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Chapter 6
Stochastic Population Kinetics
and Its Underlying
Mathematicothermodynamics

Hong Qian

Abstract Based on differential calculus, classical mechanics represents the natural
world in terms of featureless point masses and their movements. Chemistry studies
molecules each of which has a large number of internal degrees of freedom in
terms of atoms, electrons, etc.; the behavior of even a single biomolecule like a
protein is often so complex that the foundation of chemical kinetics is essentially
based on stochastic mathematics. Stochastic population kinetics is a more powerful
and more realistic representation of the biological world. This chapter introduces
this new mathematical modeling paradigm and shows the existence of a hidden
thermodynamic structure underlying any stochastic nonlinear kinetic description of
a multi-population biological system. The mathematicothermodynamics presented
here is a generalization of J. W. Gibbs’ chemical thermodynamics for equilibrium
chemical reaction systems, as heterogeneous matters.

6.1 Introduction

Françis Jacob (1920–2013), one of the leading molecular biologists of the twentieth
century, stated in his book “The Possible and the Actual” [13] that Western art had
radically changed since the Renaissance from “symbolizing” to “represent” the real
world. One can in fact view pure versus applied mathematics as a change from the
former to the latter. The ultimate goal of mathematical science is to quantitatively
represent the real world in terms of mathematics.

Currently there is a sharp contrast between the mathematical models, or theories,
in physics and in biology. While we take Newton’s equation of motion as almost
the “Truth” under the appropriate conditions, one does not have such a level of
confidence for the mathematical models in biology.
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In Newtonian mechanics, the natural world is represented by point masses
and described by their movements. Each point mass, e.g., a Newtonian particle,
has a unique position and velocity. The natural world according to chemistry,
however, consists of “identical” molecules made of atoms. While each individual
molecule has intrinsic stochasticity, e.g., a molecular individualism [4] due to the
atomic motions within, population wise molecules follow statistical rate laws in
their syntheses (birth), degradations (death), spatial diffusion (migration), state
transitions (character switching), and interactions. Such a formal reaction kinetic
system in a small volume V , such as biochemical reaction kinetics in a single
cell, can be rigorously treated in terms of an integer-valued, continuous-time
Markov process describing its nonlinear behavior, counting the molecules and their
reactions, one at a time.

Population dynamics in biology has long been described in terms of nonlinear
differential equations [17]. Many of the equations are remarkably similar to the
kinetic equation for chemical reactions. In this chapter, we shall introduce in a
rigorous fashion the rate law of rare events in term of exponential waiting time
and the Poisson process. We shall show that the type of differential equations for
population dynamics has a mathematical foundation in the theory of probability and
Markov processes.

After introducing the stochastic mathematical representation of population kinet-
ics, in the Sect. 6.9 of the chapter, we present a recently discovered universal
mathematical structure that is inherent in any Markov population kinetics. This
structure has a remarkable resemblance to the theory of thermodynamics, first
developed in the nineteenth century by physicists dealing with heat—the stochastic
motions of atoms and molecules. To distinguish the mathematical structure in the
stochastic population kinetics from the subject from physics, we coined the term
mathematicothermodynamics, within which we axiomatically introduce notions
such as closed systems, open-driven systems, entropy production, free energy
dissipation, etc. We shall derive two “laws”: The first is concerned with the balance
of a free energy like function, and the second is concerned with certain monotonicity
in the dynamics.

Finally, phase transition in physics, conformational transition in biochemistry,
and phenotypic switching in cell biology are all nonlinear phenomena intrinsically
related to multi-stability and saddle-node bifurcation, in the limits of time t → ∞
and system’s size V → ∞ [12, 26].

6.2 Probability and Stochastic Processes: A New Language
for Population Dynamics

There are fundamentally two types of mathematical modeling: (a) representing
scientific data in terms of mathematical formula or equations and (b) describing
a system’s behavior (natural or engineered, physical or biological, electronic,
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chemical, economical, social, . . . ) based on existing, established formula and
equations. For lack of better terminology, we shall call the former data-driven
modeling and the latter mechanistically derived modeling. Note, according to Karl
Popper (1902–1994) and his philosophy of science, the only legitimate scientific
activity is falsifying a hypothesis: that requires first to formulate a hypothesis,
which sometime is just looking for patterns in the data (e.g., numerical hypothesis)
and sometime is proposing a mechanism (e.g., modeling); and (b) to derive
rigorous predictions from a hypothesis, which is a form of logical, or mathematical,
deduction.

Let us revisit some of the key notions already discussed, or widely used, in many
of the other chapters—but let us try to be critical. In Chap. 1 Hillen and Lewis
introduced the growth rate through a limiting process: if a population grows two
person every 100 days, then it is “equivalent” to one person every 50 days, and half
a person every 25 days. In fact, the growth rate is

r = lim
�t→0

P(t + �t) − P(t)

�t
.

Instantaneous rate (fluxion) is one of the most important concepts of Newton’s
calculus! But does this make sense to quantify population growth? A half of a
person, one tenth of a person? Clearly this theory cannot be true when the �t is
too small: population change cannot have non-integer numbers.

Second, has anyone ever seen such a regular population growth with exactly two
person in the first 100 days, and another two in the next 100 days? I am sure some
of you will say “that is just an average”.

Indeed, discreteness and probability are two fundamental issues in any popula-
tion dynamics. Both have been ignored in the differential equation-based description
of population dynamics. We shall start discussing population kinetics anew below.
Most of the materials are taken from [1, 19, 20, 22, 23, 28, 31].

6.2.1 Brief Review of Elementary Probabilities

A random variable X taking a continuous real value has a probability density
function (pdf) fX(x):

∫ ∞

−∞
fX(x)dx = 1, fX(x) ≥ 0. (6.1)

The meaning of the fX(x) is this: for infinitesimal dx, the probability of observing
X ∈ (x, x + dx] is fX(s)dx:

Pr{x < X ≤ x + dx} = fX(x)dx. (6.2)
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Then, the cumulative probability distribution of X is defined as

FX(x) = Pr{X ≤ x} =
∫ x

−∞
fX(z)dz, and fX(x) = dFX(x)

dx
. (6.3)

The mean (or expected value) and variance of the random variable X then are

〈X〉 = E[X] =
∫ ∞

−∞
xfX(x)dx, (6.4)

Var[X] = E
[
(X − μ)2] =

∫ ∞

−∞
(
x − μ

)2
fX(x)dx, (6.5)

in which we have denoted E[X] by μ. Two most important examples of random
variables taking real values are “exponential” and “normal”, also called Gaussian.
The former has the standard form

fX(x) = λe−λx, x ≥ 0, λ > 0, (6.6)

with mean and variance being λ−1 and λ−2; the latter has a standard form

fX(x) = 1√
2πσ

e−(x−μ)2/2σ 2
, (6.7)

with mean μ and variance σ 2.
Gaussian normal distribution is widely discussed; including in popular press

[11]. It is understood as a consequence of the central limit theorem. It is a
statistical law emerging from a large collection of identical, independent parts.
In the following sections, we shall show that for dynamical processes involving
populations, there is a much less known, but equally if not more important statistical
law: exponentially distributed time between “rare events”. In stochastic modeling of
population dynamics, one’s primary focus is not the random number of individuals
at a particular time; rather it is the random time of the next event that changes the
number of individuals by one.

The best known discrete, integer-valued random variables are Bernoulli, bino-
mial, Poisson, and geometric [30].

6.2.2 Radioactive Decay and Exponential Time

Let us revisit the simplest differential equation

dy

dt
= −λy, (6.8)
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where λ > 0. This equation has been introduced as a mathematical model for the
remaining fraction of a radioactive material at time t

y(t)

y(0)
= e−λt . (6.9)

If all the atomic nuclei are identical and independent, then

Pr
{
a nucleus remaining radioactive at time t

} = e−λt . (6.10)

However, if T is the random time at which the event of radioactive decay occurs,
then

Pr
{
a nucleus remaining radioactive at time t

} = Pr
{
T ≥ t

}
. (6.11)

T is a non-negative real-valued random variable with cumulative probability
distribution FT (t) = Pr{T ≤ t} = 1 − e−λt and probability density function
fT (t) = dF(t)/dt = λe−λt .

What types of problems, or more precisely “scenarios” and “mechanisms”, will
give rise to this exponentially distributed waiting time? Why is it so universal?
A good understanding of these questions will provide the reader a deeper under-
standing of the mathematical foundation of population dynamics, as emergent
statistical laws, in terms of seemingly random behavior of a large population of
individuals [15].

6.2.2.1 Rare Event

Let T be the random time at which a certain event occurs. If the occurrence of such
an event is independent in time intervals [t1, t2] and [t2, t3], and if its occurrence is
uniform in time (e.g., the system and its environment are stationary), then

Prob. of no event occurring in [0, t + �t] = (6.12)

Prob. of no event occurring in [0, t] × Prob. of no event occurring in [t, t + �t].

That is,

Pr
{
T > t + �t

} = Pr
{
T > t

}× Prob. of no event occurring in [t, t + �t].

Now if the probability of one such event occurring in the time interval [t, t + �t] is
proportional to �t , and the probability of more than one events is ∝ o(�t), then

Pr
{
T > t + �t

} = Pr
{
T > t

}×
(

1 − λ�t + o(�t)
)
. (6.13)
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Then,

d

dt
Pr
{
T > t

} = −λPr
{
T > t

}
, =⇒ FT (t) = e−λt . (6.14)

Example: The waiting time for the first shopper coming in a store in the morning
on a regular day.

6.2.2.2 Memoryless

One of the most important, in fact defining, properties of exponential distributed
waiting time is

Pr
{
T ≥ t + τ

}
Pr
{
T ≥ t

} = e−λ(t+τ)

e−λt
= e−λτ . (6.15)

Example: You and your lazy brother doing experiments to observe the mean time of
an exponentially distributed event. Even though your brother starts counting time a
whole hour later than you, his resulting statistics will be exactly the same as yours!

More interestingly, the more individuals in a population, the faster the next event
to occur. In mathematical terms: if all Tk ∼ λke

−λkt and they are independently
distributed, then T ∗ = min(T1, T2, · · · , Tn) also has an exponential distribution

Pr
{
T ∗ > t

} = Pr
{
T1 > t, · · · , Tn > t

}
= Pr

{
T1 > t

}× Pr
{
T2 > t

}× · · · × Pr
{
Tn > t

} = e−μt , (6.16)

where μ = λ1 + λ2 + · · · + λn. Thus, fT ∗(t) = μe−μt .

6.2.2.3 Minimal Time of a Set of Non-Exponential i.i.d. Random Times

Now consider a set of random times {Tk}. They are identical, independently dis-
tributed (i.i.d.) random times with pdf fT (t) and cumulative probability distribution
FT (t). Then T ∗ = min(T1, T2, · · · , Tn) has its distribution

Pr
{
T ∗ > t

} =
(

1 − FT (t)
)n

. (6.17)

Now, introducing scaled T̂ ∗ = nT ∗ and considering n to be very large, its
distribution is

Pr
{
T̂ ∗ > t

}
=
(

1 − FT

(
t

n

))n

�
(

−F ′
T (0)

n
t + O

(
n−2))n

→ e−F ′
T (0)t .

(6.18)
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Therefore, if F ′
T (0) = fT (0) is finite, one obtains an exponentially distributed time.

We note the mathematical condition fT (0) > 0: in an application, this implies
that the time scale involved in the mechanism for the occurrence of an event is
several orders of magnitude faster than the time scale in question.

6.2.3 Known Mechanisms That Yield an Exponential
Distribution

In the previous section, we have derived the exponentially distributed waiting time
based on some very elementary assumptions concerning (1) time homogeneous
and (2) independent. Furthermore, in Sect. 6.2.2.3, we have shown that for non-
exponential T , as long as fT (0) �= 0, the minimum of a large collection of i.i.d. T ’s
will be exponential. This is a strong argument for why one can use, on an appropriate
time scale, the equations like (6.8) to model population dynamics.

6.2.3.1 Khinchin’s Theorem

Let us consider a house that uses n light bulbs. One bought a large box of new light
bulbs, and let us assume all the bulbs having identical, independently distributed life
time X with pdf fX(x). For each light-bulb socket, one puts on a new bulb when
the old one is burnt. The time sequence 0, T1, T2, · · · , Tk, · · · is called a renewal
process, in which Tk = ∑k

�=1 X(�), where the X(�) with different � are i.i.d. random
variables drawn from the distribution fX(x). Now for the entire house, there are n

identical, independent renewal processes. The time sequence of bulb changing form
a superposition of the n renewal processes [3], as illustrated in Fig. 6.1.

For a single renewal process with renewal time distribution fX(x), the corre-
sponding counting process, e.g., the number of renewals occurred before time t , Nt ,
has the distribution

Pr
{
Nt ≥ k

} = Pr
{
Tk ≤ t

} = FTk
(t) =

∫ t

0
fTk

(x)dx. (6.19)

Fig. 6.1 If the red, orange, and blue point processes represent the renewal events of light bulbs
for 3 different sockets, then the fourth row is the combined point process for all the bulb changes.
It is the superposition of the three individual processes. With more and sockets, a statistical law
emerges
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Therefore,

Pr
{
Nt = k

} = FTk
(t) − FTk+1(t). (6.20)

Now if one randomly picks a time t , and let T ∗
t be the waiting time for the next

renewal, T ∗
t is known as residual time in renewal theory. Its distribution is different

from fX(x). In fact, one has

Pr{T ∗
t ≤ s} =

∞∑
�=0

Pr
{
Nt = �

}
Pr
{
T�+1 ≤ t + s

}

=
∞∑

�=0

(
FT�

(t) − FT�+1(t)
)
FT�+1(t + s). (6.21)

Therefore, the probability density function for the stationary T ∗
t is

fT ∗
t
(s) = d

ds
Pr{T ∗

t ≤ s}. (6.22)

fT ∗
t
(0) =

∞∑
�=1

(
FT�

(t) − FT�+1(t)
)
fT�

(t) �= 0. (6.23)

Applying the result in Sect. 6.2.2.3, we then have the following theorem, which can
be found in [3].

Theorem If T
(1)
k , T

(2)
k · · · , T

(n)
k are n i.i.d. renewal processes with waiting time

distribution fX(x), then the superposition of the n renewal processes has an
exponential waiting time for the next event in the limit of n → ∞, with rate
parameter nE−1[X].

6.2.3.2 Kramers’ Theory and Saddle-Crossing as a Rare Event

We have discussed the minimal time of a large collection of i.i.d. waiting times,
and we have discussed superposition of renewal processes. We now turn to a third
mechanisms: the emergence of discrete chemical reactions from a description of
atoms continuously moving in a molecule in an aqueous solution.

From a classical mechanics stand point, a molecule is a collection of atoms.
For a protein with N number of atoms, a Newtonian mechanical description of its
dynamics has 6N degrees of freedom, without even considering the atoms in the
solvent, which is at least an order of magnitude more. This is what one observes
from a molecular dynamics (MD) simulation. It is very complicated.

However, any such mechanical system has a potential energy function (its
gradient is called a force field of MD simulations). Treating the solvent as a viscous



6 Stochastic Population Kinetics and Its Underlying Mathematicothermodynamics 157

Fig. 6.2 The mathematical description of a chemical reaction of a single molecule. It is an
emergent statistical law of a large number of discrete, stochastic reactions. k1 ∝ e−�G‡/kBT , where
the �G‡ is called activation energy. Similarly, k2 has its own activation barrier height. According
to this description, the ratio k1/k2 becomes independent of the barrier

medium with frictional coefficient η, the dynamics of a protein is over damped
and spends most of the time at the bottom of an “energy well”, as illustrated in
Fig. 6.2. However, since the solvent is not truly continuous, but rather corpuscular,
the collisions with the solvent molecules constitute a random force. Therefore, the
dynamics can be described by a stochastic differential equation like

dY (t) = b(Y )dt + AdB(t), (6.24)

in which b(y) = −η−1∇yU(y), and A = √
2η−1kBT .

With the presence of random forcing term B(t), Y (t) will once a while move
against the deterministic force field and even cross the barrier (a saddle point in a
high-dimensional space). But this is a rare event. This randomly perturbed nonlinear
dynamical systems thus behaves, on a very long time scale, as A GGGBF GGG B, with only
two parameters k1 and k2. The rate constants are related to the height of the barrier.
H. A. Kramers first worked out the mathematical theory for this type of problems in
1940. The idea is not limited to chemical reactions; it is applicable to any nonlinear
dynamics with random perturbations [7].

With one line of mathematics from Kramers, k ∝ e−�G‡/kBT (Fig. 6.2), all
the detailed atomic motions are deemed irrelevant—only two parameters, called
forward and backward rate constants, are useful to a chemist. Furthermore, the
theory shows that the transition from A → B spends most of the time in the
waiting; the actual transition event is instantaneous! Indeed, one can mathematically
prove in the limit of �G‡/kBT → ∞, the waiting time distribution asymptotically
approaches to exponential. From a molecular biological function perspective, the
notion of discrete conformational states and the events of transitions among them
are fundamental.
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6.2.4 Population Growth

We have discussed dy
dt

= −λy with positive λ: radioactive decay. And it does not
seem that a similar discussion can be applied to dx

dt
= rx with a positive r , the other

half of a population dynamics.
The answer turns out to be simple but profound: one should treat the birth

as an event! The waiting time for the next birth is expected to be exponential.
Furthermore, the rate is expected to be proportional to the number of individuals
currently in the population (Exercise 1.2), say X(t). Therefore, on average the

growth is 1 additional person in
(
rE[X])−1

time:

d

dt
E
[
X(t)

] = rE
[
X(t)

]
. (6.25)

Death is an event, birth is an event, state transition is an event. Most biological
dynamics is about counting the populations, and about biological events that lead to
changing populations. Stochasticity is in the timings of the various events. This is
why J. D. Murray stated in [17] that continuous growth models for a species at time
t have the universal conservation equation:

dY

dt
= births − deaths + migration, (6.26)

where Y (t) is the population density.

6.2.5 Discrete State Continuous Time Markov (Q) Processes

Discrete state continuous time Markov processes are sometime called quasi Marko-
vian, or Q-processes, a terminology first introduced in Arne Jensen’s 1954 book A
Distribution Model, Applicable to Economics and then by David Freedman in his
1971 book Markov Chains. In terms of the probability of state k at time t , pk(t),
one has

pk(t + dt) − pk(t) =
(

N∑
�=1

p�(t)q�k

)
dt, (6.27)

where q�kdt is the transition probability from state � to k within the infinitesimal
time interval dt . Eq. (6.27) is called a master equation. Its fundamental solution is
P(t) = eQt , where the Q matrix has off-diagonal elements qij ≥ 0 and

qii = −
∑
j �=i

qij . (6.28)
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Therefore, Q has each and every row sums to zero. It is often referred to as
infinitesimal transition rate matrix. It is easy to show that in this case, the sum

N∑
k=1

pk(t)

is independent of time t . The total probability is conserved over time. Note several
important differences between Eqs. (6.26) and (6.27): The former is an equation
for population density Y (t) while the latter is an equation for the probability of
population size pk(t) ≡ Pr

{
N(t) = k

}
; the right-hand side of former usually is a

nonlinear function of Y while the latter is necessarily linear. The dimension of the
latter ODE system, however, is much higher than the former.

6.2.5.1 Kolmogorov Forward and Backward Equations

In matrix form, Eq. (6.27) can be expressed as d
dt

p = pQ, where p = (p1, · · · , pN)

is a row vector. This equation is called Kolmogorov forward equation. Note strictly
speaking the forward equation is not about the probability distribution (a vector),
but about the transition probability matrix (fundamental solution) P(t) with initial
value P(0) = I. More interestingly,

d

dt
P = PQ =

(
eQt

)
Q = QP. (6.29)

This is a different differential equation:

duk

dt
=

N∑
�=1

qk�u�, (6.30)

which is called Kolmogorov backward equation. If {πk} is a stationary probability
distribution, e.g., the solution to

N∑
�=1

π�q�k = 0, k = 1, 2, · · · , N,

then the solution to the backward equation, uk(t) has the important property of

N∑
k=1

uk(t)πk

being independent of time t , e.g., it is a conserved quantity.
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The solutions to the Kolmogorov forward and backward equations also have
another important property. Let pk(t) and qk(t) be two solutions to a forward
equation with different initial distributions pk(0) and qk(0). Then

d

dt

N∑
k=1

pk(t) ln

(
pk(t)

qk(t)

)
≤ 0. (6.31)

One special case of this, which is widely known, is the choice of qk(t) = πk , if
πk > 0 ∀k.

Similarly, two positive solutions to a Kolmogorov backward equation, uk(t) and
vk(t) with different initial conditions uk(0) and vk(0), respectively, have

d

dt

N∑
k=1

(
πkuk(t)

)
ln

(
uk(t)

vk(t)

)
≤ 0. (6.32)

One special case of this is when choosing vk(t) ≡ 1. The quantity in Eq. (6.32)
is called an H -function; the quantity in Eq. (6.31) is called relative entropy, or
Kullback–Leibler divergence in information theory, or free energy in physical chem-
istry. These results have a deep implication for the second law of thermodynamics.

6.3 Theory of Chemical and Biochemical Reaction Systems

A general representation for complex chemical reaction systems is

νj1X1 + νj2X2 + · · · νjnXn

kj−→ κj1X1 + κj2X2 + · · · κjnXn. (6.33)

1 ≤ j ≤ m. There are n species and m reactions. (νji−κji) are called stoichiometric
coefficients, they relate a species i to the reaction j . In a broader sense, a “reaction”
is just a type of “events”.

6.3.1 Differential Equation and Nonlinear Dynamics

Because of the conservation of matter,

dxi

dt
=

m∑
j=1

(
κji − νji

)
ϕ̂j (x) (6.34)
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where xi is the concentration of chemical species Xi , 1 ≤ i ≤ n, and

ϕ̂j (x) = kjx
νj1
1 x

νj2
2 · · · xνjn

n (6.35)

is called the instantaneous flux of the j th reaction. x = (x1, x2, · · · , xn). Eq. (6.34)
is called rate equations, and Eq. (6.35) is called the law of mass action (LMA).

6.3.2 Delbrück-Gillespie Process (DGP)

Let us now consider probabilistically the discrete, individual events of the m

possible reactions in Eq. (6.33), one at a time. The DGP assumes that the j th
reaction occurs following an exponentially distributed waiting time, with rate
parameter

ϕj (X) = kjV

n∏
�=1

(
X�!

(X� − νj�)!V νj�

)
, (6.36)

when the molecular numbers of ith chemical species being Xi . Note ϕj (X) has
the dimension of [time]−1. Clearly, the first reaction that occurs also follows an
exponential time, with the rate being the sum of the rates of the m reactions:

m∑
j=1

ϕj (X). (6.37)

Among the i.i.d. T1, T2, · · · , Tn, all exponentially distributed with respective rate
parameters λ1, λ2, · · · , λn, the probability of the smallest one being Tk is

Pr
{
T ∗ = Tk

} = Pr
{
Tk ≤ min

(
T1, · · · , Tk−1, Tk+1, · · · , Tn

)}

= λk

λ1 + · · · + λn

. (6.38)

More importantly,

Pr
{
T ∗ = Tk, T

∗ ≥ t
}

= Pr
{
T1 ≥ Tk, · · · , Tk−1 ≥ Tk, Tk ≥ t, Tk+1 ≥ Tk, Tn ≥ Tk,

}

=
∫ ∞

t

λke
−λktk

n∏
�=1,� �=k

(∫ ∞

tk

λ�e
−λ�t�dt�

)
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=
∫ ∞

t

λke
−λktk

n∏
�=1,� �=k

(∫ ∞

tk

λ�e
−λ�t�dt�

)

=
(

λk

λ1 + · · · + λn

)
e−(λ1+···+λn)t . (6.39)

This means the following important fact: the minimal time among {Tk} gives two
random variables: T ∗ ≡ mink{Tk} and k∗ ≡ arg mink{Tk}; the minimal time T ∗ and
the identity k∗ are statistically independent.

6.3.3 Integral Representations with Random Time Change

6.3.3.1 Poisson Process

A standard Poisson process Y (t) is an integer-valued, continuous-time Markov
process with distribution

Pr
{
Y (t) = k

}
= tk

k!e
−t . (6.40)

A Poisson process has both a point process representation, T1, T2, · · · , Tn, and a
counting process representation Y (t). The former is a positive real-valued, discrete-
time Markov process with independent increments, and Ti+1 − Ti is exponentially
distributed with rate 1.

6.3.3.2 Random Time Changed Poisson Representation

In terms of Poisson processes, the stochastic trajectory of a DGP representing the
integer number of the molecule Xi at time t ,

Xi(t) = Xi(0) +
m∑

j=1

(
κji − νji

)
Yj

(∫ t

0
ϕj

(
X(t)

)
dt

)
(6.41)

in which ϕj (X) is given in (6.36). We have abused the notation Xi as both the
symbol of a type of molecule, as in Eq. (6.33), and its number in the reaction system.

We see that in the limit of X → ∞ and V → ∞,

ϕj (X) → kjV

n∏
�=1

(
X�

V

)νj�

= kjV

n∏
�=1

x
νj�

� = V ϕ̂j (x). (6.42)

ϕj (X) is also called the propensity of the j th reaction.
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6.3.4 Birth-and-Death Process with State-Dependent
Transition Rates

6.3.4.1 One-Dimensional System

Consider the stochastic population kinetics of a single species. Let pn(t) be the
probability of having n individuals in the population at time t . Then pn(t) satisfies
the master equation

dpn(t)

dt
= pn−1un−1 − pn

(
un + wn

)+ pn+1wn+1, (6.43)

in which uk and wk are the birth rate and death rate of the population with exactly k

individuals. The stationary distribution to Eq. (6.43) can be obtained:

pss
n

pss
n−1

= un−1

wn

. (6.44)

Therefore,

pss
n = pss

0

n∏
k=1

(
uk−1

wk

)
, (6.45)

in which pss
0 is to be determined by normalization.

Eq. (6.43) is the DGP corresponding to the nonlinear population dynamics of a
single species with birth and death rates û(x) and ŵ(x), with x(t) ≡ X(t)

V
,

dx

dt
= û(x) − ŵ(x), (6.46)

where,

û(x) = lim
V →∞

uxV

V
, ŵ(x) = lim

V →∞
wxV

V
. (6.47)

It is easy to verify that the peaks and troughs of stationary probability distribution
pss

n correspond nicely with the stable and unstable fixed points of Eq. (6.47). For the
rest of this chapter, this correspondence should be kept in mind.

6.4 Using Mathematics to Articulate a Fundamental
Idea in Biology

I want to use the following example to illustrate how to use mathematics, not only
as a tool for computation and for modeling, but also for representing fundamental
ideas.
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Consider a population with many subpopulations x = (x1, x2, · · · , xn), all xi ≥
0. In the absence of migration, if we denote per capita growth rate ri = bi −di , then

dxi

dt
= xiri . (6.48)

For simplicity, we shall assume that both per capita birth rate bi and death rate di are
constants. Then the per capita growth rate for the entire population, which is also
the mean per capita growth rate,

r =

n∑
i=1

dxi

dt

n∑
i=1

xi

=

n∑
i=1

xiri

n∑
i=1

xi

, xi ≥ 0. (6.49)

Then,

dr(x)

dt
=
[∑n

i=1 xir
2
i∑n

i=1 xi

−
(∑n

i=1 xiri∑n
i=1 xi

)2
]

. (6.50)

We note that the term inside [· · · ] on the right-hand side is never negative:

∑n
i=1 xir

2
i∑n

i=1 xi

−
(∑n

i=1 xiri∑n
i=1 xi

)2

=
∑n

i=1 xi

(
ri − r

)2

∑n
i=1 xi

≥ 0. (6.51)

In fact, it is exactly the variance of ri among the different subpopulations. Therefore,
it is always positive if there are variations among ri . This mathematical result is a
part of the ideas of both Adam Smith, on economics, and Charles Darwin, on the
natural selection. In fact, the term [· · · ] in Eq. (6.50) has been identified by R. A.
Fisher, the British statistician and evolutionary biologist, as the “growth of fitness
due to natural selection” [6]. Here is a quote from Smith’s magnum opus “An Inquiry
into the Nature and Causes of the Wealth of Nations” (1776):

As every individual, therefore, endeavours as much as he can both to employ his capital
in the support of domestic industry, and so to direct that industry that its produce may be
of the greatest value; every individual necessarily labours to render the annual revenue of
the society as great as he can. He generally, indeed, neither intends to promote the public
interest, nor knows how much he is promoting it. By preferring the support of domestic to
that of foreign industry, he intends only his own security; and by directing that industry in
such a manner as its produce may be of the greatest value, he intends only his own gain, and
he is in this, as in many other eases, led by an invisible hand to promote an end which was
no part of his intention. Nor is it always the worse for the society that it was no part of it. By
pursuing his own interest he frequently promotes that of the society more effectually than
when he really intends to promote it. I have never known much good done by those who
affected to trade for the public good. It is an affectation, indeed, not very common among
merchants, and very few words need be employed in dissuading them from it.
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6.5 Ecological Dynamics and Nonlinear Chemical Reactions:
Two Examples

6.5.1 Predator and Prey System

Let z(t) be the population density of a predator at time t and x(t) be the population
density of a prey at the same time. Then the simplest predator-prey dynamics is [17]

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= αx − βxz,

dz

dt
= −γ z + δxz.

(6.52)

The detailed analysis of the nonlinear dynamics can be found in many textbooks on
mathematical biology or differential equations [17].

Let us now consider the following chemical reaction system:

A + X
k1−→ 2X, X + Y

k2−→ 2Y, Y
k3−→ B. (6.53)

Then according to the LMA, the concentrations of X and Y , with fixed concentra-
tions of A and B being a and b:

dx

dt
= k1ax − k2xy,

dy

dt
= −k3y + k2xy. (6.54)

Therefore, we see that dynamics of an ecological predator-prey system is remark-
able similar to that of a chemical reaction system with autocatalysis [16]: the first
reaction in (6.53) requires an existing X serving as a catalyst for the reaction
A → X. A species that appears on the both sides of a chemical reaction is called a
catalyst.

6.5.2 A Competition Model

Let us now consider another widely studied ecological dynamics with competi-
tion [17]:

⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1 − a1N

2
1 − b21N1N2,

dN2

dt
= r2N2 − a2N

2
2 − b12N2N1.

(6.55)
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Can one “design” a system of chemical reactions that yields an identical system of
differential equation? Without loss of generality, let us assume that b12 > b21.

A + X
k1−→ 2X, X + X

k2−→ B, A + Y
k3−→ 2Y,

(6.56)
Y + Y

k4−→ B, X + Y
k5−→ B, X + Y

k6−→ X + B,

which, according to the LMA,

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= (k1a)x − k2x

2 − k5xy,

dy

dt
= (k3a)y − k4y

2 − (k5 + k6)xy.

(6.57)

If we identify x, y with N1, N2, and

(k1a) ↔ r1, k2 ↔ a1, k5 ↔ b21, (k3a) ↔ r2, k4 ↔ a2, (k5 + k6) ↔ b12,

then (6.57) is the same as (6.55). Note that the last reaction, X + Y → X + B, is
introduced to represent b12 > b21.

A close inspection of the system of chemical reactions in (6.56) indicates that the
overall reaction is 2A → B. Since each and every reaction is irreversible, there can
be no chemical equilibrium. Rather, the system eventually reaches a nonequilibrium
steady state in which there is a continuous, overall chemical flux converting 2A

to B.

6.5.3 Logistic Model and Keizer’s Paradox

We now turn to studying some issues more in-depth. Let us now consider a much
simpler chemical reaction system,

A + X
k1−→ 2X, X + X

k2−→ B. (6.58)

It is easy to see that the ODE according to the LMA,

dx

dt
= r

(
1 − x

K

)
x, r = k1a, K = r

k2
, (6.59)

is the celebrated logistic equation in population dynamics. In the ecological context,
r is known as the per capita growth rate in the absence of intra-species competition;
and K is known as carrying capacity.
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The DGP stochastic model has a chemical master equation (CME) for the
probability of n X molecules in a reaction volume of V :

dpn(t)

dt
= un−1pn−1 −

(
un + wn

)
pn + wn+1pn+1, (6.60a)

in which the state-dependent birth and death rates are

un = rn, wn = k2n(n − 1)

V
. (6.60b)

Then, according to Eq. (6.45),

p
eq

0 = 1 and p
eq
n = 0, n ≥ 1, (6.61)

since u0 = 0! In other words, according to this theory, the stationary probability
distribution is “population extinction with probability 1”. But the ODE in (6.59)
says that the stable steady state is x = K , with x = 0 being a unstable steady state
which is not “relevant”.

This seeming disagreement between the deterministic ODE in (6.59) and stochas-
tic dynamics described by (6.60) is known as Keizer’s paradox. We refer the readers
to [33] for the resolution of the paradox.

6.6 Chemical Thermodynamics and Entropy Production

6.6.1 Classical Chemical Thermodynamics

A single reversible chemical reaction

ν1X1 + ν2X2 + · · · νnXn

k+
GGGBF GGG

k−
κ1X1 + κ2X2 + · · · κnXn (6.62)

is said to be in a chemical equilibrium when

ϕ̂+
k (xeq)

ϕ̂−
k (xeq)

= 1 ⇔
(

x
ν1
1 x

ν2
2 · · · xνn

n

x
κ1
1 x

κ2
2 · · · xκn

n

)eq

= k−

k+ . (6.63)

(k−/k+) is known as the equilibrium constant of the reaction. The ratio on the lhs
is a constant independent of the total amount participating species.

Chemical thermodynamics introduces the notions of chemical energy and chem-
ical potential: for ideal solutions chemical species i has a chemical potential

μi = μo
i + kBT ln xi. (6.64)
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in which μo
i is determined by the atomic structure of a molecule, e.g., internal

energy. kB is Boltzmann’s constant, and T is temperature in Kelvin. Then the Gibbs
free energy of the lhs of (6.62) is the sum of the chemical potential

G =
n∑

i=1

νi

(
μo

i + kBT ln xi

)
. (6.65)

When the reaction reaches its equilibrium, one has the total chemical potentials
being equal on both sides:

n∑
i=1

(
νi − κi

)(
μo

i + kBT ln x
eq
i

)
= 0. (6.66)

This implies

n∏
i=1

(
x

eq
i

)νi−κi = e
− (νi−κi )μ

o
i

kBT = k−

k+ , (6.67)

or

�Go =
(

n∑
i=1

κiμ
o
i

)
−
(

n∑
i=1

νiμ
o
i

)
= kBT ln

(
k−

k+

)
. (6.68)

This is a very well-known formula that can be found in every college chemistry
textbook.

6.6.2 Mass-Action Kinetics

Following Eqs. (6.34) and (6.35), we have

dxi

dt
=

m∑
j=1

(
κji − νji

)(
ϕ̂+

j − ϕ̂−
j

)

=
m∑

j=1

(
κji − νji

)
ϕ̂−

j

{
exp

[
n∑

�=1

(
κj� − νj�

)
ln

(
x�

x
eq
�

)]
− 1

}

=
m∑

j=1

(
κji − νji

)
ϕ̂+

j

{
1 − exp

[
n∑

�=1

(
νji − κji

)
ln

(
x�

x
eq
�

)]}
. (6.69)
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Equation (6.69) shows that when x� = x
eq
� , the term [· · · ] = 0 and the term {· · · } =

0 as well, for every j . Therefore, the kinetic equation in (6.69) is consistent with the
chemical equilibrium according to thermodynamics, e.g., Eqs. (6.66) and (6.67).
Interestingly, recent work has shown that both macroscopic kinetics as in (6.69) and
equilibrium thermodynamics in Sect. 6.6.1 are consequences of a stochastic kinetic
description of a reaction system [10].

6.6.3 Stochastic Chemical Kinetics

We now apply the above formalism to a nonlinear chemical reaction in a small
volume V with small number of molecules, nA, nB , and nC numbers of A, B, and C:

A + B
k+
GGGBF GGG

k−
C. (6.70)

We note that the nA + nC and nB + nC do not change in the reaction. Hence we
can denote nA + nC = no

A and nB + nC = no
B as the total amount of A and B,

including those in C, at the initial time. Now if we use nC as the non-negative
integer-valued random variable to describe the stochastic chemical kinetics, this
simple nonlinear chemical reaction, according to DGP, is a one-dimensional birth-
and-death process, with state-dependent birth and death rates un = k+nAnB and
wn = k−nC . Then, according to Eq. (6.45), we have an equilibrium distribution
peq(m) = Pr

{
n

eq
C = m

}
:

peq(m + 1)

peq(m)
= k+(no

A − m)(no
B − m)

k−(m + 1)V
, (6.71)

in which no
A = nA(0) + nC(0) and no

B = nB(0) + nC(0). Therefore,

peq(m) = �−1 no
A!no

B !
m!(no

A − m)!(no
B − m)!

(
k+

k−V

)m

, (6.72)

where � is a normalization factor

�(λ) =
min(no

A,no
B)∑

m=0

no
A! no

B ! λm

m!(no
A − m)!(no

B − m)! , λ =
(

k+

k−V

)
. (6.73)

More importantly, by noting nA + nB + nC = n0
A + n0

B − nC ,

− ln peq(nC)

= − ln

[
λnC

nC !(no
A − nC)!(no

B − nC)!
]

+ const.
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= nA ln
(nA

V

)
− nA + nB ln

(nB

V

)
− nB + nC ln

(nC

V

)
− nC − nC ln

(
k+

k−

)

= nA ln xA + nB ln xB + nC ln xC + nC

(μo
C − μo

A − μ0
B

kBT

)
− (nA + nB + nC)

=
∑

σ=A,B,C

nσ

( μo
σ

kBT
+ ln xσ − 1

)
. (6.74)

This agrees with Eq. (6.65).
In classical chemical kinetics, for a given x(t), the Ideal function of the chemical

reaction system is

Geq [x(t)] =
n∑

σ=1

xσ

(
μo

σ + kBT ln xσ − kBT
)
. (6.75)

Then, following Eq. (6.34), assuming each and every reaction is reversible with rate
constants k+

j and k−
j ,

d

dt
Geq [x(t)] =

n∑
i=1

dxi

dt

(
μo

i + kBT ln xi

)

= kBT

n∑
i=1

m∑
j=1

ln

(
xi

x
eq
i

)(
κji − νji

)(
k+
j

n∏
�=1

x
νj�

� − k−
j

n∏
�=1

x
κj�

�

)

= −kBT

m∑
j=1

{
n∑

i=1

ln

(
xi

x
eq
i

)νji−κji
}(

ϕ̂+
j − ϕ̂−

j

)

= −kBT

m∑
j=1

(
ϕ̂+

j − ϕ̂−
j

)
ln

(
ϕ̂+

j

ϕ̂−
j

)
(6.76)

≤ 0. (6.77)

The minus-log stationary probability distribution is a Lyapunov function for the
dynamics. The rhs of Eq. (6.76) is known as entropy production rate.

6.6.4 Nonequilibrium Steady-State and Driven Chemical
Systems

If a chemical reaction system reaches its chemical equilibrium, then each and
every reaction in the system is in detailed balance with zero net flux. This puts
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a very strong condition on the dynamics. When a chemical reaction system has
a sustained source and sink with different chemical potentials, it cannot reach a
chemical equilibrium. Rather, it reaches a nonequilibrium steady state (NESS).

Let us consider the following two examples, the Schlögl model for bistability
[34] and Schnakenberg model for nonlinear oscillation [17, 25, 35].

6.6.4.1 Schlögl Model

A + 2X
k+

1
GGGBF GGG

k−
1

3X, X
k+

2
GGGBF GGG

k−
2

B, (6.78)

in which the concentrations (or chemical potentials) of A and B are sustained by
an external agent. This reaction is known as Schlögl model, whose dynamics can be
described by the differential equation

dx

dt
= k+

1 ax2 − k−
1 x3 − k+

2 x + k−
2 b = f (x), (6.79)

which is a third-order polynomial. It can exhibit bistability and saddle-node
bifurcation phenomenon. All of them only occur under driven condition, when
μA �= μB . Note in the chemical equilibrium: μA = μo

A+kBT ln a = μo
B+kBT ln b,

and

(
b

a

)eq

= k+
1 k+

2

k−
1 k−

2

. (6.80)

Differential equation (6.79), with its parameters ak+
1 k+

2 = bk−
1 k−

2 , has the right-
hand-side

f (x) = k+
1 ax2 − k−

1 x3 − k+
2 x + k−

2 b

= k+
1 ax2 − k−

1 x3 − k+
2 x + ak+

1 k+
2

k−
1

=
(

x2 + k+
2

k−
1

)(
ak+

1 − k−
1 x

)
. (6.81)

Therefore, the f (x) has a unique fixed point at x = ak+
1

k−
1

, the chemical equilibrium.

In general, system (6.78) can exhibit chemical bistability; but this is only possible
when A and B have a sufficiently large chemical potential difference, e.g., a
chemostat.

More interestingly, when a and b satisfying (6.80), the DGP of the number of X,
nX(t), is again a one-dimensional birth-and-death process, with
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un = k+
1 an(n − 1)

V
+ k−

2 bV = k+
1 a

V

(
n(n − 1) + k+

2 V 2

k−
1

)
, (6.82)

wn+1 = k−
1 (n + 1)n(n − 1)

V 2
+ k+

2 (n + 1)

= k−
1 (n + 1)

V 2

(
n(n − 1) + k+

2 V 2

k−
1

)
.

Therefore, the stationary distribution, according to Eq. (6.45),

p
eq
n = C

n−1∏
�=0

k+
1 a/V

k−
1 (� + 1)/V 2

= λn

n! e
−λ, λ =

(
k+

1 aV

k−
1

)
. (6.83)

This is a Poisson distribution, with expected value being E
[
n

eq
X

] = λ. Therefore,
the expected concentration is (k+

1 a/k−
1 ).

6.6.4.2 Schnakenberg Model

Similarly,

A
k+

1
GGGBF GGG

k−
1

X, B
k2−→ Y, 2X + Y

k3−→ 3X, (6.84)

is known as Schnakenberg model, whose dynamics follow

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= k+

1 a − k−
1 x − k3x

2y = f (x, y),

dz

dt
= k2b − k3x

2y = g(x, y).

(6.85)

This system can exhibit limit cycle oscillation and Hopf bifurcation. In terms of
the DGP, it exhibits a rotational diffusion. We refer the readers to [25, 35] for an
in-depth analysis of the model.
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6.7 The Law of Large Numbers—Kurtz’s Theorem

6.7.1 Diffusion Approximation and Kramers–Moyal
Expansion

Starting with the master equation in (6.43), let us consider a partial differential
equation (PDE) for a continuous density function f (x, t)dx = pV x(t) where
x = n

V
, dx = 1

V
, then

∂f (x, t)

∂t
= V

dpV x(t)

dt

= 1

dx

(
f (x − dx, t)û(x − dx) − f (x, t)

(
û(x) + ŵ(x)

)

+f (x + dx, t)ŵ(x + dx)
)

= ∂

∂x

(
f (x + dx/2, t)ŵ(x + dx/2) − f (x − dx/2, t)û(x − dx/2)

)

≈ ∂

∂x

{
∂

∂x

(
ŵ(x) + û(x)

2V

)
f (x, t) −

(
û(x) − ŵ(x)

)
f (x, t)

}
+ · · ·

(6.86)

in which

V −1uV x = û(x), V −1wV x = ŵ(x), (6.87)

as V → ∞.

6.7.2 Nonlinear Differential Equation, Law of Mass Action

Therefore, in the limit of V → ∞,

∂f (x, t)

∂t
= − ∂

∂x

(
û(x) − ŵ(x)

)
f (x, t), (6.88)

which corresponds to the ordinary differential equation

dx

dt
= û(x) − ŵ(x), (6.89)

that defines the characteristic lines of (6.88).
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6.7.3 Central Limit Theorem, a Time-Inhomogeneous
Gaussian Process

Now consider the process

Y (t) = X(t) − V x(t)√
V

, (6.90)

which characterizes the “deviation” of X(t)
V

from x(t). In the limit of V → ∞, its
pdf fY (y, t) satisfies a linear PDE with time-varying coefficients

∂fY (y, t)

∂t
= ∂

∂y

{
∂

∂y

(
ŵ(x(t)) + û(x(t))

2

)
fY (y, t)

−
(
û′(x(t)) − ŵ′(x(t))

)
yfY (y, t)

}
. (6.91)

Therefore, Y (t) is a continuous time, real-valued, time-inhomogeneous Markov
process. Note the PDE (6.91) is very different from PDE (6.86). They are known in
physics literature as the Kramers–Moyal expansion and van Kampen’s �-expansion,
respectively [32]. The former is not related to the central limit theorem.

6.7.4 Diffusion’s Dilemma

Truncating the Eq. (6.86) after the second order, it has a stationary distribution

− ln f̂ st
Y (y) = 2V

∫ (
ŵ(x) − û(x)

û(x) + ŵ(x)

)
dx. (6.92)

On the other hand, the stationary solution given in (6.45),

pss
n = pss

0

n∏
k=1

(
uk−1

wk

)
,

in the limit of V → ∞ with V −1uV x = û(x), V −1wV x = ŵ(x), and V −1 = dx,
yields

− ln pss
V x = −

n∑
k=1

ln

(
uk−1

wk

)
+ C ↔ − ln f ss(x) = V

∫
ln

(
ŵ(x)

û(x)

)
dx. (6.93)
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Is it possible Eqs. (6.92) and (6.93) are actually the same? We notice that both have
identical local extrema:

d

dx

(
− ln f st

Y (x)
)

= 2V

(
ŵ(x) − û(x)

ŵ(x) + û(x)

)
= 0 =⇒ ŵ(x) = û(x). (6.94)

In fact, the curvature at a local extremum is identical:

[
d2

dx2

(
− ln f st

Y (x)
)]

û=ŵ

= 2V

(
ŵ′(x) − û′(x)

ŵ(x) + û(x)

)
= V

(
ŵ′(x) − û′(x)

û(x)

)

=
[

d2

dx2

(
− ln f sss(x)

)]

û=ŵ

. (6.95)

However, it can be shown, via an example, that the global minimum can be different
[20, 37]! This implies that Kramers–Moyal expansion is not a valid approximation
for stochastic kinetics with multiple stability. Continuous time, real-valued Markov
processes are also called diffusion processes. The above result illustrates that there
is no globally valid diffusion approximation for stochastic population kinetics in
general.

6.8 The Logic of the Mechanical Theory of Heat
and Nonequilibrium Thermodynamics

In order to present some rather recent results in Sect. 6.9 and put those results
into a proper context, let us first revisit the celebrated work of L. Boltzmann
on the mechanical theory of heat [8], and the generally accepted macroscopic
nonequilibrium thermodynamics presented in the classic treatise of de Groot and
Mazur [5]. The readers will recognize the logical threads of both theories in
Sect. 6.9, as well as the finding of a missing link between the above two theories.

Boltzmann’s theory is based on the general Hamiltonian dynamics and starts with
a definition of an entropy function S = −kB ln �(E). Section 6.9 will be based on
the general Markov dynamics and starts with a definition of an entropy function
according to Shannon [29]. Note that Boltzmann’s entropy is a static quantity, the
entropy in Sect. 6.9, Eq. (6.110) below, is a function of time.

De Groot and Mazur’s theory is based on continuity equations for mass and
energy, relating time changes of the density of these quantities to transport processes
in three-dimensional space, and identifies entropy productions as “transport flux ×
driving force”, à la Onsager [18]. Section 6.9 is based on a continuity equation for
the probability in the state space, relating time change of probability to its transport,
and also identifies the entropy production as “probability flux × chemical potential
difference”.
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There is a missing link between Boltzmann’s theory and the nonequilibrium
thermodynamics. In addition to the continuity equations, the de Groot-Mazur
approach also requires the entropy balance equation [5],

dS

dt
= ep + JS, (6.96)

as one of its fundamental premises, where ep is the entropy production rate and
JS is the rate of entropy supplied to a system by its surroundings. The second law
of thermodynamics, e.g., Clausius inequality, dictates that ep ≥ 0. Unfortunately,
Boltzmann’s mechanical theory of heat is not able to derive an equation like (6.96)
from a Hamiltonian dynamics without resorting to additional assumptions based
on a stosszahlansatz.1 As one will see from Sect. 6.9, however, Markov dynamics
is able to provide nicely an equation like (6.96). A stochastic dynamic approach
to nonequilibrium thermodynamics is able to fill this logic gap, as was first
demonstrated by Bergmann and Lebowitz in 1955 [2].

6.8.1 Boltzmann’s Mechanical Theory of Heat

The entire world, as long as one is interested in phenomena that are at not too small a
scale (e.g., quantum) and not too close to the speed of light (e.g., relativity), follows
the Newtonian mechanics which can be represented mathematically in terms of a
Hamiltonian system

dx

dt
= ∂H(x, y)

∂y
,

dy

dt
= −∂H(x, y)

∂x
. (6.97)

One of the most important result concerning the Eq. (6.97) is the dynamics
invariance of H(x(t), y(t)):

d

dt
H
(
x(t), y(t)

) = ∂H

∂x

(
dx

dt

)
+ ∂H

∂y

(
dy

dt

)
= 0. (6.98)

1In the phase space, the Hamiltonian system has a Liouville equation

∂u(x, y, t)

∂t
= −

(
∂H

∂y

)
∂u

∂x
+
(

∂H

∂x

)
∂u

∂y
.

It is easy to show that

d

dt

∫∫
u(x, y, t) ln u(x, y, t)dxdy = 0.

Therefore, the information-entropy like quantity is time invariant under a deterministic diffeomor-
phism [36].
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Now, let us assume that the Hamiltonian function contains also several parameters,
H(x, y, V,N) where V is the box size of a mechanical system and N is the number
of particles in the box, then the next question which an applied mathematician might
ask, but interestingly which has not been extensively studied, is this: “What is the
long-time behavior of the system as a function of V , N , and other parameters?”

A Hamiltonian system, however, is fundamentally different from the earlier
systems we have studied, which have attractive fixed point(s). In fact, it is clear
that the long-time behavior is a function of the initial condition H

(
x(0), y(0)

) = E.
Helmholtz and Boltzmann (1884) realized that a “thermodynamic equilibrium state”
of a mechanical system is not a single point in the phase space, but rather, it is
an entire invariant manifold defined by the level set H(x, y, V,N) = E. It was
Boltzmann’s ingenuity to realize that one can define

S
(
E,V,N) = kB ln

{
phase volume contained by the surface H(x, y) = E

}

= kB ln
∫

H(x,y)≤E

dxdy. (6.99)

Since S(E) is monotonic, one has an implicit function E = E(S, V ). Then

dE =
(

∂E

∂S

)
V,N

dS +
(

∂E

∂V

)
S,N

dV +
(

∂E

∂N

)
S,V

dN

= T dS − pdV + μdN. (6.100)

What is the significance of Eq. (6.100)? First, it is completely based on the fact that
a Hamiltonian system has a conservation of mechanical energy H . Furthermore,
however, this conservation of energy is valid not only for a single Hamiltonian
system on a single invariant torus, but also the Hamiltonian system with multiple
level sets, and even among an entire class of Hamiltonian systems with varying V

and N , and other parameters. It becomes a universally valid equation, known as
the First Law of Thermodynamics. Note, according to this theory, thermodynamic
quantities like T , p, μ are mathematically defined via Eq. (6.100). They are
emergent phenomena.

T and p have mechanical interpretations, though not perfect, as mean kinetic
energy and mean momentum transfer to a wall. μ, however, has no interpretation
in terms of classical motion; rather, it has an interpretation in terms of Brownian
motion:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2 = −1

η

∂(F̂ ρ)

∂x
, (6.101)

where

F̂ = −∂μ

∂x
, and μ = Dη ln ρ(x, t) = kBT ln ρ(x, t). (6.102)

F̂ is known as entropic force in chemistry, and μ is known as chemical potential.
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6.8.2 Classical Macroscopic Nonequilibrium Thermodynamics

Equation (6.100) is valid only when the entire torus H(x, y) = E is visited in the
long time limit; this is known as ergodicity. In other words, with time t in mind, the
equation is valid only when the dS and dV are very slowly changing. What happens
if the changes are not slow? Then, the Second Law of Thermodynamics states that

T dS ≥d̄Q = dE −d̄W, (6.103)

in which d̄Q is the amount of heat that flows into the system, and d̄W is the
amount of work done to the system. Both are path dependent, as indicated by the d̄.
Eq. (6.103) is known as the Clausius inequality. The notion of entropy production is
introduced to account for the inequality:

dS

dt
= ep − hd

T
, ep ≥ 0, (6.104)

in which ep is called entropy production, which is never negative. hd = −d̄Q/dt is
called heat dissipation. In general, neither ep nor hd is a time derivative. Eq. (6.104)
is known as an entropy balance equation.

6.8.2.1 Local Equilibrium Assumption and Classical Derivation of
Entropy Production

If one assumes that Eq. (6.100) is valid locally in space and time, then one has

∂s(x, t)

∂t
= 1

T

∂u(x, t)

∂t
−

n∑
i=1

μi

∂ci(x, t)

∂t
, (6.105)

in which we have assumed imcompressibility dV = 0. s(x, t), u(x, t), and ci(x, t)

are entropy density, energy density, and concentration of the ith species.
Realizing that both energy and particles follow continuity equation in space-time,

one has

∂u(x, t)

∂t
= −∂Ju(x, t)

∂x
,

∂ci(x, t)

∂t
= −∂Ji(x, t)

∂x
. (6.106)

Then, substituting these into Eq. (6.105), and use a certain amount of physical
intuition, one arrives at

∂s(x, t)

∂t
= ep(x, t) + JS(x, t) (6.107a)
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where entropy production rate per unit volume

ep(x, t) = Ju

∂

∂x

(
1

T

)
−

n∑
i=1

Ji

∂

∂x

(μi

T

)
−

m∑
j=1

�μj ϕ̂j

T
, (6.107b)

and entropy flux

JS(x, t) = ∂

∂x

(
Ju

T
−

n∑
i=1

μjJj

T

)
. (6.107c)

According to Onsager’s theory [18], each term in the entropy production ep is a

transport flux × driving force (6.108)

which should be non-negative. The theory of nonequilibrium thermodynamics
concerns with transport processes of various kinds: diffusion, heat, charge, chem-
ical, etc. More information on the various transport fluxes can only be obtained,
phenomenologically, from engineering.

6.9 Mathematicothermodynamics of Markov Dynamics

We now consider discrete-state Markov system with stochastic dynamics in terms
of “continuity equation for probability in state space”, e.g., Chapman–Kolmogorov
equation, or master equation

dpi(t)

dt
=

N∑
j=1

(
pjqji − piqij

)
, (6.109)

in which qij are the infinitesimal transition probability rate given in (6.27).
We shall now follow the same logic steps of Boltzmann, illustrated in Sect. 6.8.1,

to develop a “thermodynamic theory” based on the general dynamics by introducing
the notion of entropy. Eq. (6.109) replaces the Hamiltonian system (6.97), and in
the place of Boltzmann’s celebrated S = kB ln �(E) will be the Gibbs-Shannon
entropy:

S(t) = −
N∑

i=1

pi(t) ln pi(t). (6.110)

Then, one has

dS

dt
= ep + JS, (6.111a)
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where

ep(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
pi(t)qij

pj (t)qji

)
, (6.111b)

JS(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
qji

qij

)
. (6.111c)

It is immediately obvious that ep ≥ 0 since for every pair of i, j in Eq. (6.111b), the
term has the form of (a − b) ln(a/b) ≥ 0. We also note the resemblance of (6.111b)
to Eq. (6.76).

Therefore, we have derived an entropy balance equation based on Markov
dynamics, without the assumption of local equilibrium. Equations (6.111b)
and (6.111c) further give explicit expressions, in terms of the {pi(t)}, for the
entropy flux JS the non-negative entropy production ep. As we shall show below,
there is a complete nonequilibrium thermodynamics on the mesoscopic scale, in
state space. This theory is effectively an isothermal theory with the “temperature”
being 1.

6.9.1 Non-Decreasing Entropy in Systems with Uniform
Stationary Distribution

If the master Eq. (6.109) has a stationary distribution pss
n = 1 ∀n, then

N∑
j=1

(
qji − qij

)
=

N∑
j=1

qji = 0, ∀i.

In this case,

dS

dt
= −

N∑
i=1

(
dpi(t)

dt

)
ln pi = −

N∑
i,j=1

(
pjqji − piqij

)
ln pi

=
N∑

i,j=1

piqij ln

(
pi

pj

)
≥

N∑
i,j=1

piqij

(
pj

pi

− 1

)

=
N∑

j=1

pj

(
N∑

i=1

qij

)
= 0. (6.112)
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We therefore have a “theorem” stating that if the stationary probability distribution
is uniform, then the entropy S is non-decreasing function of time.

6.9.2 Q-Processes with Detailed Balance

If a Q process has a stationary distribution pss
i qij = pss

j qji , known as detailed
balance, then

JS(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
qji

qij

)

= 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
pss

i

pss
j

)

=
N∑

i,j=1

(
pj (t)qji − pi(t)qij

)
ln pss

j = −
N∑

j=1

dpj (t)

dt
ln pss

j

= d

dt

⎛
⎝ N∑

j=1

pj (t)
(

− ln pss
j

)⎞⎠ = 1

T

dE

dt
, (6.113)

in which

E =
N∑

j=1

pj (t)Ej , (6.114)

should be identified as the mean energy, with Ej = −T ln pss
j as the “energy” of

the state i according to Boltzmann’s law. Then, Eq. (6.111a) becomes

d

dt

(
E

T
− S

)
= −ep ≤ 0. (6.115)

F = E − T S is known as the “free energy” of a thermodynamic system. It is
expected to monotonically decreases with time in an isothermal system approaching
to equilibrium. In an equilibrium steady state, the free energy reaches its minimum.
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6.9.3 Monotonicity of F Change in General Q-Processes

Encouraged by the above results, let us consider the Kullback–Leibler divergence,
also known as relative entropy:

F(t) =
N∑

i=1

pi(t)
(

− ln pss
i + ln pi(t)

)
=

N∑
i=1

pi(t) ln

(
pi(t)

pss
i

)
≥ 0. (6.116)

One can actually show that dF/dt ≤ 0 for general Q-process without the detailed
balance:

dF(t)

dt
=

N∑
i=1

(
dpi(t)

dt

)
ln

(
pi(t)

pss
i

)
=

N∑
i,j=1

(
pjqji − piqij

)
ln

(
pi(t)

pss
i

)

=
N∑

i,j=1

pjqji ln

(
pi(t)p

ss
j

pss
i pj (t)

)
≤

N∑
i,j=1

pjqji

(
pi(t)p

ss
j

pss
i pj (t)

− 1

)

=
N∑

i=1

pi

pss
i

⎛
⎝ N∑

j=1

(
pss

j qji − pss
i qij

)⎞⎠ = 0. (6.117)

6.9.4 F Balance Equation of Markov Dynamics

More interestingly, we have a new, balance equation for the F(t):

dF(t)

dt
= Ein(t) − ep(t), (6.118a)

where ep(t) ≥ 0 is given in (6.111b), and

Ein(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
pss

i qij

pss
j qji

)
≥ 0. (6.118b)

See [9] for the proof of this inequality. Both Ein(t) and ep(t) are non-negative which
means that Eq. (6.118a) can be interpreted as “the F(t) has a source and a sink”, its
change equals to an input Ein(t), a source term, and dissipation ep(t), a sink term.
There is a mesoscopic conservation of the quantity F . Equation (6.118a) is more
meaningful than the Eq. (6.111a), in which JS does not have a definitive sign.

The balance Eq. (6.118a) and the monotonicity of dF/dt ≤ 0 have remarkable
resemblance to the first and the second laws of thermodynamics. But they are
really a part of a mathematical structure of any stochastic Markov dynamics.
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To emphasize this mathematical nature, we call all the results in this section,
collectively, mathematicothermodynamics [9, 10, 21, 24].

6.9.5 Driven System and Cycle Decomposition

The entropy production given in (6.111b) can be written as

ep =
N∑

all edge ij

(
ϕij − ϕji

)
ln

(
ϕij

ϕji

)
, (6.119)

where ϕij = pi(t)qij is the one-way probability flux from state i to j . It can be
proven that, in a stationary Q-process, the above expression can be expressed also
as [14]

ep =
N∑

all cycles �

(
ϕ+

� − ϕ−
�

)
ln

(
ϕ+

�

ϕ−
�

)
, (6.120)

in which ϕ±
� is the number of � cycle completed in a unit time, in the forward and

backward direction. Most importantly, for cycle � = (i0, i1, · · · , in, i0)

ϕ+
�

ϕ−
�

= qi0i1qi1i2 · · · qin−1inqini0

qi1i0qi2i1 · · · qinin−1qi0in

, (6.121)

which is independent of the probabilities! Therefore, ln
(
ϕ+

� /ϕ−
�

)
can and should be

understood as the entropy production per cycle, and the term
(
ϕ+

� − ϕ−
�

)
is simply

a kinematic term that counts the number of cycle completed along a trajectory. All
the nonequilibrium thermodynamics is contained in the (6.121); it is about kinetic
cycles [27]. If a Markov process is detail balanced, then its entropy production is
zero on each and every kinetic cycle.

It is well known since the work of A. N. Kolmogorov that the quantity in (6.121)
equals unity for each and every cycle if and only if the Markov process is detailed
balanced. Therefore, the mathematical notion of detailed balance provides a fitting
description of a non-driven kinetic system whose steady state is an equilibrium. For
a driven kinetic system, at least one of the cycles in the state space � has unbalanced
circulation: ϕ+

� �= ϕ−
� .
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6.9.6 Macroscopic Thermodynamics in the Kurtz Limit

For a DGP with N species and M reactions, the F function introduced in Sect. 6.9.4
is a functional of the probability distribution pV (n, t) which is itself a function of
the reaction system’s volume V . Then one naturally asks what its macroscopic limit
is as V → ∞ as in the Kurtz limit? It can be shown that [10]

lim
V →∞

F
[
pV (n, t)

]
V

= lim
V →∞

1

V

∑
n

pV (n, t) ln

[
pV (n, t)

pss
V (n)

]

= − lim
V →∞

1

V

∑
n

pV (n, t) ln pss
V (n)

= Gss
[
x(t)

]
, (6.122)

in which n = (n1, n2, · · · , nN), nk is the number of molecules of the kth species,
x = (x1, · · · , xN) is the corresponding number density x = n

V
. The Kurtz theorem

in Sect. 6.7 states that the stochastic trajectory of a DGP, nV (t),

lim
V →∞

nV (t)

V
= x(t), (6.123)

where x(t) is the solution to the deterministic, nonlinear rate equation (e.g.,
Eq. (6.89)). Most interestingly, according to the large deviation principle from the
theory of probability, when the steady state probability pss

V (n) converges to a Dirac-
δ function, its tail probability has an asymptotic expression

− lim
V →∞

ln pss
V (n)

V
= − lim

V →∞
ln pss

V (V x)

V
= Gss(x). (6.124)

This steady state large deviation rate function Gss(x) can be identified as a
generalized Gibbs function for nonequilibrium chemical reaction systems. It can
be shown that

d

dt
Gss

[
x(t)

] =
(

dx(t)

dt

)
· ∇xG

ss(x) ≤ 0. (6.125)

This is a generalization of the inequality in Eq. (6.77). See [10] for the proof.

6.10 Summary and Conclusion

This chapter presents a new modeling paradigm for biological systems and pro-
cesses that consist of multiple populations of individuals, each with an infinite
many internal degrees of freedom. The individuals are grouped into subpopulations



6 Stochastic Population Kinetics and Its Underlying Mathematicothermodynamics 185

and mathematically represented by their statistical behaviors in terms of birth,
death, migration, and state switching. We show that the population kinetics in
terms of nonlinear ordinary differential equations (ODEs) widely employed in
mathematical biology is fundamentally a stochastic kinetic theory. This stochastic
population kinetic representation of biological reality can be introduced quite
rigorously, thus it provides one with confidence in the conclusions drawn from
mathematical analysis. We called this formalism Delbrück-Gillespie process. In
the large population limit, T. G. Kurtz’s theorem, a law of large numbers, yields
a system of nonlinear rate equations that is consistent with the traditional ODEs.
In Sect. 6.9, very recent results on mesoscopic nonequilibrium thermodynamics
and its corresponding macroscopic nonequilibrium thermodynamics are presented.
Together the three parts, (1) stochastic kinetics in terms of DGP, (2) deterministic
nonlinear dynamics in terms of ODEs, and (3) the mathematicothermodynamics,
provide a comprehensive mathematical theory for a wide range of biological
systems and processes from biochemistry to ecology.

6.11 Exercises: Simple and Challenging

6.11.1 Simple Exercises

1. Compute the expected value and the variance of an exponentially distributed
random variable X with rate λ.

2. Let X1, · · · , Xn be n i.i.d. exponential random variables with rate λ. Let X∗ =
min{X1, X2, · · · , Xn}. Show that fT ∗(t) = nλe−nλt .

3. If a set of n i.i.d. random times all with distribution fT (t), fT (0) = 0 but f ′
T (0) �=

0, what is the distribution for T ∗ = min{T1, T2, · · · , Tn} in the limit of n → ∞?

6.11.2 More Challenging Exercises

4. Consider a population consisting of identical and independent individual organ-
isms, each with an exponentially distributed time for giving “birth”, with rate λ,
and going “death”, with rate μ.

(i) Now when the population has exactly n individuals, what is the probability
distribution for the waiting time to the next birth? What is the probability
distribution for the waiting time to the next death? What is the probability
distribution for the waiting time to the next birth or death event?
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(ii) Let pn(t) be the probability of having exactly n individuals in the population
at time t :

∞∑
n=0

pn(t) = 1.

What system of differential equations should pn(t) satisfy?
(iii) The mean population at time t is defined as

〈
n
〉
(t) =

∞∑
n=0

npn(t).

Based on the system of differential equations you obtained in (ii), show that

d

dt

〈
n
〉 = (

λ − μ
)〈

n
〉
.

5. The 3-state Markov system,

A
k1

GGGBF GGG

k−1

B
k2

GGGBF GGG

k−2

C
k3

GGGBF GGG

k−3

A, (6.126)

has been widely used in biochemistry to model the conformational changes of a
single protein molecule undergoing through its three different states A, B, and
C. For example, A is non-active, B is partially active, and C is fully active.

(a) The probabilities for the states, p = (pA, pB, pC), satisfies a differential
equation

d

dt
p(t) = p(t)Q,

where Q is a 3×3 matrix. Write the Q out in terms of the k’s. Show that the
sum of each and every row is zero. Discuss in probabilistic terms, what is the
meaning of this result?

(b) Compute the steady state probabilities pss
A , pss

B , and pss
C , and show that, in

the steady state, the net (probabilistic) flux from state A to B,

J ss
A→B = k1p

ss
A − k−1p

ss
B ,

is the same as the net flux from state B → state C, and also the net flux from
C → A. Since they are all the same, it is called the steady state flux J ss of
the biochemical reaction cycle in (6.126).

(c) What is the condition, in terms of all the k’s, for J ss = 0?
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6. Consider a single enzyme E in the sea of substrate molecule S. The Michaelis–
Menten kinetics is

E + S
k1
GGGBF GGG

k−1

ES
k2−→ E∗ + P. (6.127)

Because there is only a single enzyme molecule working, the concentration of S

can be assumed as always constant, at the value cS .
Write the differential equations for the probability of the enzyme being in

state E, ES, and E∗: pE(t), pES(t), and pE∗(t).
Given initial condition pE(0) = 1, pES(0) = 0, and pE∗(0) = 0, try to solve

pE∗(t).
It is clear that the time for the enzyme to move from state E to E∗ is stochastic.

Let T be the random time. What is the probability distribution for T , fT (t)? How
is it related to pE∗(t)?

Compute expected value E[T ]. Compare your result with the Michaelis–
Menten formula.
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