Homework # 5

1. Let X be a Poisson random variable taking values $n = 0, 1, 2, \cdots$ with probability mass function (pmf)
 \[p_n = \Pr\{X = n\} = \frac{\lambda^n}{n!} e^{-\lambda}. \]

 (a) Show that its variance is λ.
 (b) Let X_1 and X_2 be two Poisson random variables with expected values λ_1 and λ_2, respectively. Show that $X = X_1 + X_2$ also has a Poisson distribution, with expected value $\lambda_1 + \lambda_2$.

2. For an integer-valued random variable X with distribution p_n, the following function
 \[g_X(s) = \sum_{n} p_n s^n, \]
 is called the probability generating function (pgf) of X.

 (a) What is the pgf of Poisson random variable with expected value λ?
 (b) What are the values of $g'(1)$, $g''(1)$, where $g'(s)$ stands for g’s derivative with respect to s? Any probabilistic meaning for these quantities?
 (c) What is the pgf of binomial distribution with parameters p and N?

3. First, read the posted note on the web on “General birth and death dynamics of a single population”.

 Let $p_n(t)$ be the probability mass function of the number of individuals in a single population with stochastic dynamics. If we assume the birth and death rates (not per capita!) being u_k and w_k when there is k individuals in the population, then we have
 \[\frac{dp_k(t)}{dt} = p_{k-1}u_{k-1} - (u_k + w_k)p_k + w_{k+1}p_{k+1}, \quad k = 0, 1, \cdots \]
 Clearly, the strict birth and death rates $u_0 = w_0 = 0$. However, we shall assume that $u_0 \neq 0$ due to a very small rate of immigration. Then the very frist equation above for $k = 0$ is
 \[\frac{dp_0(t)}{dt} = -u_0 p_0 + w_1 p_1. \]

 (a) Write down the equation for $k = 1, 2, \cdots$. We are interested in the steady state probability distribution, that is $\frac{dp_k}{dt} = 0$ for $k = 0, 1, \cdots$. You will see that one can then solve p_k^{ss} in term of p_0^{ss}, p_2^{ss} in terms of p_1^{ss}, etc. Find the general expression for p_k^{ss} in terms of only p_0^{ss}.

 (b) Show that p_0^{ss} should satisfy the equation
 \[p_0^{ss} = \left[1 + \sum_{k=1}^{\infty} \left(\prod_{j=0}^{k-1} \frac{u_j}{w_{j+1}} \right) \right]^{-1}. \]
Why?

(c) Find the maximum and minimum of the discrete distribution p^*_k, as a function of k. Note that the position k^* of an extremum can only be determined up to $k^* \pm 1$. Explain your result in term of population biology.

Additional Problems for AMATH 523

4. Using the information in Prob. #2 above on probability generating function, show that in the limit of $N \to \infty$, $p \to 0$, and $Np = \lambda$, the pgf of the binomial random variable converges to the pgf of Poisson distribution with parameter λ.