφ(y) 2dy

A(y)
, φ(x) = −

∫ x 2b(x)

A(x)
dx. (B.2)

If interval (x1, x2) contains an energy well at x∗
1 , b(x∗

1 ) = 0, b′(x∗
1 ) < 0, and an energy barrier

at x∗
3 , b(x∗

3 ) = 0, b′(x∗
3 ) > 0, then one can use Laplace’s method to simplify equation (B.2) to

Tx1→x2 = 4πeφ(x∗
3 )−φ(x∗

1 )

A(x∗
3 )
√|φ ′′

(x∗
1 )φ

′′
(x∗
3 )|
+
∫ x2

x∗
3

2 dx

A(x)|φ ′
(x)| . (B.3)

The second term is for downhill relaxation. In fact,A(x)|φ ′
(x)|/2 = |b(x)|. Thus the downhill

time is essentially determined by the drift b(x), independent ofA(x). The first term is the time
for barrier crossing. The inverse of this expression is known as Kramers formulae for reaction
rate. For a barrier crossing problem, the second term can be neglected.

Appendix B.2. MFPT for a 1D BDP

A same calculation can be carried out for a BDP [10]. For a one-dimensional CME with birth
rate μn and death rate λn, in the limit of large V , μxV → μ(x)V , λxV → λ(x)V , and one
obtains [64]

Tx1→x2 = 2πeV (φ(x∗
3 )−φ(x∗

1 ))

λ(x∗
3 )
√|φ ′′

(x∗
1 )φ

′′
(x∗
3 )|
+
∫ x∗

2

x∗
3

1

λ(y)|φ ′
(y)| dy, (B.4)

in which

φ(x) =
∫ x

ln

[
λ(z)

μ(z)

]
dz. (B.5)

Note that at fixed point x∗
3 , λ(x∗

3 ) = μ(x∗
3 ), which corresponds to A(x∗

3 )/2. Hence the first
terms in equations (B.3) and (B.4) are completely identical. The detailed φ(x) and A(x)

between x∗
1 and x∗

3 do not matter to the barrier crossing time.
The downhill time, however, is significantly different from that of diffusion theory. Using

either A(x) = μ(x) + λ(x), as in the Kramers–Moyal expansion, or A(x) = 2(μ(x) −
λ(x))/(lnμ(x) − ln λ(x)), as in Onsager’s theory, gives the same result in equation (B.7),

diffusion :
∫

dx

μ(x) − λ(x)
, (B.6)

CME :
∫

dx

λ(x) (lnμ(x) − ln λ(x))
. (B.7)

These are the different predictions based on the diffusion theory and on the CME.
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Appendix C. Master equations with and without diffusion limit

Let us consider the canonical FPE for diffusion processes,

∂f

∂t
= ε

2

∂2

∂x2
(A(x)f ) − ∂

∂x
(b(x)f ) . (C.1)

If we discretize the x in terms of a uniform interval δ, we have

df (x, t)

dt
=
[
εA(x − δ)

2δ2
+

b(x − δ)

2δ

]
f (x − δ)

−
[(

εA(x)

2δ2
+

b(x)

2δ

)
+

(
εA(x)

2δ2
− b(x)

2δ

)]
f (x)

+

[
εA(x + δ)

2δ2
− b(x + δ)

2δ

]
f (x + δ). (C.2)

Therefore, if the birth and death rates of a master equation, μn(V ) and λn(V ), are in the
forms of

μn = V

[
εA(n/V )

2δ
+

b(n/V )

2

]
and λn = V

[
εA(n/V )

2δ
− b(n/V )

2

]
, (C.3)

then we have the master equation in (6). Note that both μn and λn have to be non-negative.
This is guaranteed by the δ being sufficiently small. We see that if ε is smaller, the δ has to be
smaller as well.

The stationary distribution of the master equation is readily obtained, such that

pstn = p0 exp

[
n∑

k=1
ln

μk−1
λk

]
(C.4)

and

f st(x)

V
= p0 lim

V →∞
exp

[
xV∑
k=1
ln

A
(

k−1
V

)
ε
δ
+ b
(

k−1
V

)
A
(

k
V

)
ε
δ

− b
(

k
V

) ] , (C.5)

which yields

f st(x) dx = A exp

[
V

∫ x

0
ln

(ε/δ)A(x) + b(x)

(ε/δ)A(x) − b(x)
dz

]
. (C.6)

Note that if we consider ε and δ → 0, but ε/δ → ν, then we have

f st(x) dx = A exp

[
−ν

ε

∫ x

0
ln

νA(x) − b(x)

νA(x) + b(x)
dz

]
. (C.7)

The ln f st(x) has its extrema at x∗ with b(x∗) = 0. Furthermore, the curvature at x∗ is
2b′(x∗)/(εA(x∗)), which is independent of ν.

More interestingly, if ν = 1, we have

f st(x) dx = A exp

[
−1

ε

∫ x

0
ln

A(x) − b(x)

A(x) + b(x)
dz

]
. (C.8)

This is the case of the CME in whichμn and λn have the form ofμn = μ(x)V and λn = λ(x)V

as in equation (C.3).
If, however, ν = ∞,

f st(x) dx = A exp

[
1

ε

∫ x

0

2b(z)

A(z)
dz

]
. (C.9)
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Only equation (C.9) recovers the correct stationary distribution to the FPE in (C.1). One can
not have ν → 0 because of the discussion following equation (C.3).

Equations (C.9) and (C.8) are precisely the correct and wrong stationary distributions
according to [56] and Kramers–Moyal’s diffusion equations, respectively. Their difference is
exactly the two expressions on the lhs and rhs of equation (63).
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[74] Laughlin R B, Pines D, Schmalian J, Stojković B P and Wolynes P G 2000 Proc. Natl Acad. Sci. USA 97 32
[75] Arnold L 1998 Random Dynamical Systems (New York: Springer)


