
CHAPTER 8

Competition Between Two Populations

Consider two competing populations N1 and N2:

dN1

dt
= r1N1

(
1− N1

K1
− b12

N2

K1

)
, (8.1)

dN2

dt
= r2N2

(
1− N2

K2
− b21

N1

K2

)
. (8.2)

We introduce nondimensionalized variables:

x1 =
N1

K1
, x2 =

N2

K2
, τ = r1t, (8.3)

and

r =
r2
r1

, β12 = b12
K2

K1
, β21 = b21

K1

K2
. (8.4)

Then,
dx1

dτ
= x1(1− x1 − β12x2) = f(x1, x2), (8.5)

dx2

dτ
= rx2(1− x2 − β21x1) = g(x1, x2). (8.6)

Drawing null clines, it is easy to see that
(
x∗1 = x∗2 = 0

)
,
(
x∗1 = 1, x∗2 = 0

)
,(

x∗1 = 0, x∗2 = 1
)
, and(

x∗1 =
1− β12

1− β12β21
, x∗2 =

1− β21

1− β12β21

)
,

are four fixed points. Furthermore, the last fixed point is in the positve quardrant if

both β12, β21 < 1, or both β12, β21 > 1. In other words, if one of the β’s is greater

than 1, and the other less than 1, then there is no fixed point in the first quardrant.

We now carry out linear stability analysis. We are interested in the Jacobian matrix:

A =

(
∂f
∂x1

∂f
∂x2

∂g
∂x1

∂g
∂x2

)
(x∗

1 ,x
∗
2)

=

(
1− 2x1 − β12x2 −β12x1

−rβ21x2 r(1− 2x2 − β21x1)

)
(x∗

1 ,x
∗
2)

.

(8.7)

Now applying this to the four fixed points.

At (0.0) we have λ1 = 1, λ2 = r. It is unstable.
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At (1, 0), we have λ1 = −1, λ2 = r(1− β21). Therefore, it is stable if β21 > 1 and

unstable if β21 < 1.

Then at (0, 1) we have a similar result: it is stable if β12 > 1 and unstable if β12 < 1.

Finally, for the positive fixed point:

A =
(
1− β12β21

)−1
(

β12 − 1 β12(β12 − 1)
rβ21(β21 − 1) r(β21 − 1)

)
(8.8)

We see that its trace

Tr[A] = β12 − 1 + r(β21 − 1), (8.9)

and its determinant

det[A] = r(1− β12β21)
−1(β12 − 1)(β21 − 1). (8.10)

Therefore, if both β12, β21 > 1, then Tr[A] > 0 and det[A] < 0. Thus the positive

fixed point is a saddle.

If both β12, β21 < 1, then Tr[A] < 0 and det[A] > 0, and the positive fixed point is

stable.

A large β means strong competition; a smaller β means weaker competition. There-

fore, only when the two populations have equal balanced strength, there is the possi-

bility for co-existence. Then both are strong competitors, the initial situation matters.
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8.1 Sustained population oscillations

Let us now consider the following population dynamics for a pair of species X and

Y :
dx

dt
= a1 − a2x+ b2x

2y,
dy

dt
= b1 − b2x

2y. (8.11)

This dynamics can be either an ecological population system with constant immigra-

tions for X and Y , and a predator-prey interaction between X and Y :

a1−→ X
a2−→,

b1−→ Y, 2X + Y
b2−→ 3X. (8.12)

Just as the case of Lotka-Volterra nonlinear chemical reaction system which corre-

sponds to a predator-prey ecological dynamics, Eq. 8.12 can be also interpreted as a

system of chemical reactions with autocatalysis.

Introducing non-dimensionalization with

u =

√
b2
a2

x, v =

√
b2
a2

y, τ = a2t, α =
a1
a2

√
b2
a2

, β =
b1
a2

√
b2
a2

, (8.13)

we have

du

dτ
= α− u+ u2v = f(u, v),

dv

dτ
= β − u2v = g(u, v). (8.14)

The system has a positive fixed point at

u∗ = α+ β; v∗ =
β

(α+ β)2
. (8.15)

Linear analysis gives the “community matrix”

A =

⎛
⎜⎜⎝

β − α

α+ β
(α+ β)2

− 2β

α+ β
−(α+ β)2

⎞
⎟⎟⎠ , (8.16)

with determinant and trace:

det[A] =

(
∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

)
(u∗,v∗)

=
(
α+ β

)2
> 0; (8.17)

Tr[A] =

(
∂f

∂u
+

∂g

∂v

)
(u∗,v∗)

=
β − α

α+ β
− (α+ β)2. (8.18)

Actually, the two eigenvalues has an imaginary component:

λ2 − λ Tr[A] + det[A] = 0, (8.19)

whose discriminator is

Δ =
(
Tr[A]

)2 − 4 det[A]. (8.20)

Hence, when Tr[A] ≈ 0, the Δ ≈ −4(α+ β)2 < 0.

When the Tr[A] > 0, the (u∗, v∗) is unstable. What happens to the dynamics? It
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turns out that one can show that there is a bounding box.∗ Then there is the celebrated

Poincaré-Bendixson theorem.

There will be Hopf bifurcation. There are two types of Hopf bifurcation: supercritical
and subcritical. The former corresponds to a stable fixed point becomes unstable and

the emergence of a stable limit cycle; the latter corresponds to a stable fixed point

becomes unstable and the disappearance of a unstable limit cycle.

8.2 Transcritical bifurcation, Hopf bifurcation, and polar coordinates

The canonical form of transcritical bifurcation is

dx

dt
= μx− x2. (8.21)

It has two fixed points, at x∗1 = 0 and x∗2 = μ. The important things to note about

this equation, however, is that change has to be smooth. In other words, when μ
changes from −10−100 to +10−100, even though the x∗2 switched, mathematically,

from unstable to become stable, the dynamics for any reasonable x, e.g., x ∼ 10−5,

does not change at all. The change is very “localized”; in fact, both x∗1 and x∗2 are at

x = 0 when μ = 0. The fixed point at this critical condition is semi-stable.

We now consider this example

dx

dt
=

(
μ− x2 − y2

)
x− ωy,

(8.22)
dx

dt
=

(
μ− x2 − y2

)
y + ωx.

This planar system can be transformed into polar coordinates as

dr

dt
=

(
μ− r2

)
r,

dθ

dt
= ω, (8.23)

in which r ≥ 0. Therefore, for μ < 0, it has only a single fixed point at r = 0, which

is stable. However, for μ > 0, it has a unstable fixed point at r = 0 but a stable

“fixed” r =
√
μ, which corresponds to a limit cycle. This is called supercritical

Hopf bifurcation. When μ = 0, the system has a stable fixed point at r = 0. If we

change the t to −t in (8.22), then the Hopf bifurcation becomes subcritical: There is

a unstable limit cycle which circles around a stable fixed point.

If the equation for dr
dt in (8.23) were for r ∈ R, then it would have a transcriti-

cal bifurcation. Therefore, a Hopf bifurcation can be heuristically understood as a

transcritical bifurcation in r. See L. Perko, “Differential Equations and Dynamical

Systems” (Springer, 2001), Sec. 4.4.

∗ A bounding box can be constructed as follows: When u > α + β, and v > 0, the vector field (f, g)
has (u2v − u+ α, β − u2v

)
: It is pointing toward lower-right, and steeper than the line x+ y = C.

When this line intersects with u = α+ β, we construct a horizontal line on which all the vector field
has to point downward. This horozontal line interacts with the nullcline g = 0, at which a vertical line
is drawn, on which all the vector fields pointing rightward. It is easy to check that the x and y axes are
part of the bounding box.



TRANSCRITICAL BIFURCATION, HOPF BIFURCATION, AND POLAR COORDINATES 73

The Lorenz system has a subcritical Hopf bifurcation at r = rc.


