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Abstract

The 2001 g-2 spin precession frequency has been determined using the G2OFF

production of the decay electron data and a multi-parameter ratio fit function.
In this report we describe the method and systematic studies in detail. The
data were split into two data sets, corresponding to the two n-values used in
the electrostatic focusing of the beam: n=0.122 (low n) and n=0.142 (high n)
and fit to a 9 parameter ratio function which incorporates CBO effects into the
fit. R is defined as R = 1 − ωa/ωa0

, where ωa0
= 2π × 229.1 kHz, however all

R values quoted in this report have a global offset of -7.80 ppm. The final R
values (with offsets) for both data sets are consistent with each other: 108.21
± 0.91 ± 0.21 ppm for the low-n data set, and 108.42 ± 1.10 ± 0.22 ppm for
the high-n data set. An additional, much smaller data set with n=0.122 for
which the run-conditions were not ideal (however still acceptable) has also been
analyzed, the result of which is R = 110.55 ± 3.73 ± 0.35. The first error is
statistical, the second error is systematic.
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Chapter 1

2001 Data Selection

1.1 Run Selection

In the following analysis, the 2001 data were divided into two groups, the data
for n=0.121 (21.7 KV quads) and the data for n=.141 (25.3 kV quads). These
will be referred to as the low n-value and the high n-value data sets, respectively.

The runs used were selected by Chris Polly, Xiaobo Huang and others,
termed the ’golden runs’. Runs were selected based on experimental stability (ie:
only runs after the detectors were calibrated and the electrostatic quadrupoles
were “stable” were selected), accessibility/readability (some runs were simply
lost or unreadable), and data content. The details of the run selection can be
found in [2]. In the end, a total of 978 runs were selected, 606 of which were of
the low n-value data set. This corresponds to, roughly, 1.7× 109 and 1.2× 109

decay electrons after 32 µs and with an energy > 1.9 GeV for the low and high
n-value data sets respectively. With an average asymmetry of ∼ 0.38, 2.9 billion
decay electrons corresponds to a relative statistical uncertainty of ∼ 0.77 ppm
for ωa.

An additional set of runs has also been analyzed which are labeled ’sil-
ver+bronze’ (SB) runs. This set of runs includes data taken under non-ideal,
but still acceptable, run conditions, such as low kick and low scraping voltages
runs. In addition, 13 golden runs, which were missing from the g2off pro-
duction were reproduced. All but four of these runs were taken with the low-n
quadrupole high voltage settings, therefore the ’SB’ list consists of 54 total runs,
which contain approximately 160× 106 decay electrons after 32 µs and with an
energy greater than 1.9 GeV. Note, however, that the systematic studies were
not done separately for this data set, which is only 1/10 the size of the larger
low-n data set.
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Figure 1.1: Percent of “good” fills vs. run number.
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Figure 1.2: Percent of the different kinds of “bad” fills vs. run number.
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1.2 Fill Selection

Quality-control was further enforced in this analysis in the form of fill cuts.
We require that the quads be on for at least 700 µs after injection and that
there is no sign of quadrupole sparking. To check if the quadrupoles sparked
during a fill, the variables QEARLY, QMID, and QLATE are checked that they are
not zero and that the difference between the mid and early values and the late
and mid values are not “out of range”, that is, we require QMID-QEARLY < 40
and QLATE-QMID < 15.

Other effects to look for are missing (or “bad”) T0 pulses, fills where the laser
is fired that may have escaped the original run selection, and a final requirement
that there be a minimum number of 15 pulses in each fill for each calorimeter.
Fig. 1.1 shows the percent of “good” fills vs. run number. The low percentage
of good fills early on in the data-taking period is due to the T0 cuts (see Fig.
1.2). During these runs, the voltage on the T0 counter was set low so that often
the T0 pulse was below threshold, thus not appearing in the data stream. This
was eventually noticed and fixed, however we see that a fair amount (15%) of
fills are lost due to this. However in terms of useful data, this turns out to be
only 3.7% of the total number of pulses above the hardware threshold.

Late in the analysis, Qinzeng Peng discovered a large number of ’narrow
pulses’ in the g2off data. Narrowness of a pulse is defined as

n =
a(kmax − 1) + a(kmax + 1)

a(kmax)
(1.1)

where a(k) = ISAM(k) − PED, ISAM is the 8-ADC sample of the pulse in
the WFD, k = 1, 8, kmax is the element in the array with the largest value (the
peak of the pulse) and PED is the minimum value in ISAM . Narrow pulses
therefore have a small value of n, and ’normal’ pulses have values of n ranging
from 1-2. Peng also succeeded in discovering two types of narrow pulses, one
with ’one peak’, and the other with ’two peaks’. The two peak narrow pulses
have been identified as pulses that were mis-constructed due to misalignment
in the marker pulse, which aligns the two phases of the WFD. The cause of
the mis-constructed marker pulses was determined to be due to noise on the
baseline before the marker pulse which confused the phase-alignment algorithm
Since the pulses in such mis-aligned fills were mis-constructed, they must not
be included in the data. Peng has also shown that all narrow pulses have a
FITCHI2 greater than 20, whereas ’good’ pulses have a FITCHI2 less than 18.
Therefore, fills for which the average FITCHI2 is greater than 20 are thrown out.

1.3 Energy Calibration

The traditional way of calibrating the calorimeter pulse height data to actual
energy is to obtain energy spectra in units of ADC counts, and fit the linear
region found in the higher end of the spectrum to a straight line. The point
where it crosses the axis (the “endpoint”) is then assumed to be 3.1 GeV, and
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(b) Detectors 5-8

Figure 1.3: Energy calibration on a run-by-run basis.

one now has a conversion between ADC counts and energy. Xiaobo Huang
has done this for the G2OFF data, and Figs. 1.3-1.5 show the endpoints for the
individual detectors on a run-by-run basis. One can see that over time the pulses
became slightly smaller, which is not unexpected since detectors and electronics
can degrade over time.

Given these endpoints, two-dimensional Energy vs. Time histograms were
constructed, with energy binned in 0.2 GeV steps, and time binned in 0.4365
µs steps, roughly 1/10 the g-2 period. This was originally done in order to look
at average energy vs. time in the fill, and to do this one must bin out the g-2
period. The results of that study are found in Section 3.2.

At present however, we fit the energy-integrated data, summed over all runs,
at late times (∼ 180µs) with different energy thresholds to obtain A(Et), N(Et)
and NA2(Et), where Et is the energy threshold, and energy is defined by Xi-
aobo’s endpoints. The plots in Figures 1.6-1.7 show the dependence of A, N
and NA2 on energy threshold for detector 1.

We wish to minimize the statistical error on ωa and therefore we need to
maximize NA2. Fitting a 7th order polynomial to the histogram of NA2, we
then set the derivative of the fitted polynomial to zero and find the root (we use
the CERNLIB function RZERO to do so). Fig. 1.8 shows the energies, expressed in
GeV (defined by the determined endpoints), where NA2 is maximized for each
detector. These are the energy thresholds that are used for each detector. An
upper energy cut of 3.2 GeV is applied to all detectors when filling the time
spectra. This choice is based on the fact that we should have very few decay
electrons above 3.1 GeV as well as the desire to eliminate as many pileup events
from entering into the decay spectrum.
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Figure 1.4: Energy calibration on a run-by-run basis.
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Figure 1.5: Energy calibration on a run-by-run basis.
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Figure 1.6: Fit NA2 vs. lower energy threshold. The histogram is fit to a 7th

order polynomial in order to determine the maximum value of NA2, which will
minimize the statistical error on the fitted value of ωa.
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Chapter 2

2001 ωa Analysis

2.1 The Ratio Method

The ratio method was originally derived by Yuri Orlov and first implemented
by Joel Kindem. Since then, the ratio method has been used in the analysis
of the 1999 data by Long Duong and the 2000 data by Ben Bousquet. The
basic idea is to shift one quarter of the data forward in time by half a g-2
cycle, shift another quarter of the data backward in time by half a g-2 cycle,
and leave the remaining one-half of the data untouched. If the spin precession
frequency is already known to within sufficient accuracy, one can then reduce
the five-parameter function

N5(t) = N0e
−t/τ (1 +A cos(ωat+ φ) (2.1)

to a three-parameter function

r(t) = A cos(ωat+ φ) + C1 (2.2)

by taking a ratio of differences over sums of the shifted and non-shifted data
(see Section A.1 for details of the method). Figs. 2.1 and 2.2 show the N(t)
spectrum and the same data converted into the ratio (r(t)) spectrum.

However, much work was put into this analysis to properly account for CBO
in the fitting function. Therefore, several functions were used in fitting the data;
in the end, it was decided that a 9-parameter ratio function best describes the
data, and it is from fits to this function that the final values of R are taken.
A comparison of the fit results using the various fit functions may be found in
Section 2.7.

2.2 CBO Parameters

If one assumes the same exponentially decaying CBO envelope for Ncbo, Acbo
and φcbo, then Eq.A.33 has 11 parameters: the three from Eq. A.20, the three
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Figure 2.3: FFT of the residuals from a 5 parameter fit at 180µs of the usual
time spectrum of the low n-value data set. The main CBO peak was fit to a
Gaussian, the results of which are shown in the upper right-hand corner.
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Figure 2.4: FFT of the residuals from a 5 parameter fit at 180µs of the usual
time spectrum of the high n-value data set. The main CBO peak was fit to a
Gaussian, the results of which are shown in the upper right-hand corner.
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Low n-value Data Set

main g-2 lower cbo upper cbo
cbo sideband sideband

freq. (kHz) 419.06 229.75 188.46 649.74
sigma (kHz) 7.49 6.73 8.36 9.93
amp. (a.u.) 22293. 12224. 6029.7 4739.6

High n-value Data Set

main g-2 lower cbo upper cbo
cbo sideband sideband

freq. (kHz) 490.62 230.25 260.87 719.76
sigma (kHz) 5.94 7.43 6.22 7.69
amp. (a.u.) 25861. 8355.1 6058.6 4512.0

Table 2.1: Results of Gaussian fits to the four main peaks in the FFT spectrum
of residuals to fits at late times.

CBO amplitudes and their phases, the CBO lifetime, and the CBO frequency.
However, we can reduce the number of parameters by obtaining the CBO fre-
quency and lifetime empirically. The CBO frequency is quite easy to obtain:
simply fit the time spectra to the five parameter function at late times (in this
case, ∼ 180µs after injection), subtract the results, and Fourier transform the
residuals (ith residual = Nifit

−Nidata
). The results of this approach are shown

in Figs. 2.3- 2.2. The top plots show the frequency range of 100-1000 kHz, and
four peaks are immediately discernable: the main CBO peak, the residual g-2
signal at ' 229.1 kHz, and the “lower” and “upper” CBO sidebands (fcbo−fg−2
and fcbo+fg−2). To obtain values for the CBO frequencies, Gaussian fits around
the peaks’ were performed, the results of which are summarized in Table 2.1
(the results are also printed in the upper right corners of each plot). The top
plots show the range of frequencies from 100 to 1000 kHz, with the CBO peak
fit in green and the residual g-2 peak fit in red (the fit results of the g-2 peak are
not printed in the corner, however). The bottom plots show narrower frequency
ranges to zoom in on the sideband frequencies, the left plot showing the lower
CBO sideband and the right plot showing the upper CBO sideband. The side-
band fits are in green and the fit results are printed in the uppper right corner;
again, the red line is the residual g-2 peak.

We now have reduced Eq. A.33 to 10 parameters by eliminating the need to
fit for the CBO frequency. We can further reduce the number of free parameters
by determining the CBO lifetime. This was done by looking at the average
energy vs. time, using time bin widths smaller than the g-2 period. In particular,
in this study, the time bin width is 1/8 of a g-2 period. The energy distribution
varies a great deal over a g-2 period, since at the peak of the g-2 period there
are many more high-energy decay electrons than at the trough of the period.
However, the energy distribution is effectively the same every eighth time bin
(always at the same g-2 phase), yet it is very sensitive to CBO acceptance effects,

14



Avg. Energy (PUS) vs. Time Det. 11

Low n-value Data Set

  27.04    /    34
P1  0.2693E-02
P2   64.66
P3   39.80
P4  0.8187
P5  1.0000
P6 -0.2258E-06

us

Avg. Energy (PUS) vs. Time Det. 19

  43.61    /    34
P1 -0.1895E-02
P2   84.72
P3   38.41
P4  0.1111
P5  0.9996
P6  0.1023E-05

us

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

40 60 80 100 120 140 160 180 200

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

40 60 80 100 120 140 160 180 200
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(d) High n-value data set.

Figure 2.5: Average energy vs. time where only decay electrons falling within
the same g-2 phase are considered. The acceptance effect of CBO is very ap-
parent, and the histograms are fit to Eq. 2.3 in order to extract the frequency
and lifetime of the CBO.

especially those energy distributions of decay electrons coming near the peak of
the g-2 oscillation. Just a few examples of the CBO acceptance effect on the
average energy are shown in Fig. 2.5, for detectors 11 and 19, for both data
sets.

The oscillations are stunningly clear, and in fact are present in nearly all
eight g-2 phases, not just those near the g-2 peak. Therefore the data for
detectors 9-24 (except 20) were fit (in the range of ∼ 30 to ∼ 200µs) to the
function

< ETa/8 > (t) = Ae−t/τc cos(ωt+ φ) + c1t+ c0 (2.3)

where A = p1, τc = p2, ω = p3, φ = p4, c1 = p5 and c0 = p6. We obviously
have assumed here an exponential decay as the CBO envelope, and the c1 and c0
parameters of the fit function are present in order to account for actual gain. For
detectors 9-24, a linear function is sufficient to describe the changes in average
energy. Since there are eight g-2 phases and 15 detectors used in this study,
a total of 120 fits were made. Cuts on the fit results were applied (reasonable
values of fit χ2/d.o.f. and reasonable values of fit parameters and errors on the
fit parameters), and typically about 2/3 of the fits were found to be acceptable.

The distributions of the fitted CBO lifetimes and frequencies and fit χ2/d.o.f.
of the acceptable fits are shown in Figs. 2.6-2.7. The mean CBO frequencies,
f = |fc − 2fg−2|, are found to be fcbo = 418.7 ± 0.2 and 490.3 ± 0.2 kHz for
the low and high n-value data sets respectively. These agree to within 2 σ with
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Figure 2.6: Distributions of fit CBO lifetime obtained from fits to < ETa/8 >
vs. time plots (low n-value data set) to Eqn. 2.3.
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Figure 2.7: Distributions of fit CBO lifetime obtained from fits to < ETa/8 >
vs. time plots (high n-value data set) to Eqn. 2.3.
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the CBO frequencies found above. The means of the distributions of the fit χ2

also agree with the expected value of 1.0 to within 2 σ. Finally, the mean CBO
lifetimes found are 92.1 ± 5.2 and 130.1 ± 5.5µs for the low and high n-value
data sets respectively. These are the values of the lifetimes used in the fits in
this analysis.

2.3 Removing Pileup From the Data

When two decay electrons hit a detector within the detector’s deadtime, the two
pulses cannot be separated by the pulse-finding algorithm and are treated as
one pulse. These pileup events affect the time spectrum of the decay electrons
by creating a background term with its own asymmetry and g-2 phase, which is
highly correlated to the spin precession frequency. The pileup background term
is well understood, and could be included in a fit, however any uncertainty in
the pileup phase on the order of tens of mrad can induce a systematic shift in
the fit value of the spin precession frequency on the order of a few tenths of a
ppm. Instead of fitting to the pileup background term, methods to statistically
construct the pileup by looking at ’shadow’ pulses have been developed that
allow one to subtract the pileup from the data before fitting to relatively high
accuracy. Since the pileup is reconstructed, the issue of any uncertainty in phase
of the pileup is greatly reduced.

In this analysis, we use the pileup contruction algorithm derived in [3], us-
ing an energy-dependent deadtime and an energy-dependent scale factor for
combining two pulses calculated by Ivan Logashenko. Typical values for the
deadtime and scale factor are 2.9 ns and 0.96, respectively. The time offset of
the shadow pulse search window is set to 12 ns for all detectors. Figs. 2.8-2.10
show the energy spectra of the individual detectors before pileup subtraction
(black) and the energy spectra of the constructed pileup events (blue and red).
The number of pileup events goes negative around 2.6 GeV; this means that
below 2.6 GeV, pileup events have a negative contribution to the number of
detected decay electrons, whereas above 2.6 GeV pileup events have a positive

contribution. The actual energy at which the pileup spectrum crosses zero as a
function of detector is shown in Fig. 2.11.

Time spectra of the constructed pileup events using different energy cuts for
detector 1 are shown in Fig. 2.12. Note that for the nominal cuts (1.9 < E < 3.2
GeV) applied to the data, the number of pileup events as a function of time
oscillates near zero and therefore the integrated number of events is very close
to zero. This is not surprising, since if one looks at Figs. 2.8-2.10 then it is
clear that from 1.9-3.2 GeV, nearly half the constructed PU events contribute
negatively (the lower energy events) and the other half contribute positively
(the higher energy events).

In order to estimate the efficiency with which we construct pileup, we com-
pare energy spectra obtained during different times from the spill. Specifically,
we compare both pileup-subtracted and unsubtracted energy spectra of decay
electrons detected from 20-250 µs after injection to energy spectra from elec-
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(c) Detectors 1-4.
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(d) Detectors 5-8.

Figure 2.8: Energy spectra for the individual detectors. The black line repre-
sents the spectrum before pileup subtraction, the blue line represents the spec-
trum of the positive contribution of the pileup events, and the red line represents
the spectrum of the negative contribution of the pileup events.

Det. 09  Energy Spectrum   (GeV)

N
(E

)

Det. 10  Energy Spectrum   (GeV)

N
(E

)

Det. 11  Energy Spectrum   (GeV)

N
(E

)

Det. 12  Energy Spectrum   (GeV)

N
(E

)

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6
10

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6

(a) Detectors 9-12.

Det. 13  Energy Spectrum   (GeV)

N
(E

)

Det. 14  Energy Spectrum   (GeV)

N
(E

)

Det. 15  Energy Spectrum   (GeV)

N
(E

)

Det. 16  Energy Spectrum   (GeV)

N
(E

)

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6
10

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6

10

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6
10

10 2

10 3

10 4

10 5

10 6

10 7

2 3 4 5 6

(b) Detectors 13-16.

Figure 2.9: Same as Fig. 2.8.
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(b) Detectors 21-24.

Figure 2.10: Same as Fig. 2.8.
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Figure 2.11: Energy at which the number of pileup events crosses zero as a
function of detector.

20



N_PU vs. t, Det. 01, E_min=1.9, E_max=3.2 GeV us

N

N_PU vs. t, Det. 01, E_min=1.9, E_max=3.8 GeV us

N

N_PU vs. t, Det. 01, E_min=1.9, E_max=5.0 GeV us

N

-400

-200

0

200

40 60 80 100 120

0

200

400

600

40 60 80 100 120

0

200

400

600

800

40 60 80 100 120

(a) Lower energy threshold is fixed,
upper energy threshold is varied.

N_PU vs. t, Det. 01, E_min=1.8, E_max=3.8 GeV us

N

N_PU vs. t, Det. 01, E_min=1.9, E_max=3.8 GeV us

N

N_PU vs. t, Det. 01, E_min=2.0, E_max=3.8 GeV us

N

-200

0

200

400

40 60 80 100 120

0

200

400

600

40 60 80 100 120

0

200

400

600

40 60 80 100 120

(b) Upper energy threshold is fixed,
lower energy threshold is varied.

Figure 2.12: Constructed pileup time spectra for detector 1 using different en-
ergy cuts.

trons detected after 250 µs. Since there is less data after 250 µs, the energy
spectra from the late-time data must be scaled up by a factor λ. The scale
factor λ is obtained by taking the ratio of Nearly(E) to Nlate(E) and fitting the
region 2.3 GeV < E < 2.7 GeV to a constant. Typical values for λ are 34.3,
which is very close to what one would expect from the simple approximation of
exp((250− 20)/64.4.

We define the parameter ζ such that

ζ(E) =
NearlyP US

(E)− λNlate(E)

Nearly(E)− λNlate(E)
(2.4)

In the region where pileup dominates the spectrum, energies above 3.1 GeV,
the average value of ζ is an approximation of the inefficiency with which we
construct the pileup. Fig. 2.13 shows the average values of ζ versus detector,
where the average value of ζ is taken from 3.1-4.5 GeV. With a few exceptions,
we typically construct pileup with an efficiency > 95%.

2.4 Energy Scale Changes

If the energies of the detected decay electrons change with time, due to detec-
tor/PMT response (gain), residual pileup, etc., then this introduces an early-to-
late effect on the counting rate. If not dealt with properly, this is problematic
when fitting the data.
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Figure 2.13: Pileup construction efficiency (average ζ from 3.1-4.5 GeV) vs.
detector.

One way to get a handle on energy scale changes is to look at average energy
as a function of time in the fill. Figures 2.14- 2.16 show the normalized average
energy vs. time in the fill for each detector, using the entire data set. The
normalization is with respect to the average energy of decay electrons detected
after 250 µs. The red circles show the average energy vs. time before pileup
subtraction and the blue triangles show the average energy vs. time after pileup
subtraction. We see that at early times pileup raises the average energy by
about 0.07-0.08%.

Of particular concern are detectors 3-7 which show not only very large
changes in < E > vs. time, but the time-dependence of these changes does
not ’behave’ as any of the other detectors. The cause of these large, odd-shaped
changes in average energy during the first 100 µs for these detectors has been
found by Logashenko to be due to the treatment of island length by the G2OFF
production. Detectors 3-7, because of their close proximity to the injection
point, see the largest amount of flash, and at early times the detectors contin-
uously digitize. The very long islands of data seen during and just after the
WFDs’ continuous digitization are broken up into smaller islands in order to
fit the individual pulses. This affects the number of samples each pulses is fit
to, and since there is an early-to-late change in the number of samples used in
the pulse fitting routine, one finds an early-to-late affect on the average energy.
According to Logashenko, “[the] pulse shape is known only to few-percent preci-
sion, and the pulse has a long tail. Therefore, when we fit to a different number
of sample, we get slightly different fit result. The figure of merit is the following:
if one changes the island length by 1 sample, the reconstructed pulse amplitude
will change by [10−4]. In the worst case the average island length changes by 10
samples, which lead to [an effect of] about [10−3].” The large change in average
energy for these detectors is not as dramatic in the g2Too production because
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the number of samples fitted per pulse is fixed and therefore only islands with
multiple pulses are affected. On the otherhand, the G2OFF production island
with just one pulse are also affected.

Logashenko has also shown that one may treat this early-to-late change in the
average WFD island length problem as a linear energy-scale change. However
another systematic error arises due to the effect of having multiple pulses on a
single island; this will be discussed and evaluated in Section 3.2.

Until the cause of the large changes in average energy was discovered, several
other possible causes were investigated. We document these studies here for
both their historical and “physics” value.

Lost antiprotons (p̄) were suggested as a possible source for the large changes
in < E > seen in detectors 3-7. However, it was determined that the < E >
changes by ∼ 0.03% per 1% of p̄ contamination. The ratio of Np̄ seen after
the quadrupoles are turned off to Ne− is < 0.3%. Therefore we would need
to be losing an unreasonable amount of antiprotons at early times to see any
measureable effect on the < E >.

Neutrons, which show up as ’narrow pulses’ in the calorimeters, were also
proposed as a possible candidate for the large changes in < E > vs. time seen
in detectors 3-7. However, this model was ruled out since detector 8 which sees
an order of magnitude more narrow pulses than detectors 3-7, does not see large
changes in average energy vs. time.

As shown previously, pileup, if not subtracted from the data, changes the
average energy by almost 0.1% at very early times. If we subtract pileup with
with better than 95% efficiency, then we expect a 5%× 0.1% change in < E >
at the earliest times, which again is completely negligible in comparison to the
size of the changes in < E > seen in the first 100 µs (of order 0.2%).

We assume that the changes seen are true energy-scale changes due to some
linear effect on the energies of the decay electrons, whether it is PMT gain or
an effect due to the pulse fitting algorithm. Since the decay electron energy
spectrum is not flat versus energy, we must determine how the ratio of early-to-
late average energies relates to ’gain’, where ’gain’ is defined as a linear change
in a detector’s pulse height. In other words, we need to understand how to go
from

Eg
E

= 1 + g (2.5)

to
< Eg >

< E >
= 1 +m · g (2.6)

where m relates changes in average energy to gain. To determine m, we apply
various software gains to late-time data where energy-scale changes are assumed
negligible and plot the ratio < Eg > / < E > vs. gain for each detector. The
plot on the left of Fig. 2.17 shows such a plot for detector 10, and the plot on
the right shows the extracted slope, or m, for each detector. Having determined
m, we next determine

fg(t) =
< Eg >

< E >
(t) (2.7)
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(b) Detectors 5-8.

Figure 2.14: Average energy vs. time after injection. The red circles are
Ē/Ēlate for non-pileup-subtracted data, the blue triangles are Ē/Ēlate for
pileup-subtracted data.

No PUS PUS

Avg. Energy vs. Time Det.09  us

No PUS PUS

Avg. Energy vs. Time Det.10  us

No PUS PUS

Avg. Energy vs. Time Det.11  us

No PUS PUS

Avg. Energy vs. Time Det.12  us

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

50 100 150 200
0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

50 100 150 200

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

50 100 150 200
0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

50 100 150 200

(a) Detectors 9-12.
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(b) Detectors 13-16.

Figure 2.15: Same as in Fig. 2.14.
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(b) Detectors 21-24.

Figure 2.16: Same as in Fig. 2.14.

by fitting the average energy vs. time plots to a polynomial. In practice, the
order of the polynomial is chosen ’by eye’ such that the function passes through
all the data points. Applying the proper correction

E =
Eobs

1 + (fg(t)− 1)/m
(2.8)

to each pulse, we see in Figs. 2.18-2.20 a great improvement in the stability of
the average energy vs. time. This implies that whatever is causing the changes
in average energy vs. time has a dominantly linear effect on the energies of the
pulses. If this were not the case, if the effect was non-linear, then applying a
gain correction would not flatten out the average energy vs. time.

However, just because the gain correction manages to flatten out the average
energy vs. time of the decay electrons, this does not necessarily mean that
applying the gain correction is the proper thing to do. A better judge of whether
or not one should make the correction is the time spectrum itself, or rather, the
fits to the time spectrum.

Fig. 2.21 shows the fit χ2/d.o.f. for detector 25 when applying a -1x correc-
tion (red), no correction (blue) and a 1x correction (blue). We see that for the
low n-value data set that there is a significant improvement in the fit χ2/d.o.f.
when we apply the gain correction. The improvement is considerably smaller
for the high n-value data set. As expected, the fits get significantly worse when
we magnify the gain in the data by applying a -1x correction.

Another parameter to investigate is the asymmetry. Since asymmetry is
energy dependent, the fit asymmetry will not be constant versus fit time if the
average energy vs. time is changing. We see in Fig. 2.22 that when we do
not apply the correction (middle plots) the fit asymmetry is more or less stable
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Figure 2.17: To determine the sensitivity of average energy to gain, artificial
gains were applied to the data.
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(b) Detectors 5-8.

Figure 2.18: Pileup-subtracted average energy vs. time before (red circles) and
after (blue triangles) an energy-scale correction was applied.
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(a) Detectors 9-12.
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(b) Detectors 13-16.

Figure 2.19: Same as Fig. 2.18

W/out Correction

With Correction

Avg. Energy vs. Time Det.17  us

W/out Correction

With Correction

Avg. Energy vs. Time Det.18  us

W/out Correction

With Correction

Avg. Energy vs. Time Det.19  us

0.998

0.999

1

1.001

1.002

40 60 80 100

0.998

0.999

1

1.001

1.002

40 60 80 100

0.998

0.999

1

1.001

1.002

40 60 80 100

(a) Detectors 17-19.
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(b) Detectors 21-24.

Figure 2.20: Same as Fig. 2.18
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(b) High n-value data.

Figure 2.21: Comparison of fit χ2/d.o.f. vs. fit time between between un-
corrected and gain-corrected data.

vs. time, however it does trend downward over time. When the correction is
applied (bottom plots), the asymmetry is still more or less stable vs. time, but
now it trends upwardward over time. The trend upward is also consistent with
expectations from low-energy pileup.

Based on the facts that the average energy vs. time is constant, the fit
χ2/d.o.f. improves and the fit asymmetry is flat vs. time after we apply a gain
correction to the data, we therefore will use gain-corrected data to obtain our
final fit values for R. A systematic error due to uncertainties in the corrections
will be determined later (see Section 3.2).

2.5 Fast Rotation and Fill Randomization

Because the muon beam is produced and injected in bunches of width ∼ 20
ns from the AGS, the stored muons are not distributed uniformly around the
storage ring immediately after injection. However, within 50 µs however the
injected beam ’debunches’ and the bunch-structure of the injected muon beam
is greatly diminished. Debunching occurs because the slower muons actually
catch up to the faster muons, since the slower muons are at smaller average
radii than the faster muons, and the actual difference in velocity is very small.
The counting rate of the decay electrons is therefore modified to be (assuming
the simple five-parameter function for counting rate):

N(t) = N5(t) ∗ ffr(t) (2.9)
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(b) High n-value data.

Figure 2.22: Comparison of fit asymmetry vs. fit time between uncorrected data
sets (top) and gain-corrected data sets (bottom).
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where
ffr(t) = Afr(t) ∗ cos(ωcyct+ φcyc) (2.10)

where fr stands for ’fast-rotation’, Afr(t) describes the decaying envelope of
the bunched structure of the muons in the storage ring, and ωfr is the fast-
rotation, or cyclotron, frequency. However, because the cyclotron frequency
is so much higher than that of the g-2 frequency, instead of modifying our fit
function we can effectively filter out the cyclotron frequency from the data. This
is done by randomizing the time for T0 in each fill. The cyclotron period is very
close to 149.185 ns, therefore adding random times generated from a uniform
distribution between -74.5925 to +74.5925 ns for each fill washes out the fast
rotation signal. Fig. 2.23 shows the FFT of the time spectra of the data from
detector 17, which is gated on very early after injection, between 0 and 200
µs and of a binwidth of 5 ns, with and without randomization. We see that
the amplitude of the fast rotation peak is reduced by 3 orders of magnitude,
whereas the amplitude of the g-2 frequency component is unaltered by the fill
randomization procedure. In the end, five histograms are built with different
random numbers in each fill, and the results of the final value for R is taken
from the average of the 5 fits.

Because randomization is so effective in removing the fast rotation compo-
nent in the time spectrum, one may in fact use this process to eliminate all other
effects on the counting rate, including muon lifetime, g-2, CBO, and muon de-
cay, by taking the ratio of the non-randomized time spectrum to the randomized
time spectrum; this leaves only the fast rotation in the time spectrum. Such
a ratio is shown in the top plots of Fig. 2.24, where on the left the fast ro-
tation function for detector 17, ffr(t), is plotted from 8-100 µs, which shows
the envelope of the fast rotation oscillations, and on the right it is plotted from
10-12 µs which shows the oscillations themselves. The FFT amplitudes of this
time spectrum, from 0-200 µs is shown in the bottom plots of Fig. 2.24. On
the bottom left the FFT amplitudes in the range 6.3-7.15 MHz are plotted, and
a very sharp peak is seen at the fast rotation frequency. This peak is much
sharper than the peak obtained in Fig. 2.23, since the muon lifetime, which is
the main contributor to the width of the peak in Fig. 2.23 is divided out. On the
bottom right of Fig. 2.24 the FFT amplitudes in the frequency range 0.1-0.95
MHz are plotted, and we see that there is no g-2 frequency peak. Although this
approach to obtaining the fast rotation frequency was not used in this analysis,
this approach may be a very useful tool for the fast rotation analysis, which
gives us the radial distribution of the stored muons.

2.6 Histogram Filling and Fit Procedure

The time of the decay electron is obtained by the following formula:

timei = (int((TSTARTi + TOFFSET+ 0.5)2.5) ∗ 2.5−
TOFFSET+ FITTIMEi − T0MEAN+
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Figure 2.24: Top Left: Ratio of non-randomized time spectrum to the random-
ized time spectrum of detector 17 from 8-100 µs after injection. Top Right:
Same as on left, but from 10-12 µs. Bottom Left: FFT of the ratio time spec-
trum above from 0-200 µs in the frequency range 6.3-7.15 MHz. The sharp peak
is that of the fast rotation frequency. Bottom Right: Same as on left, but in the
frequency range 0.1-0.95 MHz. Note that the g-2 frequency has been effectively
divided out.
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tshift + trand)/1000. (2.11)

where TSTART, TOFFSET, FITTIME, and T0MEAN are variables from the g2off

production are of REAL precision. DOUBLE PRECISION in the time of the pulse
is obtained from the first line of Eq. 2.11. All other variables and numbers are
of double precision. tshift is a double precision variable that adjusts the pulse
times for differences in cable lengths, and trand is a fill-dependent random time
between -74.5925 to +74.5925 ns that washes out the fast-rotation structure of
the data.

The ratio method requires four time spectra to be built, therefore a random
integer between 0 and 3 is generated from a normal distribution obtained using
the RANLUX routine at luxury level 4. The four number 0, 1, 2, and 3 determine
into which of the four histograms the pulse time gets inserted: if it is 0, the pulse
time gets shift by +1/2 the g-2 period and is inserted into the u+ histogram, if
is 1 the pulse time is shifted by -1/2 the g-2 period and is inserted into the u−
histogram, and if it is either 2 or 3, the pulse time is not shifted and is inserted
to either the v1 or the v2 histogram respectively.

The u+, u−, v1, and v2 time spectra are later summed over runs, and then
the ratio time spectra are built.

Since the g-2 phase is energy dependent, the detectors do not necessarily
have all the same phase. We therefore should align the detectors so that they
are all in phase. To accomplish this, we fit the ratio time spectra to the 3
parameter ratio function and obtain the fit parameters as a function of fit start
time. We then obtain the phases of each detector by fitting a constant to phase
vs. fit start time after 100 µs. The results of these fits are shown in table 2.2.
All phases are quite close to π which seems like a reasonable phase to align the
detectors to. Therefore, we build new time spectra, however this time the times
of the pulses are adjusted such that

time′i = timei +
φfit − π
ωa

. (2.12)

where timei is defined by Eq. 2.11.
To fit the ratio time spectra, the CERNLIB routine MINUIT is used with the

following commands:

(1) migrad

(2) improve

(3) minos

(4) migrad

The command migrad minimizes the function with “the most efficient and com-
plete single method” [4]. Improve searches “for additional distinct local minima”
[4], and minos performs a very reliable error analysis calculation which takes
“account of non-linearities in the problem as well as parameter correlations...”
[4].
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Phase vs. Detector

Det. Phase Det. Phase Det. Phase

01 3.068692 09 3.068926 17 3.064036
02 3.072004 10 3.070950 18 3.072648
03 3.076609 11 3.068810 19 3.062937
04 3.085156 12 3.073176 20 ——–
05 3.090871 13 3.073592 21 3.064160
06 3.075665 14 3.069421 22 3.062883
07 3.089982 15 3.067344 23 3.068196
08 3.068110 16 3.068527 24 3.066248

Table 2.2: Phase vs. detector. These were initially obtained in order to align
the detectors so they are all in-phase.

2.7 Ratio Fit Results

3 Parameter Ratio Fit

The data were fit to Eqn. [A.20],

r3(t) = Aa cos(2πfa(1− (R−Roff )× 10−6)t+ φa)− C1 (2.13)

where fa = 229.067 kHz. Roff is an offset known only to the analyzer, used to
ensure a blind analysis of aµ. R and fit χ2 vs. Detector with a fit start time of
32.5µs are shown in Fig. 2.25 for the low and high n-value data sets on the left
and right respectively. The first 24 detectors in the R vs. detector plot is fit
to a constant, which gives the average R value over the 23 detectors. Detector
20, ignored in the 2001 analysis, is set to R = 0 and δR = 0; this has no effect
on the fit to a straight line, since with δR = 0, it’s R value has no weight. The
resulting average R values for the low and high n-value data sets respectively
are 107.6 ± 0.94 ppm and 109.2 ± 1.17 ppm, where the error is obtained from
the fit to a constant.

To get a better view of what happens when we don’t fit for CBO, R vs. fit
start time for the sum of detectors 1-12 (detector 26), 13-24 (detector 27), and
1-24 (detector 25), where detector 20 is always excluded, is shown in Fig. 2.26.
For the low n-value data set, we see that from about 30 to 100 µs, the R-values
for both halves of the ring track quite well, the biggest differences being near 38,
50 and 80 µs. The fit R-values of the two different data sets does seem to diverge
around 100 µs, however they later converge around 200 µs, so this is most likely
a statistical effect. However, for the high n-value data set, there is quite a large
difference (∼ 3 ppm) in the R-values for the two halves of the ring at all fit start
times. By splitting the high n-value data set up into various subsets, fitting
the subsets and looking at the differences between the fit R values of the first
and second halves of the ring, Peter Shagin has demonstrated that this 3 ppm
difference is very likely a statistical effect. We also see oscillations of roughly
30 kHz in both data sets; this is most easily seen by looking at the difference

33



Low n-value, 3 Par. Fit

  18.34    /    22
A0   107.6  0.9413

Det.

R

Det.

C
hi

**
2

95

100

105

110

115

120

5 10 15 20 25

0.9

0.95

1

1.05

1.1

1.15

1.2

5 10 15 20 25

(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.25: Top: R vs. Detector for the 3 parameter fit. Bottom: Fit χ2/d.o.f.
for each detector for the 3 parameter fit. All points are taken at t=32.5 µs.

between R vs. fit start time of the two halves of the ring, the bottom plots in
Fig. 2.26. This is the difference fCBO−2fg−2. This leaves one with little doubt
that CBO must be fit for or otherwise dealt with in both data sets.

Fig. 2.27 shows the fit asymmetry for detector 25 vs. fit starttime, and the
χ2/d.o.f. vs. fit start time for detectors 25-27.

5 Parameter Ratio Fit

In this fit we neglect the effect of CBO on the asymmetry and phase, and
calculate the ratio by writing out explicitly the function:

r5(t) =
2f0(t)− f+(t)− f−(t)
2f0(t) + f+(t) + f−(t)

(2.14)

where

f0(t) = (1 + e−t/τcANc
cos(ωct+ φc))(1 +A cos(ωat+ φa)) (2.15)

and

f±(t) = (1 + e−t
′/τcANc

cos(ωct
′ + φc))e

∓T/(2τ)(1 +A cos(ωat
′ + φa)) (2.16)

where t′ is the shifted time
t′ = t± T/2, (2.17)

ωa = 2πfa(1− (R−Roff )× 10−6), (2.18)
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(a) Low n-value data set.

High n-value, 3 Par. Fit
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(b) High n-value data set.

Figure 2.26: Top: R vs. fit start time for the 3 parameter fit for different
combinations of detectors: 1-12 (red circles), 13-24 (blue triangles), and 1-24
(black squares). Bottom: Difference of R vs. fit start time plots between first
and second halves of the ring.
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(a) Low n-value data set.
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Figure 2.27: Top: Asymmetry vs. fit start time for detector 25 for the 3 param-
eter fit. Bottom: χ2/d.o.f vs. fit start time (bottom) for different combinations
of detectors for the 3 parameter fit.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.28: Top: R vs. Detector for the 5 parameter fit. Bottom: Fit χ2/d.o.f.
for each detector for the 5 parameter fit. All points are taken at t=32.5 µs.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.29: Top: R vs. fit start time for the 5 parameter fit for different
combinations of detectors: 1-12 (red circles), 13-24 (blue triangles), and 1-24
(black squares). Bottom: Difference of R vs. fit start time plots between first
and second halves of the ring.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.30: CBO amplitude (top) and phase (bottome) vs. detector for the 5
parameter ratio fit.
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Figure 2.31: Asymmetry vs. fit start time for detector 25 (top) and χ2/d.o.f
vs. fit start time (bottom) for different combinations of detectors for the 5
parameter fit.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.32: R vs. Detector for the 7 parameter ratio fit. Left: Low n-value
data set. Right: High n-value data set. All points are taken at t=32.5 µs.

as before, τ is the dilated muon lifetime fixed to 64.4 µs, ANc
is the amplitude

of the CBO effect on N , and φc is the CBO phase. The CBO frequencies and
lifetimes were fixed to the values determined in Section 2.2: 419.1 kHz and 92.1
µs for the low n-value data set and 490.6 kHz and 130.1 µs for the high n-value
data set.

Fig. 2.28 shows R vs. detector for the two data sets. The fitted values for
average R at 32.5 µs are very consistent with those obtained from the three
parameter fit. In fact, comparing all plots from the 3 parameter fits to those
from the 5 parameter fits, we see no real difference between the two.

CBO amplitudes and phases vs. detector with a fit start time of 32.5µs are
shown in Fig. 2.30. As expected, the CBO phase changes from detector to
detector, traversing 2π radians from the first to last detector. The difference
in phase between detectors is not exactly equal to 2π/24, which we understand
to be due to differences in geometrical acceptances for each detector and of
course statistical fluctuations. However, although reasonable values for the CBO
parameters were obtained in the fits, it is still quite clear that the functional
form of the fit is not quite right, since we still see the ∼ 30 kHz oscillations in
Fig. 2.29 that we saw in the three parameter ratio fits.

Again, asymmetry and χ2/d.o.f. vs. fit start time is shown in Fig. 2.31.

7 Parameter Ratio Fit

The data were fit to the function:

38



Low n-value, 7 Par. Fit

Fit Start Time                          (us)

R
Detectors 01-12 Detectors 13-24 All Detectors

Fit Start Time                          (us)

dR
 (

1s
t 

ha
lf

 -
 2

nd
 h

al
f)

97.5

100

102.5

105

107.5

110

112.5

115

117.5

40 60 80 100 120 140

-4

-2

0

2

4

6

8

10

12

14

40 60 80 100 120 140

(a) Low n-value data set.

High n-value, 7 Par. Fit

Fit Start Time                          (us)

R

Detectors 01-12 Detectors 13-24 All Detectors

Fit Start Time                          (us)

dR
 (

1s
t 

ha
lf

 -
 2

nd
 h

al
f)

102.5

105

107.5

110

112.5

115

117.5

120

40 60 80 100 120 140

-4

-2

0

2

4

6

8

10

12

14

40 60 80 100 120 140

(b) High n-value data set.

Figure 2.33: R vs. Fit Start Time for the 7 parameter ratio fit.

r7(t) =
2f0(t)− f+(t)− f−(t)
2f0(t) + f+(t) + f−(t)

(2.19)

where
f0(t) = (1 +ANc

(t))(1 +A(1 +AAc
(t)) cos(ωat+ φa)) (2.20)

and

f±(t) = (1 +ANc
(t′))e∓T/(2τ)(1 +A(1 +AAc

(t′)) cos(ωat
′ + φa)) (2.21)

where t′ is the shifted time
t′ = t± T/2, (2.22)

ωa = 2πfa(1− (R−Roff )× 10−6), (2.23)

as before, τ is the dilated muon lifetime fixed to 64.4 µs,

ANc
(t) = ANc

e−t/τc cos(ωct+ φNc
) (2.24)

is the amplitude of the CBO effect on N , and

AAc
(t) = AAc

e−t/τc cos(ωct+ φAc
) (2.25)

is the amplitude of the CBO effect on A. The CBO frequencies and lifetimes
are fixed to the same values used in the five-parameter ratio fit.

The fit results for R, χ2, Nc and Ac are shown in Figs. 2.32-2.36. With
regards to CBO, the results from these fits are much improved over the 3 and
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.34: Nc amplitudes and phases vs. Detector for the 7 parameter ratio
fit.

5 parameter fits. The amplitude of the half-ring effect, as seen in the difference
between the R vs. fit time of the two halves of the ring is greatly diminished
(see Fig. 2.32). And again, as expected, φNc

and φAc
both traverse 2π radians

over the circumference of the storage ring.

9 Parameter Ratio Fit

Although the seven-parameter ratio function seems to effectively eliminate the
“half-ring” effect, we know from past experience of another CBO term that may
be necessary to fit for: the effect of CBO on the g-2 phase. Thus, the data were
fit to the function:

r9(t) =
2f0(t)− f+(t)− f−(t)
2f0(t) + f+(t) + f−(t)

(2.26)

where

f0(t) = (1 +ANc
(t))(1 +A(1 +AAc

(t)) cos(ωat+ φa(1 +Aφc
(t)))) (2.27)

and

f±(t) = (1 +ANc
(t′))e∓T/(2τ)(1 +A(1 +AAc

(t′)) cos(ωat
′ + φa(1 +Aφc

(t′)))
(2.28)

where t′ is the shifted time
t′ = t± T/2, (2.29)
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.35: Ac term amplitudes and phases vs. Detector for the 7 parameter
ratio fit.
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Figure 2.36: Asymmetry vs. fit start time for detector 25 (top) and χ2/d.o.f
vs. fit start time (bottom) for different combinations of detectors for the 7
parameter fit.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.37: R vs. Detector for the 9 parameter fit. All points are taken at
t=32.5 µs.

Low n-value, 9 Par. Fit

Fit Start Time                          (us)

R

Detectors 01-12 Detectors 13-24 All Detectors

Fit Start Time                          (us)

dR
 (

1s
t 

ha
lf

 -
 2

nd
 h

al
f)

97.5

100

102.5

105

107.5

110

112.5

115

117.5

40 60 80 100 120 140

-4

-2

0

2

4

6

8

10

12

14

40 60 80 100 120 140

(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.38: R vs. Fit Start Time for the 9 parameter fit.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.39: Ac term amplitudes and phases vs. Detector for the 9 parameter
fit. All points are taken at t=32.5 µs.

ωa = 2πfa(1− (R−Roff )× 10−6), (2.30)

as before, τ is the dilated muon lifetime fixed to 64.4 µs,

ANc
(t) = ANc

e−t/τc cos(ωct+ φNc
) (2.31)

is the CBO effect on N ,

AAc
(t) = AAc

e−t/τc cos(ωct+ φAc
) (2.32)

is the CBO effect on A, and

Aφc
(t) = Aφc

e−t/τc cos(ωct+ φφc
) (2.33)

is the CBO effect on φa. Once again, the CBO frequencies and lifetimes are
fixed to the same values used in the five- and seven-parameter ratio fits.

The results of the fits are shown in Figs. 2.37-2.41, and are very compatible
with the fit results obtained from the 7-parameter ratio function. Fig. 2.38
shows that the half-ring effect is also effectively removed by the 9-parameter
ratio function.

Fit Results with Different Fit Start Times

Because the detectors closest to the injection point see the largest flash, the
PMTs of these detectors are gated on almost 25 µs later than the PMTs of the
detectors on the opposite side of the ring. If one wishes to combine the time
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 2.40: φc term amplitudes and phases vs. Detector for the 9 parameter
fit. All points are taken at t=32.5 µs.
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(a) Low n-value data set.
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Figure 2.41: Asymmetry vs. fit start time for detector 25 (top) and χ2/d.o.f
vs. fit start time (bottom) for different combinations of detectors for the 9
parameter fit.
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Fit Start Time

Det. 1,8 2 3,6,7 4,5 9-24
Time (µs) 27.4 25.3 29.6 34.0 23.0

Table 2.3: Fit start times for the individual detectors. All fit start times are
after scraping and at (or very close to) g-2 zero crossings.

spectra from all of the detectors into one time spectrum (ie: that of detector
25), then the earliest one may begin to fit the data is ∼ 32µs after injection.
One can gain more statistics however if the detectors are fit individually using
different fit start times; at the end one simply takes the weighted average value
of R from the distribution of R’s obtained from the individual detectors. This of
course requires that the fit does not rely on cancelling CBO by fitting the sum
of detectors, and therefore only a 7 or 9 parameter fit function is appropriate
for this approach. Nevertheless, for completeness, we show R vs. detector
with different fit start times for all fit functions (3-, 5-, 7- and 9-parameter) in
Figures 2.42 and 2.43. The average values of R for each fit is obtained by fitting
a constant to the 24 detectors. Note that although the fit values of R vary only
very slightly vs. fit function, the fit χ2/d.o.f. improves significantly as more
and more CBO effects are fit for, going from the 3-parameter ratio function to
the 9-parameter ratio function.

The individual fit start times were determined according to the following
criteria:

• χ2/d.o.f. is ’acceptable’

• fit parameters are stable

• tfit > 22µs (after scraping)

• tfit is a g-2 zero crossing

The fit start times of the detectors are listed in Table 2.3. “Acceptable”
χ2/d.o.f. is defined as the point in time at which the χ2/d.o.f. in the fit-time
scan drops below 2.5 σ from 1 (therefore, |χ2 − 1| < 0.05). In the case of
consistently high (greater than 2.5 σ from 1) χ2/d.o.f. vs. fit time, an average
χ2/d.o.f. is determined from fit results between 90 and 150 µs, and “acceptable”
χ2/d.o.f. is defined as |(χ2 − χ2late)/χ2late| < 0.05.

For any fit, assuming the fit function is correct, one expects a χ2/Ndof =

1 ±
√

2/Ndof . In our case,
√

2/Ndof ' 0.025 (there are approximately 3300
bins and the number of fit parameters is relatively small). Therefore, averaging
over N detectors, one expects a < χ2 >= 1±0.025/

√
N or < χ2 >= 1±0.0053.

Fig. 2.44 shows χ2/dof vs. t for both data sets. At fit times < 32µs, detectors
1-8 are ignored, therefore there is a discontinuity at 32µs when these detectors
are then taken into account. The horizontal green lines are the 1 σ band, the
vertical green line are at 23 µs and 32 µs. There is in general good agreement
(< 1σ difference) between the average fit results and the expected values.
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(a) 3 and 5 parameter ratio fits.
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(b) 7 and 9 parameter ratio fits.

Figure 2.42: Fit result comparison of R vs. Det. for the low n-value data set
using different fit start times for each detector.
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(a) 3 and 5 parameter ratio fits.

R vs. Det., Diff. Start Times, High n-value Data

  39.73    /    22
A0   108.3   1.095

7 Parameter Fit                                                Det.

R
 (

pp
m

)

  35.88    /    22
A0   108.4   1.101

9 Parameter Fit                                                Det.

R
 (

pp
m

)

90

95

100

105

110

115

120

125

130

5 10 15 20 25

90

95

100

105

110

115

120

125

130

5 10 15 20 25

(b) 7 and 9 parameter ratio fits.

Figure 2.43: Fit result comparison of R vs. Det. for the high n-value data set
using different fit start times for each detector.
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Avg. Chi**2 vs. Fit Time
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(a) Low-n data set.
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(b) High-n data set.

Figure 2.44: < χ2/dof > vs. t for both data sets. The average is over the
detectors (15 detectors (9-24) from 20-32 µs, all 23 detectors from 32 µs on,
hence the discontinuity at 32 µs. The horizontal green lines represent 1 σ bands,
the vertical green lines are drawn at 23 and 32 µs after injection.

However, when averaging over detectors at different start times, there is a
much larger discrepancy; in this case, < χ2 >= 1.014 ± 0.0081 for the low-n
data set, and < χ2 >= 1.026 ± 0.0052 for the high-n data set. This is to be
expected due to the nature of the chosen fit start times. At early fit start times
the χ2 is higher-but-still-acceptable than at later start times. Therefore, since
over half of the detectors are used at much earlier start times, on average the
χ2 will be high. In fact, the width of the χ2 distribution is very close to what
it should be, only the mean is shifted. The reason for the large width in the χ2

distribution for the low-n data set is primarily due to detector 1, which, for this
data set, has a very high (but consistent vs. fit time) χ2 of 1.15. If one were to
ignore this detector, the average χ2 = 1.008±0.0066, in much better agreement
with the expected width of 0.0042.

Summary of Fit Results

The data were fit to four different ratio functions, and many plots have been
shown. Following are brief summaries of the fit parameters used in each fit
(Table 2.4) and summaries of the resulting R values and fit χ2’s of each fit
(Tables 2.5 and 2.6).

The final R value will be determined from fits to individual detectors at
different start times, since the statistical error can be reduced by ∼ 7%. The
question remains as to which function to use in the final analysis of the data:
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R vs. Det., Diff. Start Times, Low-n Data Set
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(a) Low-n data set.

R vs. Det., Diff. Start Times, High-n Data Set
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(b) High-n data set.

Figure 2.45: R vs. Detector for the low- and high-n data sets, as determined
using different start times for various detectors, using the 9-parameter ratio
function, and correcting the error bars in the fits due to pileup subtraction. R
vs. Detector is fit to a constant to determine the average value R. Results for
only one random seed are shown.

R. vs. Det., Diff. Start Times, S+B Data Set
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Figure 2.46: R vs. Detector for the S+B data set, as determined using different
start times for various detectors, using the 9-parameter ratio function, and cor-
recting the error bars in the fits due to pileup subtraction. R vs. Detector is fit
to a constant to determine the average value R. Results for only one random
seed are shown.
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Fit Parameter Status

Fit 3 Par. 5 Par. 7 Par. 9 Par.

A Free Free Free Free
R Free Free Free Free
φ Free Free Free Free

constant/ 2.874×10−4 64.4 64.4 64.4
τµ µs µs µs
ANc

NA Free Free Free
φNc

NA Free Free Free
AAc

NA NA Free Free
φAc

NA NA Free Free
Aφc

NA NA NA Free
φφc

NA NA NA Free
fcbo (low n) NA 419.1 419.1 419.1

kHz kHz kHz
τcbo (low n) NA 92.1 92.1 92.1

µs µs µs
fcbo (high n) NA 490.6 490.6 490.6

kHz kHz kHz
τcbo (high n) NA 130.1 130.1 130.1

µs µs µs

Table 2.4: Summary of fit parameter status in each ratio fit. “Free” means that
the parameter is left free in the MINUIT fit, number/values in an entry means
that the fit parameter was held fixed to that value in the fit, and “NA” means
not applicable.

clearly either the seven- or the nine-parameter ratio function must be used in
order to effectively reduce the systematic error due to CBO.We base our decision
to use the 9-parameter ratio function on three key points: a) simulation has
shown the existence of the Aφc

term, however small; b) the fit to a constant of R
vs. detector obtained from the 9-parameter ratio fits has a better χ2/d.o.f. than
that obtained from the 7-parameter ratio fits (see Fig. 2.42); and c) there are no
strong correlations between R and the other 8 fit parameters in the 9-parameter
ratio function. Tables 2.7 and 2.8 show the correlation coefficient matrix of
the nine parameters used in the 9-parameter ratio function, as determined by
Minuit. We see that besides the g-2 phase, there are no other parameters
that are strongly correlated to the g-2 frequency. This is an important and
distinguishing feature of the fit function’s ability to describe the data; in 2000,
where the CBO frequency was much closer to twice the g-2 frequency, the CBO
terms in the various fitting functions were more highly correlated to the g-2
frequency.

It was pointed out that neglecting corrections to error bars in the ratio
time spectrum due to pileup subtraction (see, for example, [5]) can result in
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Comparison of Fit R Values - Low n-value Data Set

Fit 3 Par. 5 Par. 7 Par. 9 Par.

Avg. R @ 32.5 µs 107.6 107.5 107.5 107.6

(fit to const.) ± 0.94 ± .97 ± 0.97 ±0.96

χ2/d.o.f. of 0.833 0.828 0.775 0.796

fit to const.

Avg. χ2/d.o.f. 1.011 1.010 1.010 1.010

over detectors

σχ2/d.o.f. 0.039 0.038 0.039 0.039

Avg. R @ 32.5 µs 107.4 107.6 107.3 107.4

for Det. 25 ±0.96 ± 0.95 ± 0.97 ± 0.97

χ2/d.o.f. 1.006 0.995 1.003 1.003

Avg. R @ diff. 107.9 107.9 108.1 108.0

start times ±0.91 ± 0.91 ± 0.91 ± 0.91

χ2/d.o.f. of 1.113 1.088 1.070 1.042

fit to const.

Avg. χ2/d.o.f. 1.016 1.015 1.014 1.014

over detectors

σχ2/d.o.f. 0.039 0.039 0.039 0.039

Table 2.5: Brief summary of the current results from the various functions fit to
the low n-value data set. The χ2/d.o.f. is from the result of fitting R vs. det. to a
constant, whereas the average and σχ2/d.o.f. are taken from the distribution of fit χ2’s
from each detector.

a systematic error in R and change both R and the uncertainty on R by a
small amount. All plots shown previously neglected these corrections. Instead
of applying such a systematic error at the end, it was decided to do the χ2

minimization as correctly as possible in the fits; therefore, the corrections to the
errors were determined and applied (see Section A.4) fairly late-in-the-game.
Indeed, the average R value changed by a small amount (0.06 ppm), and the
statistical uncertainty on R changed by less than 0.5%. Figs. 2.45 show R
vs. Detector using the 9-parameter ratio fit at different start times for the
detectors with the error bar corrections applied. Determining R this way using
five random seeds, we find for our final R-values: Rlow−n = 108.21± 0.91 ppm
and Rhigh−n = 108.42± 1.10 ppm. Fig. 2.46 is a similar plot of R vs. Detector
for the “S+B” (silver + bronze runs) data set. Using five random seeds, we find
RSB = 110.55± 3.73.
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Comparison of Fit R Values - High n-value Data Set

Fit 3 Par. 5 Par. 7 Par. 9 Par.

Avg. R @ 32.5 µs 109.2 109.0 109.2 109.2

(fit to const.) ±1.17 ± 1.16 ± 1.16 ± 1.17

χ2/d.o.f. of 1.584 1.597 1.525 1.492

fit to const.

Avg. χ2/d.o.f. 1.013 1.012 1.011 1.010

over detectors

σχ2/d.o.f. 0.025 0.024 0.024 0.024

Avg. R @ 32.5 µs 109.2 109.2 109.3 109.3

for Det. 25 ± 1.16 ± 1.13 ± 1.16 ± 1.17

χ2/d.o.f. 1.023 1.020 1.020 1.021

Avg. R @ diff. 107.8 108.0 108.3 108.4

start times ±1.07 ± 1.09 ± 1.10 ± 1.10

χ2/d.o.f. of 2.036 1.996 1.806 1.631

fit to const.

Avg. χ2/d.o.f. 1.029 1.028 1.026 1.026

over detectors

σχ2/d.o.f. 0.026 0.025 0.025 0.025

Table 2.6: Brief summary of the current results from the various functions fit to the
high n-value data set. The χ2/d.o.f. is from the result of fitting R vs. det. to a
constant, whereas the average and σχ2/d.o.f. are taken from the distribution of fit χ2’s
from each detector.
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Correlation Matrix for 9 Parameter Fit, Low n-value

Par. A R φa ANc
φNc

AAc
φAc

Aφc
φφc

A 1.000 -0.005 -0.007 0.000 0.013 0.049 -0.054 -0.046 0.045
R -0.005 1.000 0.867 -0.024 0.001 0.051 0.041 -0.032 -0.033
φa -0.007 0.867 1.000 -0.033 0.001 0.068 0.057 -0.042 -0.046
ANc

0.000 -0.024 -0.033 1.000 -0.005 0.002 -0.013 -0.006 0.006
φNc

0.013 0.001 0.001 -0.005 1.000 0.009 0.000 0.010 0.002
AAc

0.049 0.051 0.068 0.002 0.009 1.000 0.001 -0.011 -0.012
φAc

-0.054 0.041 0.057 -0.013 0.000 0.001 1.000 0.009 0.001
Aφc

-0.046 -0.032 -0.042 -0.006 0.010 -0.011 0.009 1.000 -0.004
φφc

0.045 -0.033 -0.046 0.006 0.002 -0.012 0.001 -0.004 1.000
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Correlation Matrix for 9 Parameter Fit, High n-value

Par. A R φa ANc
φNc

AAc
φAc

Aφc
φφc

A 1.000 -0.001 0.000 0.004 -0.015 0.021 0.081 0.071 0.025
R -0.001 1.000 0.861 0.007 0.014 -0.085 0.003 -0.041 0.067
φa 0.000 0.861 1.000 0.010 0.019 -0.114 0.007 -0.041 0.092
ANc

0.004 0.007 0.010 1.000 0.004 -0.013 0.027 -0.018 -0.021
φNc

-0.015 0.014 0.019 0.004 1.000 -0.035 0.001 0.020 0.026
AAc

0.021 -0.085 -0.114 -0.013 -0.035 1.000 -0.005 -0.011 -0.016
φAc

0.081 0.003 0.007 0.027 0.001 -0.005 1.000 -0.005 -0.007
Aφc

0.071 -0.041 -0.041 -0.018 0.020 -0.011 -0.005 1.000 0.070
φφc

0.025 0.067 0.092 -0.021 0.026 -0.016 -0.007 0.070 1.000
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Chapter 3

2001 Systematic Errors on

ωa

3.1 Energy Bin Analysis

An important check of our understanding of the data can be made by dividing
the data up into energy bins. This allows us to see the energy-dependence of
certain fit parameters, specifically the asymmetry and CBO parameters. Ideally
the precession frequency, or R, is independent of the detected decay electron’s
energy.

The data were therefore divided up into 7 energy bins, 200 MeV wide. How-
ever, since typically the lower energy cut is around 1.9 GeV and the upper
energy cut is fixed at 3.2 GeV, the 7th energy bin is ’troublesome’ due to low
statistics; indeed, many individual detector fits to data in this bin failed due to
lack of data. Therefore, in the following plots we will show results for the first
6 energy bins.

Figs. 3.1 and 3.2 show the fit results for the two data sets, using the 9-
parameter fit function. The upper left plots are of < R > vs. energy bin, and
a constant is fit to the data points. The values of < R > are very consistent
across energy bins for both n-values, and the average of the averages agrees
very well with the results obtained using only one energy bin. The lower left
plots show the fit asymmetry vs. energy bin. The values for asymmetry are
taken from fits to detector 27, the second half of the ring, at around 25 µs
after injection. The three plots on the right of Figures 3.1 and 3.2 show the
amplitudes of the three CBO effects: Nc, Ac and φc. Although the amplitudes
of the effects are in relative agreement with each other between data sets, the
trends of the amplitudes as a function of energy bin differ quite a bit, especially
for the φc term.

54
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fit asymmetry vs. energy bin.
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(b) CBO amplitudes vs. energy bin.

Figure 3.1: Various parameters as functions of energy bin obtained from fits
to the low n-value data set. Each value of < R > is obtained from a fit to R
vs. det. using different start times for each detector. Energy bin 1 corresponds
roughly to 1.9 GeV, and each bin is 200 MeV wide.
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25.3 kV Quads, 9 Par. Fit
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(b) CBO amplitudes vs. energy bin.

Figure 3.2: Various parameters as functions of energy bin obtained from fits to
the high n-value data set. Each value of < R > is obtained from a fit to R
vs. det. using different start times for each detector. Energy bin 1 corresponds
roughly to 1.9 GeV, and each bin is 200 MeV wide.
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Figure 3.3: Comparison between G2GEANT simulated data (red triangles) and
actual data (blue circles).

To check our energy-binned results, Rob Carey has produced two G2GEANT-
simulated data sets, each with the corresponding n-values and statistics of the
true data sets. The simulation completely describes the ring and detector ge-
ometry and material and decay electrons are fully tracked. Energy-binned ratio
time spectra of the simulated data were produced and fit to the 9-parameter
ratio function. The binwidth of the energy bins of the simulated data is 200
MeV, and the minimum energy is 2 GeV. The results of the fits to both the sim-
ulated and true data are shown in Fig. 3.3. There is in general good agreement
between the data and simulation. With a few exceptions, all fit results agree
within errors.

However, as was first demonstrated by Chris Polly, there is an inconsistency
of R vs. E-bin when R when obtained from fits to detector 25 (equivalent to
fitting all detectors with the same fit start time) for the high n-value data set.
The inconsistency is at a level at which it is very difficult to determine if there is
a systematic problem, or if it is due to simply statistical fluctuations. In order
to make an energy-binned study that is compatible to those of the other ωa
analyzers, the data were re-combined in energy-binned time spectra in steps of
200 MeV, with the center of the energy bins at 1.5 GeV, 1.7 GeV, etc. for each
detector. Polly’s findings were confirmed, as shown in Fig. 3.4, which are plots
of R vs. E-bin for the low-n and high-n data sets. The top plots show R vs.
E-bin fit to a constant in the energy range 1.8-3.4 GeV, the bottom plots show
R vs. E-bin fit to a line in the same energy range. We see that the χ2 of the fit
of a constant to R vs. E-bin for the low-n data set has a perfectly acceptable
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R vs. E, Det. 25

All Low-n Data

  6.425    /     7
A0   108.2  0.8747

GeV

pp
m

R vs. E, Det. 25

  6.204    /     6
A0   105.2   6.492
A1   1.203   2.563

GeV

pp
m

90

95

100

105

110

115

120

125

130

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

90

95

100

105

110

115

120

125

130

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

(a) All low-n data.

R vs. E, Det. 25

All High-n Data

  14.59    /     7
A0   110.0   1.051

GeV

pp
m

R vs. E, Det. 25

  6.214    /     6
A0   87.56   7.815
A1   8.931   3.086

GeV

pp
m

90

100

110

120

130

140

150

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

90

100

110

120

130

140

150

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

(b) All high-n data.

Figure 3.4: R vs. Energy bin for the low (left) and high (right) n-value data
sets. A constant is fit to the top plots, whereas a straight line is fit to the
bottom plots. Results are from a 3-parameter ratio fit at ∼ 33µs.
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Figure 3.5: Difference of R vs. E-bin between the low-n and high-n data sets
using a 9-parameter fit to the sum of all detectors at ∼ 33µs. The bin centered
at 3.5 GeV represents the sum of energies from 1.8-3.4 GeV. The green line
shows a difference of zero, the red line shows a fit of a constant to the difference
in R from 1.4-3.4 GeV.
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R vs. E, Det. 25
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(a) L1 data subset.
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(b) H1 data subset.

Figure 3.6: R vs. Energy bin for the first subsets of the low (left) and high
(right) n-value data sets. A constant is fit to the top plots, whereas a straight
line is fit to the bottom plots. Results are from a 3-parameter ratio fit at ∼ 33µs.

value, whereas the same fit to the high-n data set has a χ2 of ∼ 2.1. Again, a
fit χ2/d.o.f. is not a “smoking-gun” of any systematic issue. As noted by Polly,
a fit of the high-n data set to a straight line gives a much better χ2. Fig. 3.5
shows a plot of the difference in R between the two data sets as a function of
energy bin.

It should also be noted that it was determined that the “inconsistency” of
R vs. E-bin is independent of fit function used; a comparison of R vs. E-bin as
determined from a 9-parameter ratio fit and R vs. E-bin as determined from a
3-parameter ratio fit found little differences between the two. Therefore, since
computationally a 3-parameter fit is much faster than the 9-parameter ratio fit,
all R vs. E-bin studies discussed in this report were made using the 3-parameter
ratio fit, unless otherwise noted.

To further investigate the discrepancy of R vs. E-bin, the data were split
up into subsets according to chronological order. During the 2001 run, data
were taken with alternating value of n, so the first subset is of low-n, the second
subset is of high-n, the third subset is of low-n, etc. The subsets are henceforth
labeled L1, H1, L2, H2, etc., where “L” corresponds to low-n, “H” corresponds
to high-n, and the number following the letter corresponds to the subset of that
data set. R vs. E-bin for L1, H1, L2 and H2 are shown in Figs. 3.6-3.8. We
see that there is no significant discrepancy in fits of R vs. E-bin to a constant
for either L1, H1, L2, or H3. However the subsets H2 and L3 definitely show
strange behavior of R vs. E-bin, as seen by the fit χ2’s of R vs. E-bin to a
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R vs. E, Det. 25
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Figure 3.7: R vs. Energy bin for the second subsets of the low (left) and high
(right) n-value data sets. A constant is fit to the top plots, whereas a straight
line is fit to the bottom plots. Results are from a 3-parameter ratio fit at ∼ 33µs.

constant.
The data were next fit on a detector-by-detector basis, so that R vs. E-

bin was determined for each detector. Each R vs. E-bin plot was then fit to
a straight line, and the slope of that line is plotted as a function of detector
number in Figs. 3.9-3.10 for the various sets and subsets of data. Constants
were then fit to each of these plots, which gives the average slope over the 23
detectors. These plots show an average slope that is consistent with zero at
the 1.8 σ and 2.9 σ level for the entire high-n data set and the H2 data subset
respectively. All other fits show slopes that are consistent with zero at well
below the 1 σ level.

In order to determine if there is a fit start-time dependence of the R vs.
E-bin, R vs. E-bin was determined for ∼ 175 different start times, from ∼
33 − 250µs. Each of these plots was fit to both a constant and to a straight
line. The χ2/d.o.f. of the fit to a constant is plotted as a function of fit start
time in Fig. 3.11(a), and the fit slope as a function of fit start time is shown in
Fig. 3.11(b). Interestingly enough, although the slopes of R vs. E-bin are quite
consistent vs. fit start time, only at very early fit start times does the high-n
data set show a discrepancy of R vs. E-bin with regard to the fit χ2 of R vs.
E-bin to a constant.

Several ideas as to possible causes of an energy dependent R value have
been proposed, but so far, all have been ruled out. We here discuss a few
of these studies that were pursued in this analysis: laser contamination, data
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Figure 3.8: R vs. Energy bin for the third subsets of the low (left) and high
(right) n-value data sets. A constant is fit to the top plots, whereas a straight
line is fit to the bottom plots. Results are from a 3-parameter ratio fit at ∼ 33µs.
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Figure 3.9: Slopes of R vs. E-bin obtained for each detector for the entire low-
n data set (top) and the entire high-n data set (bottom). Results are from a
3-parameter ratio fit at ∼ 33µs.
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(b) Second data subsets, L2 and H2.

Figure 3.10: Slopes of R vs. E-bin obtained for each detector for the first two
subsets of the low- and high-n data set. Results are from a 3-parameter ratio
fit at ∼ 33µs.
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Figure 3.11: Left: χ2/d.o.f of fit of a constant to R vs. E-bin as a function of
fit start time. Right: Slopes of R vs. E-bin as a function of fit start time. Fit
results are from a 3-parameter ratio fit to the sum of all data (det. 25).
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duplication, and electrostatic quadrupole stability.
Early on in the search for a cause of the R vs. E problem it was noted that

the H2 data set contains an above average number of laser runs as compared
to the other data sets. The data were therefore resummed where not only all
laser runs were removed, but also runs immediately following laser runs were
removed (in case the laser had inadvertantly been left on). This had absolutely
no effect on R vs. E, therefore laser contamination has been ruled out.

Jim Miller recommended that a sanity-check on possible data duplication be
made. The concern here is that is that data could somehow have been copied
either between detectors or between fills. Such data duplication would tend
to produce poor χ2’s of fits to data and could possibly exaggerate a statistical
fluctuation. Therefore a study was completed that a) searched for identical files
across all runs, b) sorted and searched for duplicate (E, t) pairs in each run
for each detector, and c) search for duplicate (E, t) pairs across detectors for
each run. No identical files were found. As for duplicate (E, t) pairs, several
“duplicates” were found per run, which sets the scale for a level of background.
However, as shown in Fig. 3.12, two runs showed several orders of magnitude
greater number of duplicate pairs than was typically seen. It was found that in
these runs, numbered 11099 and 11268, data at the very end of the run were
duplicated; how this happened is not yet understood. However, since these runs
do not belong to the H2 data set, data duplication does not seem to be the
cause. Furthermore, since data duplication is of a more general concern, since
even with the highly-contaminated runs included the level of duplicate data
(which also appears to have a normal-looking energy and time spectrum, see,
ie: Fig. 3.13) contamination is around 30 ppm, the effect of duplicate data on
R is quite negligible.

Electrostatic quadrupole stability was another concern for the H2 data set,
since it is known that later in the 2001 run, it was extremely difficult to maintain
25.3 kV on the plates due to the deterioration of the vacuum. In the G2OFF

ntuple, quadupole information is kept in the IQUAD (integer number giving the
length, in µs of the quadrupole pulse), QEARLY (measure of the quadrupole
voltage in ADC counts at early times, during scraping), QMID (measure of the
quadrupole voltage in ADC counts ∼ 45µs after injection, and QLATE (measure
of the quadrupole voltage in ADC counts ∼ 30µs before the quadrupole voltage
drops to 80% of the QMID value) variables. Figs. 3.14-3.15 show the average
values of the quadrupole voltage as a function of run (error bars are plotted,
but too small to see in most cases), as well as the average value of the percent
difference between the “mid” and “late” quadrupole voltage readings. The
voltages seem quite stable from run to run, more so in the earlier part of the
2001 run than in the latter part. Red points show the voltages for the low-n
data set, and the blue points show the voltages for the high-n data set. The
quadrupole voltages appear to be fairly stable, and in particular the H2 data
set does not appear to show any odd behavior in this regard.

At the moment, the strange behavior of R vs. energy-bin in the H2 and
L3 data sets is not understood. Studies are in progress to narrow down other
possible causes of the energy-dependence of R.

63



Number of Duplicates vs. Run Number

1

10

10 2

10 3

9600 9800 10000 10200 10400 10600 10800 11000 11200 11400

Figure 3.12: Number of duplicate (E, t) pairs found vs. run, in the first 250,000
pulses seen in each detector (some runs saw less than this number of pulses).
Note the log scale on the number of duplicates. Two runs in particular show
very large numbers of duplicates, runs 11099 and 11268, where it seems that
data was overwritten or duplicated at the very end of both of these runs.
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Figure 3.13: Energy and time spectra of all duplicate (E, t) pairs found.
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(b) Average QMID vs. Run.

Figure 3.14: Average quadrupole voltage vs. run at both early times and “mid”
times (∼ 150µs after injection). Red points are for the low-n data set, blue
points are for the high-n data set.
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Figure 3.15: Average quadrupole voltage vs. run at late times, as well as the
relative difference between the “mid” and late time quadrupole voltages. Red
points are for the low-n data set, blue points are for the high-n data set.
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dR vs. Fit Time vs. ESC Corr, Det. 25         (us)
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Figure 3.16: Difference of R vs. fit time plots for detector 25 (sum of all detec-
tors) between un-corrected and gain-corrected data. Left: low n-value results.
Right: high n-value results.

3.2 Energy Scale Changes

To determine the systematic error on R due to energy-scale corrections, we vary
the amount of correction applied to the data by some factor α, fit the data to
the 9-parameter ratio function, and determine how R changes as a function of
α: dR/dα. The error on R is therefore

dRESC =
dR

dα
× δα (3.1)

Fig. 3.16 plots the difference in resulting R-values between non-gain-corrected
and gain-corrected data. The blue circles represent R(no correction)-R(1x cor-
rection) vs. fit time. The red triangles represent R(no correction)-R(-1x cor-
rection) vs. fit time, and the green circles and purple squares represent similar
differences between R(no correction) and R(5x correction) and R(10x correc-
tion) respectively. One immediately sees a phase-pulling in the differences at
twice the g-2 frequency which is expected from the ratio method (see Section
A.2). Also, the differences are small for reasonable gain corrections (ie: 1x):
a maximum value of 0.08 ppm for the low n-value data and a maximum value
0.15 ppm for the high n-value data. The differences can be a bit larger when
applying a 5x or 10x gain correction, however this is a statistical effect. When
applying such large corrections to the energies, large changes are made to the
number of events; many high energy electrons are thrown out due to the ap-
plied upper energy cut, and many lower energy electrons are added to the time
spectrum that otherwise would not have passed the applied lower energy cut.

To determine the systematic error on R due to applying the energy-scale
change correction, we determine dR/dαESC for each detector at it’s particular
fit start time, where αESC is the scale factor of the applied correction. Therefore
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Figure 3.17: Left: R vs. αESC for detector 2 (low n-value data set). Right:
Distributions of dRESC over detectors, for the low n-value data set (upper
right) and the high n-value data set (lower right).

in this study we use values of αESC = -1, 0, 1, 5 and 10. As an example, the plot
on the left of Fig. 3.17 shows R vs. αESC for detector 2 for the low n-value data
set. The plot is fit to a straight line, to obtain the slope dR/dαESC in units of
ppm/αESC . The uncertainty on the correction itself, δα is estimated to be 40%,
obtained from a comparison of energy scale change corrections determined by
the various ωa analyzers. The plots on the right of Fig. 3.17 are the distributions
of dRESC over the values determined for the 23 detectors for the two data sets
using the above prescription. We find that dRESC is less than 0.01 ppm for the
low n-value data set, and 0.024 ppm for the high n-value data set.

As discussed in Section 2.4, another energy-scale systemic effect exists due
to the pulse-fitting algorithm’s dependence on island length. Logashenko has
calculated the effect of island length on average energy and has estimated the
energy-scale correction as a function of time for each detector due to this effect.
Fig. 3.2 shows the correction for the worst-effected detector (7) and a typical
“quiet” detector (16). Note the g-2 oscillation in the correction itself; such an
oscillation is potentially very dangerous. The g-2 oscillation in the correction
arises due to there being a higher probability of having two or more pulses on
a WFD island at the top of the g-2 cycle than at the bottom. However, the
particular shape and magnitude of the correction is difficult to predict, since
this depends largely on the shape of the flash background seen by each detector.
Those detectors closest to the point of injection obviously see the largest effect,
since they see the largest amount of flash. However, for some unknown reason,
detector 7 behaves worse than detector 4, the magnitude of the correction being
nearly twice as large for 7 yet the flash backgroud is nearly half that seen in
detector 4. Luckily the amplitude of the oscillations is fairly small, at the level
of 10−4. The difference in R as a function of time for detectors 7, 16 and 25
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Figure 3.18: Left: ESC correction due to the pulse fitting algorithm’s depen-
dence on island length. The island length varies with the g-2 frequency due to
a higher probability of having two or more pulses on an island at the top of the
g-2 cycle than at the bottom. Detector 7 sees the largest ESC due to this effect,
whereas detector 16 (typical of most quiet-side detectors) sees hardly any effect.
Right: Difference in R vs. fit start time due to not applying and applying the
wiggling ESC correction.
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Figure 3.19: Distributions of difference in R when the wiggling ESC correction
is applied to the data for the low-n (left) and high-n (right) data sets. Bottom:
dR vs. Detector.
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(the sum of all detectors) is shown in Fig. 3.2. As expected, detector 7 shows
the largest difference in R. The effect on the sum of all detectors is found to be
approximately 0.1 ppm near 32 µs after injection.

The two plots in Fig. 3.19 show the differences in R when the correction is
applied for each detector (at their individual start times), both the distribution
and as a function of detector. The results are very consistent for both data sets:
the mean difference in R is ∼ 0.09 ppm. We therefore claim 0.1 ppm as the
systematic uncertainty due to this effect. Note that we do not yet add this in
quadruature to the systematic uncertainty on R due to the applied energy-scale
corrections in quadrature, since wish to treat these two effects differently when
combined with other systematic errors (ie: pileup subtraction).

3.3 Coherent Betatron Oscillations

The effects of coherent betatron oscillation of the muons in the storage ring on
the spin precession frequency ωa are at this point well understood. If one ignores
these effects in the ratio method, or does not properly account for them in the
fit function, we find phase pulling in the R value when we look at R vs. fittime.
This is especially clear when we look at the difference of R vs. fittime between
two halves of the ring, where we sum the data for one half of the ring and fit it
and we sum the data from the other half of the ring and fit it. These difference
plots have already been shown, however we summarize them in Figs. 3.20 and
3.21. Oscillations of the frequency fc − 2fa, or ∼ 30kHz are clearly seen in the
3- and 5-parameter fits, whereas the 7- and 9-parameter fits drastically reduce
the amplitude of the oscillations.

Another interesting difference plot to consider is the difference of R vs. fit-
time between the various fit functions for a given detector. These plots are
found in Figs. 3.22-3.27. Since there are 4 different fit functions used, we the
differences shown are between the 3- and 5-parameter fits (R3-R5), the 3- and
7-parameter fits (R3-R7), the 3- and 9-parameter fits (R3-R9), the 5- and 7-
parameter fits (R5-R7), and so on. One should note, however, that error bars
are not drawn in these plots.

The differences between R values found from the 3- and 5-parameter ratio
functions and those found using the 7- and 9-parameter functions is stunningly
clear, especially for the ’quiet’ side of the ring, detector 27, the sum of detectors
13-24. However, the effect is still quite clear even when all detectors are summed
(detector 25), and the amplitude of the oscillations is ∼ 0.3 ppm for the low
n-value data and ∼ 0.8 ppm for the high n-value data.

With the full 9-parameter physics function, the systematic error on R due
to CBO comes from uncertainties in the functional form of the CBO effects,
which is reflected in uncertainties (widths) of the cbo frequency and lifetime.
To determine the systematic error on R due to CBO, the individual detector
data were fit to the full physics function with varied fixed CBO lifetimes (with
the CBO frequency fixed at the nominal value) and then with varied frequencies
(with the CBO lifetime fixed at the nominal value), at the final fit start time.
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Figure 3.20: Difference between first-half and second-half of the ring of R vs.
fit time for various fit functions applied to the Quad HV=21.7 data.
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Figure 3.21: Difference between first-half and second-half of the ring of R vs.
fit time for various fit functions applied to the Quad HV=25.3 data.
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Figure 3.22: Difference between various fit functions of R vs. fit time plots of
detector 25 applied to the Quad HV=21.7 data. Rn, where n = 3, 5, 7, 9 refers
to the 3-, 5-, 7-, and 9-parameter ratio fit functions.
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Figure 3.23: Difference between various fit functions of R vs. fit time plots of
detector 25 applied to the Quad HV=25.3 data. Rn, where n = 3, 5, 7, 9 refers
to the 3-, 5-, 7-, and 9-parameter ratio fit functions.
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Figure 3.24: Difference between various fit functions of R vs. fit time plots of
detector 26 applied to the Quad HV=21.7 data. Rn, where n = 3, 5, 7, 9 refers
to the 3-, 5-, 7-, and 9-parameter ratio fit functions.
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Figure 3.25: Difference between various fit functions of R vs. fit time plots of
detector 26 applied to the Quad HV=25.3 data. Rn, where n = 3, 5, 7, 9 refers
to the 3-, 5-, 7-, and 9-parameter ratio fit functions.
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Figure 3.26: Difference between various fit functions of R vs. fit time plots of
detector 27 applied to the Quad HV=21.7 data. Rn, where n = 3, 5, 7, 9 refers
to the 3-, 5-, 7-, and 9-parameter ratio fit functions.
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Figure 3.27: Difference between various fit functions of R vs. fit time plots of
detector 27 applied to the Quad HV=25.3 data. Rn, where n = 3, 5, 7, 9 refers
to the 3-, 5-, 7-, and 9-parameter ratio fit functions.
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Figure 3.28: Distribution of dR/dτc determined for each of the 23 detectors at
their corresponding fit start times. Top: results for the low n-value data set.
Bottom: results for the high n-value data set.

The CBO envelope lifetime was varied from 82.1 to 102.1 µs and 120.1 to 140.1
µs for the low and high n-value data respectively in 5 µs steps, where the
nominal lifetimes are 92.1 and 130.1 µs respectively. The CBO frequency was
varied between 417.5-420.7 kHz and 489-492.2 kHz for the low and high n-value
data respectively in 0.8 kHz steps. dR/dτc and dR/dfc where then determined
for each detector by fitting a straight line to the R vs. τc and R vs. fc plots.
Figs. 3.28 and 3.29 show the distribution of these slopes for the 23 detectors.
Taking the mean values of the distributions, and an uncertainty of 5 µs in the
CBO lifetime and 0.6 kHz in the CBO frequency, we find for the low n-value
data set a value of dRτc

= 0.01 ppm and dRfc
= 0.03 ppm; For the high n-value

data set the situation is a bit worse, and we find dRτc
= 0.02 ppm and dRfc

=
0.07 ppm.

In addition to the intrinsic uncertainty of the CBO frequency, we must also
consider the effect of having a time dependent CBO frequency. The time depen-
dence arises due to scraping; the scraping voltage is turned off (that is, increases
to the nominal voltages) with an RC time constant of 5 µs at 7 µs after injec-
tion. Therefore, at 23 µs, when data from most of the detectors in the latter half
of the ring are fit, the quadrupole voltages are still changing slightly. During
scraping, the n-value is [6]

n1 =
V1 + V0
2V0

n0 (3.2)
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Figure 3.29: Distribution of dR/dfc determined for each of the 23 detectors at
their corresponding fit start times. Top: results for the low n-value data set.
Bottom: results for the high n-value data set.
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where the subscript “1” refers to the value during scraping and the subscript
“0” refers to the nominal value (ie: after scraping). The quadrupole voltages
during scraping are set to 70% their nominal value, so n1 = 0.85n0. Therefore,
we have

n(t) = n0(1− 0.15e−(t−7)/5) (3.3)

Since
fcbo = fc(1−

√
1− n) (3.4)

where fc is the cyclotron frequency, then plugging in the above time-dependent
n-value one can easily show that

fcbo(t) = fcbo0 −
0.15fcn0
2
√
1− n0

exp(−(t− 7)/5) (3.5)

At ∼ 23µs after injection, the CBO frequency is nearly 0.5% lower than its
nominal value. However, putting this time-dependent frequency into the 9-
parameter ratio fits did not improve the χ2 of the fits to the data at early times,
and the distribution of differences in R from fits with and without the time-
dependent CBO frequency has a mean value of 0.02 ppm for both the low- and
high-n data sets. We therefore claim 0.02 ppm as the systematic uncertainty
due to the time-dependence of the CBO frequency.

Another issue to consider is whether or not all CBO effects have the same
functional form. To estimate this effect, fits to the data were made where we
stepped through different lifetimes of the Nc(t) term but held the lifetime of the
Ac(t) and φc(t) terms constant; a similar study was made in the reverse order,
where the lifetime of the Nc(t) term was held constant and the lifetime of the
other two terms was varied. For the low-n data set, in the first case, the average
value (over fits to the 23 individual detectors) of dR/dτN was found to be 2.2×
10−4 ppm/µs. In the second case, the average value of dR/dτA,φ was found to
be −4.2×10−5 ppm/µs. For the high-n data set, dR/dτN = 7.6×10−5 ppm/µs
and dR/dτA,φ = −1.6×10−3 ppm/µ. A quantitative evaluation of the spread in
lifetimes that would be representative of a very different functional form and/or
lifetime of the CBO is at this time very difficult to make. However, we feel that a
spread of 50 µs (roughly half the determined lifeitme) is reasonable; remember
also that the distributions of CBO lifetimes determined from the studies in
Section 2.2 is approximately 50 µs. Therefore, we find the uncertainty in R due
to CBO envelope is 0.01 ppm for the low-n data set and 0.08 ppm for the high-n
data.

Finally, Morse and Semertzidis have raised the possibility of another ef-
fect due to the functional form of the φc(t) term having two contributions,
one from the radial mean and the other from the radial width, each with
a different lifetime and phase. This effect was studied via simulation where
the absolute worst-case scenario of the mean and width contributions having
completely opposite phases is assumed (we know from tracking that the width
and mean are slightly out of phase, but not opposite) and the lifetime of the
contribution from the radial width is half that of the radial mean. That is,
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φc(t) = φc0(A1 exp(−t/τc) cos(ωct + φc) − (1 − A1) exp(−2t/τc) cos(ωct + φc)).
Twenty-four time spectra were produced with Nc, Ac and φc terms included
with differents phases that vary linearly (from 0 to 2π) around the ring, and
equal amplitudes for each spectra except three (ie: the kicker detectors), where
the amplitudes are 50% larger. The relative amount of mixing between the two
terms (that is, the radial width and the real mean contributions) was also varied
such that A1 = 15-75% in 15% steps. On average, the R value obtained from the
naive 9-parameter fit differed by 0.04 ppm from the input value, with a spread
of 0.04 ppm. We therefore claim 0.04 ppm as our estimate of the systematic
uncertainty due to the CBO phase term having out-of-phase contributions from
the radial mean and radial width.

Assuming, quite conservatively, that the CBO frequency and lifetime are
100% correlated, we add those errors together linearly. We then add the un-
certainty in R due to CBO envelope in quadrature to get a total systematic
error due to CBO of 0.06 and 0.13 ppm for the low and high n-value data sets
respectively.

3.4 Pileup

There are in general four main issues with pileup subtraction: (a) pileup con-
struction efficiency, (b) pileup construction phase, (c) choice of shadow pulse
window time offset used to construct the pileup, and (d) the effect of low energy
pileup. Issues (a)-(c) are very highly correlated and so care must be taken when
studying these issues.

Perhaps the easiest issue to deal with regarding pileup subtraction is that
of the pileup construction efficiency. We have already estimated the pileup
construction efficiency for each detector (on average it is > 95%). To determine
the effect that oversubtracting or undersubtracting pileup has on fitting for
R, we vary the fraction of pileup subtracted from the data, fit the data and
determine dR/dαPUS , where αPUS is the fraction of pileup subtracted from
the data, by fitting R vs. αPUS for each detector at its specific start time.
In this analysis, we allow αPUS to range from 0.9-1.1 in 0.025 steps. Fig.
3.30 shows the distributions of dRPUe

, the systematic error on R due to pileup
construction efficiencies, over the 23 detectors, for each data set. The values of
dRPUe

were taken from the product of dR/dαPUS and the inefficiency (δα) of
pileup construction determined for each detector. Taking the means of these
distributions as the average systematic error, we find that dRPUe

= 0.034 ppm
for the low n-value data set, and 0.009 ppm for the high n-value data set.

As has been discussed[7], there could be a difference between constructed
and true pileup phases. This is potentially quite dangerous, as Fig. 3.31 shows.
Here, time spectra were generated assuming the 5-parameter function and a
pileup term of the function

NPU (t) = N0P U
e−t/τP U

(

cos(ωat+ φPU +N1P U
cos(2ωat+ φPU2

)
N2P U

N0P U

)

(3.6)
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Figure 3.30: Distributions of dRPUe
, the systematic error on R due to pileup

construction efficiency, for both data sets.

The generated time spectra assumes N0/N0P U
= 0.42% at t = 0, and the rest of

the parameters were obtained from fits to the pileup time spectrum itself. After
the original time spectrum is built, pileup spectra with different phases than

the phase used to generate the pileup background are subtracted from the time
spectrum. Differences between ’true’ and ’constructed’ phases were varied from
-40 to 40 mrad, in 20 mrad steps. The plots shown in Fig. 3.31 show differences
in fit values of R as a function of fit time between spectra that have the ’true’
pileup subtracted off and time spectra that have phase-shifted pileup subracted
off. An error in the phase of pileup construction of 20 mrad results in a ∼ 0.3
ppm error in R.

An error of 20 mrad, however, is unlikely. However errors in either the
L ogashenko coefficients or the energy-dependent deadtime used to construct
the pileup pulses could lead to shifts in the constructed pileup phase. This
is because some pulses will be added or lost ’near’ the edges one’s (software)
energy thresholds due to the errors in the Logashenko coefficients; the phase
is energy-dependent, so this could cause the constructed pileup phase to differ
from the true pileup phase.

To estimate the size of this effect, the energy-binned pileup time spectra
were fit to Eq. 3.6; the fit values of the pileup phase vs. energy bin are shown
in Fig. 3.32. The energy bins are 200 MeV wide, and results from energy bins
1.7-3.3 GeV are shown (note, the energies are the central value of the bin). In
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Figure 3.31: dR vs. fit time due to constructing pileup with phases that are
shifted by -40, -20, 20, and 40 mrad with respect to the true pileup. These
simulation results assume a 0.42% pileup contamination at t=0, and the other
parameters used in the functional form of the pileup were obtained from fits to
data.
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Figure 3.32: Pileup phase vs. energy bin as determined by fitting the time
spectra to Eq. 3.6.

addition, fits to larger energy bins were made: ’All’ represents the sum over
all energy bins, and the numbered bins represent the sum over those bins (ie:
1.9-3.1 is the sum of the data from bins 1.9 to 3.1). Of the last five, the 1.9-
3.1 bin is very similar to the energy-cuts used in constructing the time spectra
for this analysis, and so the last four bins, 1.9-2.9, 1.9-3.3, 1.7-3.1 and 2.1-3.1
are as if 100% of the bins on the edges of the energy-cuts were added in or
subtracted off from the data. We find that the largest change (∼ 2.8 mrad)
in pileup phase seen is due to throwing out the lowest energy bin. This is not
unexpected, since the pileup phase changes more rapidly in this energy region
than in the higher energy region. Since this 2.8 mrad change is obtained by
assuming that the entire 200 MeV-wide energy bin would have to be lost during
pileup construction, an estimate for the uncertainty in the PU phase of 2.8 mrad
is therefore extremely conservative. Assuming a 2.8 mrad uncertainty in the PU
phase, we find from Fig. 3.31, that this results in a 0.042 ppm systematic error
on R. We therefore set the error due to constructed pileup phase on R to be
0.042 ppm for both data sets.

The effect of low energy pileup on R has been studied by both Ivan Lo-
gashenko [8] and Gerco Onderwater. Both found the same overall phase dif-
ference produced by the low energy pileup, however Logashenko’s estimate of
0.06 ppm was obtained assuming that a phase difference in the pileup of 1 mrad
is equivalent to a 3.5 ppm error in R. Onderwater, on the otherhand, did an
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actual simulation and found the sensitivity to be much smaller, by a factor of
3. Since both studies found the same phase difference, Onderwater’s estimate
of 0.02 ppm supersedes Logashenko’s estimate of 0.06 ppm.

Adding all errors in quadrature gives dRPUS = 0.06 ppm for the low n-value
data set and 0.05 ppm for the high n-value data set.

3.5 Muon Losses

One of the great advantages of the ratio method is that the spectrum r(t) is
largely unaffected by slow terms, such as muon losses, since these effects largely
cancel out. To see this, we have simulated time spectra according to Eq. A.1
but with muon losses included. The muon loss function form (dNµ/dt) here is
an exponential with a lifetime of 25 µs and an amplitude of 1% at t=0. Figures
3.33 and 3.34 show the effects of muon losses when not taken into account when
fitting the time spectra to the usual 5 parameter function vs. when fitting via
the ratio method. Phase pulling in R vs. fit start time is quite obvious when
fitting the 5 parameter function, however the results from the ratio method seem
unperturbed by losses.

To obtain a systematic error on R due to muon losses in the ratio fit, the 3FC
time spectra obtained from the 21.7 kV data set was fit to an exponential from
30-70 µs, another exponential from 70-100 µs, and a Gaussian from 100-300 µs
giving an approximation of the muon loss function. The muon lifetime was also
divided out of this function. The figures in 3.35 show the muon loss rate (left)
and integrated muon losses (right). The integrated muon losses are normalized
such that at very late times, the function goes to one. Therefore, a scale factor
multiplying the integrated muon losses corresponds to the total (percentage of)
muons lost during data taking.

Having a functional form, we next simulate the electron time spectrum with

no statistical fluctuations according to the 5-parameter functional form, but
include muon losses of varying amounts. Therefore, the function used to create
the time spectrum is

N(t) = N0e
−t/τ (1.+A cos(ωat+ φ))exp(−ALFL(t)) (3.7)

where

FL(t) =

∫ t

t0

fL(t
′)dt′ (3.8)

and AL =0.0, 0.25%,0.5%, 0.75% and 1.0%. Fitting the resulting time spectra
to the ratio method and comparing the results to the fit results of the spectrum
with no muon losses, we find that the effect on R is extremely small. Fig. 3.36
shows the difference between fit results of spectra with and without muon losses.
We see that if we lose a total of 0.6% of our injected muons after scraping, a
number which is similar to loss rates determined from multiparameter fits of the
actual data, the effect on R is much less than 0.01 ppm at the earliest fit times.

If muon losses were to only affect the number of decay electrons detected,
then this would be the end of the story. However, if for some reason the missing
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Figure 3.33: Fit results to simulated data. The simulated spectrum is derived
from a random distribution according to Eq. A.1, but with muon losses included,
and fit to a 5 parameter function. The fitted values of the parameters of the
function are plotted vs. starttime of the fit. The red lines are the correlated
error bands.
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Figure 3.34: Fit results to simulated data. The simulated spectrum is derived
from a random distribution according to Eq. A.1, but with muon losses included,
rearranged according to Eq. A.7 and fit to the 3 parameter function A.20. The
fitted values of the parameters of the function are plotted vs. starttime of the
fit. The red lines are the correlated error bands.
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Figure 3.35: Left: Empirical fit to the 3FC time spectrum of the 21.7 kV data
set, with the muon lifetime divided out. Right: Integrated muon losses (FL(t)).
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Figure 3.36: Effect of muon losses on R vs. fit start time with the ratio method.
Plotted here is fit R(no losses) - fit R(losses). Note the scale of the effect: < 10−4

ppm.
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Figure 3.37: Left: radial (x) spin component distribution of injected muons,
those that are stored (top) vs. those that are lost (bottom). Right: same as on
left, but vertical (y) spin component distributions.

decay electrons (from lost muons) were to have a different average g-2 phase or
asymmetry, then this must also be taken into account. Decay electron time spec-
tra taking into account lost muons were generated as described above, however
different asymmetries and g-2 phases are assumed for the lost decay electrons.
The two plots in Fig. 3.39 show the size of the effect on ωa for each of these
effects. The effect of a slightly changing asymmetry (right plot) has very little
effect on R. This is no surprise, as we know that A is not strongly correlated
to R in the fits. Indeed, here most of the error on R is due to the effect on the
number of decay positrons, since the amplitude of the phase pulling changes
very slightly as the asymmetry changes. However, we see, as expected, that a
changing g-2 phase does have a much larger effect on R (left plot).

There are two ways in which the missing decay electrons could have a differ-
ent g-2 phase or asymmetry: beamline beam dynamics and storage ring beam
dynamics.

Muons born before the beamline dipole magnet D5 have a different g-2 phase
than those muons born after D5 (in the straight section of the beamline), since
the spins of those born before rotate due to the magnet in D5. The effect on
R has been estimated by Bill Morse, and he has set a conservative upper limit
to be 0.13 ppm. Another way to check this result is to use tracking. Figs. 3.37
and 3.38 show the initial spin component distributions of those muons that are
stored (top plots) vs. those that are lost (bottom plots) in g2track. Only muons
that are lost after 4 turns around the storage ring are considered, so although
muons lost during scraping are used in this study, there is a requirement that
the muons at least survive injection and the kick. In this way we are able to
obtain reasonable statistics. Stored muons are those that have not been lost
after ' 75µs after injection (muons do not decay in g2track).

The initial spins are obtained from the BTRAF program, which simulates the
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Figure 3.38: Left: longitudinal (z) spin component distribution of injected
muons, those that are stored (top) vs. those that are lost (bottom). Right:
initial g-2 phase distributions of stored (top) and lost (bottom) muons.

g-2 beamline and tracks spin. The quantity

φxz = tan−1
(

sx
sz

)

(3.9)

is therefore the inital g-2 phase of each muon. The distribution of initial g-2
phases is shown in the right plots of Fig. 3.38. Using the RMS/

√
N as the

statistical error, we find that the average g-2 phase of the stored muons is -35.5
± 0.4 mrad and that of the lost muons is -28.8 ± 0.9 mrad. Therefore, there is
a difference of -6.7 ± 1 mrad. Looking at Fig. 3.39 and interpolating between
the -4 and -8 mrad plots, we see that this will give an approximate error of
0.1 ppm for a total muon loss of 0.6%. However, Xiaobo Huang finds that the
total muon loss is approximately 0.5% for the low-n data set and 0.03-0.04%
for the high-n data set, so we can scale the error down to 0.08 and 0.06 ppm
respectively.

The beam dynamics of the storage ring could also cause the missing decay
electrons to have a different phase and asymmetry, since the lost muons very
likely live on the outer edges of the phase space of the storage ring, and there
most certainly are correlations between average radius, drift time and detector
efficiencies. This effect has been studied in [9], and an upper limit of 0.04 ppm
is set for both the low- and high-n data sets.

The systematic uncertainties discussed here were calculated assuming a fit
start time of 30 µs. Since on average the fit start times is ∼ 25µs in this analysis,
we must scale up the error to account for the effect of starting our fits earlier
by 5µs. Extrapolating the muon loss function backward by 5 µs, we find that
the total fraction of lost muons increases by ∼ 18%. Therefore, the systematic
error due to lost muons is estimated to be 0.11 ppm for the low-n data set and
0.083 ppm for the high-n data set.
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and that of the asymmetry is 0.4.
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Figure 3.40: Drifttimes (left) and relative g-2 phases (right) of decay electrons
in G2GEANT born in the outermost and innermost regions of the storage ring
(top) and those born in the central regions. An energy cut of E > 1.9 GeV is
enforced.
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Finally, there is an additional acceptance effect due to lost muons, indepen-
dent of the spin effect discussed above, which is due to the different phase-space
distributions of the average stored muon and the average lost muon. This issue,
first raised by Semertzidis, had been ignored in previous years because it was
assumed that the g-2 phase dependence on the vertical position of the decay
electron at birth is about the same as that for the radial position. However, as
was discovered in late September of 2003, the phase depends quite heavily on the
vertical position a factor of 5-6 times greater than on the radial position (this
general effect became known as the Farley Effect, and in the case of lost muon,
the Farley Effect for Lost Muons). To estimate the size of this effect, g2track
was again utilized to determine the phase-space distribution of the lost muons.
The details of this study may be found in [9]. We use < φ > (x, y) obtained
from G2GEANT to calculate the difference between < φ >stored and < φ >lost,
and use the same simulation above to estimate the systematic shift in R. An
upper limit of 0.04 ppm at 30µs is set for both data sets, therefore for the start
times used in this analysis this becomes 0.05 ppm.

3.6 Others

“Others” includes systematic errors due to fill selection, bin width effects, fast
rotation randomization, timing shifts, vertical oscillations and double CBO
(both will be lumped into one “other BO” category, where BO stands for beta-
tron oscillations), choice of g-2 period in shifting the time spectra for the ratio
method, fit procedure and AGS background.

As discussed in Section 1.2, various cuts were made on each fill in order
to filter out such potential problems as laser contamination, quad sparking,
misreading the t0 pulse, and narrow pulse contamination. If one were able to
assume that these cuts are 100% efficient, then we would not need to assign any
systematic error on the precession frequency. However, as has been shown in the
past, when the date rate flowing through the DAQ is very high, ’hiccups’ can
occur where the data is misread or fills become misaligned between the various
crates. Therefore, for example, one could be reading out fill number 27 from
some detectors, yet be reading out fill number 26 from others. The chance of
this occurring is extremely small, yet still non-zero, and if this were to occur,
then there is the possibility of using some data that is contaminated in some
way.

During the run selection process, Chris Polly looked for coincidences between
various non-contiguous detectors in order to eliminate runs that may have a
large amount of laser contamination. The idea is that if after applying a cut
on the laser flag one finds many coincidences between detectors, then it is very
likely that the laser flag was misread. No laser runs were found that showed a
large number of coincidences when the laser flag was not set, therefore we may
assume the laser cut to be 100% efficient.

Unfortunately, we do not really know if there were other DAQ hiccups in
the other non-laser runs. We can, however, estimate the level of contamination
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from Chris’ work: he finds 0 DAQ hiccups by looking at approximately 1.2 ×
107 pulses. There are approximately 80 pulses on average per fill, therefore
this means Chris looked at approximately 150,000 fills. Therefore we set an
upper limit (or estimate) on the fraction of DAQ hiccups in the data set as
approximately 7 ppm.

To set an upper limit on the systematic errors on R due to quadrupole cut
inefficiencies, five-parameter time spectra were created where the decay electrons
were truncated at 225 µs after injection. This would happen if, for example,
the quadrupoles failed during a fill and the quadrupole cuts failed to catch this.
The truncated data was added in to the time spectrum at the level of 10 and
50 ppm. Fitting the data to the 3-parameter ratio function we find the largest
error in R to be less than 0.00005 ppm.

The t0 cut applied to each fill requires that the t0 has a non-zero value
between 50-65 µs, and that the amplitude of the t0 pulse in the WFD is greater
than 30. The relationship between these three requirements was investigated,
and it was found that if any of the three t0 cuts fail, all three fail; they are 100%
correlated. Therefore the only way that the t0 could be wrong is if, due to a
DAQ hiccup, the wrong t0 time is used. However, the distribution of t0 per fill
is fairly narrow, with a width of a few nanoseconds. Using a ’wrong’ t0 would
therefore mean using a t0 that is shifted by a nanosecond or two, which would
only dilute the g-2 asymmetry in the data (thereby increasing the statistical
error), and would cause no early-late shift. We therefore may safely ignore this
issue.

Since the narrow pulse cut was applied rather late in the analysis, we may
compare the fit results from before and after the cut was applied. The final
results changed by 0.2 ppm for the low n-value data, and less than 0.05 ppm for
the high n-value data. The narrow pulse cut is based on Qinzeng Peng’s narrow
pulse studies, and he finds[10] that of the 19,617 and 4,652 two-peak narrow
pulses above 1.8 GeV that he finds in the low and high n-value data respectively,
268 and 128 two-peak narrow pulses remain after applying a cut on the average
fit χ2 per fill. Therefore we may assume that the cut is approximately 1.4% and
2.8% inefficient for the low and high n-value data sets respectively. Therefore,
we obtain a systematic error on R due to two-peak narrow pulse contamination
of 0.003 and 0.001 ppm for low and high n respectively.

The effect of bin width has been studies in past years, and there is no reason
we should not be able to use those results for this year’s analysis. We therefore
use 0.05 ppm as our systematic error due to binning effects for both data sets.

Five different random seeds were used for fill randomization, therefore five
different values of R were determined. We use RMS(R)/

√
5− 1 to determine

the systematic error due to randomization and find 0.03 ppm for the low n-value
data set and 0.09 ppm for the high n-value data set.

The systematic error on R due to timing shifts in the pick-off time of pulses
from the detectors has been determined by Rob Carey to be 0.02 ppm [11].

Besides radial CBO, the counting rate is also modified by other betatron fre-
quencies. The three other dominant oscillations are at the frequency of twice the
radial CBO frequency (dubbed DCBO), which comes from the radial “breath-
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Figure 3.41: Vertical oscillations as seen by the FSDs by looking at the differ-
ences between tiles 2 and 4 as a function of time. Top: Sum of all “tile 2 -
tile 4” time spectra from 33-100 µs. Bottom: Same as top, but from 33-50 µs,
where the VBO oscillations are more easily seen.
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(b) High n-value data.

Figure 3.42: FFT of “tile 2 - tile 4” time spectra. Top: low frequency range,
showing a g-2 peak. Bottom: high frequency range, showing the vertical BO
peak.
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Figure 3.43: Effect on the fit values of R when neglecting the various OBO
terms. dR = Robo − R9, where Robo is the fit value of R with the OBO term
included, and R9 is the nominal fit value of R from the 9-parameter fit function.
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ing” of the beam, where the width of the beam oscillates, the vertical breathing
of the beam (dubbed VW for vertical waist) and the vertical oscillation fre-
quency. These oscillations die-off rather rapidly, and are only seen in the data
at very early times after injection. All oscillation frequencies are seen in the
early-time residuals of fits of the data at late times, but the radial breathing of
the beam has also been seen in the fiber harps, and the vertical oscillations are
also seen by the FSDs when one takes the difference of the time spectra of FSD
tiles 2 and 4 (see Fig. 3.41-3.42). It should be noted that the vertical breathing
of the beam was not seen by the FSDs when looking at other combinations of
FSD tiles (ie: 3-2-4), however the frequency appears as a clear peak in the FFT
of the early-time residuals of the fits to the data.

The effect of DCBO was added to the fit function by modifying Eq. 2.27 to

f0(t) = (1 +ANc
(t) +ANdcbo

(t))(1 +A(1 +AAc
(t)) cos(ωat+ φa(1 +Aφc

(t))))
(3.10)

where
ANdcbo

(t) = ANdcbo
e−2t/τc cos(2ωct+ φNdcbo

) (3.11)

f±(t) were modified similarly. Note that the lifetime of DCBO is fixed to half
the lifetime of the radial CBO, and the frequency is fixed to twice the radial
CBO frequency. The plots in Fig. 3.43(a) show the dR distributions for both
data sets between fitting for DCBO and not fitting DCBO. The mean systematic
error for both data sets is ∼0.025 ppm.

Vertical oscillations were treated similarly by modifying Eq. 2.27 to

f0(t) = (1 +ANc
(t) +ANvbo

(t))(1 +A(1 +AAc
(t)) cos(ωat+ φa(1 +Aφc

(t))))
(3.12)

where
ANvbo

(t) = ANvbo
e−t/τvbo cos(ωvbot+ φNvbo

) (3.13)

f±(t) were modified similarly. The VBO lifetime is fixed to 28 µs, obtained
from fits to the FSD tile 2-tile 4 spectra, and the VBO frequency is calculated
given the assumed CBO frequency in the fit:

fvbo = 6.703×
√

1− (1− (fc/6.703))2 (3.14)

where 6.703 is the cyclotron frequency in MHz and fc is the assumed CBO
frequency. The plots in Fig. 3.43(b) show the dR distributions for both data
sets between fitting for VBO and not fitting VBO. The mean systematic error
for the low n-value data set is less than 0.01 ppm and ∼ 0.02 ppm for the high
n-value data set.

Finally, the vertical waist was treated the same was a vertical oscillations,
with ANvbo

(t) replaced with ANvw
(t), fvbo replaced with fvw (calculated from

the assumed CBO frequency in the fit) and τvw is set to 20 µs. The VW
lifetime was obtained by fitting the relative FFT amplitudes of the VW peak
as a function of time, where the FFT spectra binned in separate g-2 periods
(that is, FFT of residuals from 20-24.365, 24.365-28.73, etc.) The plots in Fig.
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(a) Quad-off time spectra for both
data sets.
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(b) Number of flashlets vs. detector
for both data sets.

Figure 3.44: Quad-off time spectra, from 33-300 µs after injection, summed over
all detectors, and the number of flashlets as a function of detector number for
both data sets. Note that the quads were turned off every 49th fill, therefore
all entries in the N(t) histogram have been scaled up by a factor of ∼ 49. As
expected, those detectors closest to the injection point have the highest number
of flashlets.

3.43(c) show the dR distributions for both data sets between fitting for VW and
not fitting for it. The mean systematic error due to ignoring VW in the fits is ∼
0.02 ppm for both data sets. Adding all error in quadrature, we find the total
systematic error on R due to other BO for the low n-value data set is 0.03 ppm,
and 0.04 ppm for the high n-value data set.

The ratio method relies on knowledge of the g-2 period to within some accu-
racy in order to shift the time spectra appropriately without oscillation. Seven
time ratio spectra were produced where the data was shifted using assumed g-2
periods of

Ta(1− (n− 4)7× 10−6) (3.15)

where n = 1, 2...7 and Ta is the actual g-2 period used in generating the time
spectrum; therefore the maximal difference between assumed and true g-2 pe-
riods is ±21 ppm. It was found that the fit results for R for these time spectra
(21 ppm off from the true value) differ by no more than ±4 × 10−5 ppm from
fits to the spectrum that used the true value of the g-2 period in shifting the
time spectra. The g-2 period used in shifting the actual data is within 6 ppm
of the fit result for R. Therefore we argue that this systematic error does not
even need to be listed, since it is orders of magnitude smaller than all other
systematic errors.

In the 2001 data run, the quadrupoles were turned off periodically; these
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Figure 3.45: FFT amplitudes of the quad-off time spectra for both data sets
in different frequency ranges. Note the AGS cyclotron frequency of ∼ 370 kHz
and its harmonics.
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Figure 3.46: Flashlet energy spectrum, from 1.2-4.2 GeV.
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’quad-off’ fills allowed us to measure the time and energy spectra of the AGS
background (a.k.a. flashlets). On the left of Fig. 3.44, the quad-off time spectra
for both n-value data sets are shown, and on the right the distributions of flashlet
contamination around the ring (number of flashlets vs. detector) for both data
sets are shown. The time spectra were built applying the usual energy cuts,
and they were later scaled-up by a factor of ∼ 49 (since the quads were turned
off only once every 49 fills). The FFTs of the the quad-off time spectra are
shown in Fig. 3.45, the left plots showing the frequency spectra in the range of
100-1000 kHz, and the right plots showing the frequency spectra in the range
of 1-3.3 MHz. The AGS cyclotron frequency of ∼ 370kHz and its harmonics
are clearly distinguished; note also that there is no peak above noise at the g-2
frequency. The energy spectrum of the flashlets is shown in Fig. 3.46.

To determine the effect of AGS background on the fit value of R, the quad-
off time spectra were added to the quad-on time spectra, with multiplicative
factors of -1.5, -1, -0.5, 0, 0.5, 1, and 1.5. Therefore, the multiplicative factor
of -1 essentially subtracted out the AGS background from the data, and the
factor of 1 doubled the amount of AGS background in the data. These time
spectra were then fit to the 9-parameter ratio function; the largest difference
seen between fit R values from any of the fits was less than 0.01 ppm. We
therefore claim a 0.01 ppm systematic error on R due to AGS background.

In Chris Polly’s ωa analysis, he found it necessary to add an extra term to
the fit function to account for the beam’s upward motion at early fit start times
due to the turn-off of scraping. This is an acceptance correction to N0, with an
exponential lifetime of ∼ 5µs. Although no such term has been found necessary
in this ratio-based analysis (neither the residuals of fits at early times nor the
fit χ2 show a 5 µs time-dependence), the effect was investigated by adding the
term to the fit function (making a 10-parameter ratio function) and fitting the
sum of all early-detectors at the nominal fit start time (23 µs). The χ2s of the
fits with this term do not improve significantly (∆χ2/d.o.f. < 1 × 10−4), and
the change in R is less than 0.001 ppm for both data sets. Therefore, we claim
no systematic effect due to beam relaxation in this analysis.

In this analysis, limits were set on all fit parameters in order to ensure fit
parameter stability and χ2 minimization convergence. However this can be
problematic with MINUIT, since if a parameter is found to be at or near its
limit then MINUIT cannot properly evaluate the error on the parameter. Fairly
loose limits were set on the important parameters, ie: A and R, and φa had
limits from 0 to 2π. The CBO amplitudes all had limits from 0 to 10 times the
’typical’ amplitudes found from the fits, and the cbo phases were also limited
to fall within 0 to 2π. Occasionally in the fit start time scans some of the CBO
parameters were found to be at or very close to their limits. However, R was
never found anywhere near its limits (-200 to 200, where they typical value of
R was -25).

Still, to be sure that the value and errors of R were not systematically pulled,
a study was done where the limits on R were removed. About 90% of the fits
converged, and the average difference between those R values found with limits
and those found without was ∼ −0.04 ± 0.07 ppm. An order of magnitude

95



Values of Fit Parameters

Fit Low-n High-n
Param. Fits Fits

A 0.3814± 3.068× 10−5 0.3812± 3.674× 10−5

φa 3.0322± 1.4438× 10−4 3.0323± 1.746× 10−4

ANc
(9.22± 0.958)× 10−3 (1.28± 0.139)× 10−2

AAc
(2.50± 0.247)× 10−3 (3.05± 0.245)× 10−3

Aφc
(6.62± 0.826)× 10−4 (5.80± 0.768)× 10−4

χ2/d.o.f. 22.49/22 36.72/22

Table 3.1: Average (over 23 detectors) values of the fit parameters for the 9-
parameter ratio fit. Results are for one random seed, however χ2’s are averaged
over 5 random seeds.

smaller average difference (and also consistent with zero) was found between
the errors on R. Similar studies were done where not only the limits on R were
removed, but also the limits on the CBO amplitudes were removed, and similar
average differences (∼ 0.04 ppm) were found. We therefore set the systematic
error on R due to fit procedure at 0.04 ppm.

3.7 Summary

Table 3.1 summarizes the average values of the asymmetry, phase and CBO
amplitudes determined from the 9-parameter ratio fits.

The final R values determined from both data sets are very consistent with
each other: Rlow = 108.21 ± 0.91 ppm, Rhigh = 108.42 ± 1.10 ppm and
RSB = 110.55 ± 3.73, where the errors are statistical. Table 3.2 summarizes
the systematic errors on R for both data sets. The systematic errors for the
“S+B” data set are for the most part assumed to be the same as for the “golden”
low-n subset with a few exceptions: the muon loss systematic error is conserva-
tively estimated to be twice the size for the S+B data set than for the golden
low-n data set due to the expected increase in the fraction of lost muons (less
scraping and lower kick = more losses), and the randomization systematic error
is obtained from the spread of R values found using five random seeds.

The systematic uncertainties due to beam dynamics include differential de-
cay, d < y > /dt and d < σy > /dt. “CE” and “CP” refer to the uncertainties
in the radial electric field and pitch corrections respectively that will be applied
to ωa. In calculating the total systematic error, we currently assume the in-
dividual systematics errors are uncorrelated, and therefore all errors are added
in quadrature to obtain a total systematic uncertainty of 0.22 for all data sets
combined.
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Systematic Error Table (all units in ppm)

Syst. Low-n High-n Low+High S+B L+H+S+B
Error
ESC 0.01 0.02 0.01 0.01 0.01
WW 0.1 0.1 0.1 0.1 0.1
Pileup 0.06 0.05 0.05 0.06 0.05
CBO 0.06 0.12 0.08 0.06 0.08
Muon 0.12 0.09 0.11 0.24 0.12
Losses

Random- 0.04 0.05 0.04 0.18 0.05
ization
Timing 0.02 0.02 0.02 0.02 0.02
Shifts
Bin 0.05 0.05 0.05 0.05 0.05

Width
Other BO 0.03 0.04 0.03 0.03 0.03
AGS Bgnd 0.01 0.01 0.01 0.01 0.01

Fit 0.04 0.04 0.04 0.04 0.04
Procedure
Fill Cuts 0.01 0.01 0.01 0.01 0.01
CE & CP* 0.06 0.06 0.06 0.06 0.06
Beam** 0.05 0.05 0.05 0.05 0.05
Dynam.

Total
Syst. 0.21 0.22 0.21 0.35 0.22
Error
Stat. 0.91 1.10 0.70 3.73 0.689
Error

Table 3.2: Summary of systematic errors for the various individual and combined
data sets. All units are in ppm. * See [1]. ** From studies by W. Morse, D.
Hertzog, C. Polly, Q. Peng, R. Carey and J. Miller.
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Appendix A

The Ratio Method -

Derivations

A.1 Simple 3-Parameter Function

This is derived from the simple 5-parameter function for N(t),

N5(t) = N0e
−t/τ (1 +A cos(ωat)) (A.1)

where we have set φg−2 equal to zero for simplicity (it will of course be added
in later).

Let

u+(t) = N5(t+ T/2) = N0e
−t/τe−T/2τ (1−A cos(ωat+ δ)) (A.2)

and
u−(t) = N5(t− T/2) = N0e

−t/τeT/2τ (1−A cos(ωat− δ)) (A.3)

where T is a good approximation of the g-2 period (to about 5-10 ppm) and δ
is the difference between T and Ttrue, δ =

ωa

2 (T − Ttrue) = π × δT .
Now let

v1(t) = v2(t) = N5(t) (A.4)

U(t) = u+(t) + u−(t) (A.5)

V (t) = v1(t) + v2(t) (A.6)

r(t) =
V (t)− U(t)

V (t) + U(t)
(A.7)
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Expanding e±T/2τ and A cos(ωat± δ), we find

u+(t) = N0e
−t/τ

(

1− 1

2

T

τ
+

1

2

(

1

2

T

τ

)2

− . . .
)

×
(

1−A cos(ωat) +Aδ sin(ωat)
)

(A.8)

u−(t) = N0e
−t/τ

(

1 +
1

2

T

τ
+

1

2

(

1

2

T

τ

)2

+ . . .

)

×
(

1−A cos(ωat)−Aδ sin(ωat)
)

(A.9)

and so,

U(t) = 2N0e
−t/τ

(

1 +
1

2

(

1

2

T

τ

)2
)

(

1−A cos(ωat)
)

−

N0e
−t/τ T

τ
Aδ sin(ωat) (A.10)

Now let

C1 =
1

16

(

T

τ

)2

' 2.87× 10−4, (A.11)

and

C2 =
TAδ

4τ
' 2× 10−7 (A.12)

then,

V (t)− U(t) = 4N0e
−t/τ (A cos(ωat) + C2 sin(ωat))−

4N0e
−t/τC1(1−A cos(ωat)) (A.13)

V (t) + U(t) = 4N0e
−t/τ (1− C2 sin(ωat)) +

4N0e
−t/τC1(1−A cos(ωat)) (A.14)

r(t) =
A cos(ωat) + C2 sin(ωat))− C1(1−A cos(ωat))

(1− C2 sin(ωat)) + C1(1−A cos(ωat))

=
A′ cos(ωat)− C1 + C2 sin(ωat)

1− C2 sin(ωat) + C1(1−A cos(ωat))
(A.15)
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where A′ = A(1 + C1)
Since the terms in the denominator are small, we can rewrite this as

r(t) = (A′ cos(ωat)− C1 + C2 sin(ωat))×
(1− C1(1−A cos(ωat)) + C2 sin(ωat)) (A.16)

Keeping terms to first order, we have

r(t) = A′ cos(ωat)− C1 + C2 sin(ωat)− C1A
′ cos(ωat) +

C1AA
′ cos2(ωat) + C2A

′ sin(ωat) cos(ωat)

= A′′ cos(ωat)− C1 + C2 sin(ωat) +

C2A
′ cos(ωat) sin(ωat) + C1AA

′ cos2(ωat) (A.17)

where

A′′ = A′(1− C1) = A(1− C2
1 ) (A.18)

Terms involving C2 are of order 10−7 or less, and so may be neglected, and
we are left with

r(t) = A′′ cos(ωat)− C1 + C1AA
′ cos2(ωat) (A.19)

In practice, the last term is omitted, so that

r(t) = A cos(ωat)− C1 (A.20)

Verification of the above derivation can be easily done using simulation. We
have produced time spectra according to Eqn. [A.1] for 3.6 billion muon decays,
with an energy range of 2-2.9 GeV. The energy dependence of the asymmetry
is taken into account. We have fit both the normal time spectrum with the five
parameter function A.1 and the ratio time spectrum with the three parameter
function A.20. The input parameters are: τµ = 64.4µs, R = 15.0ppm, and
φ = 1.5rad. The fit results are shown in Figures A.1 and A.2. Both methods
of obtaining R give acceptable results (good χ2, consistant R vs fit start time,
etc.).

A.2 Derivation of the Ratio Function with a Back-

ground Term

Here we assume a background term B(t) such that

N(t) = N5(t) +B(t) (A.21)

where B(t)/N5(t)¿ 1. Eq. A.15 from the previous derivation is then modified
to be
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Figure A.1: Fit results to simulated data. The simulated spectrum is derived
from a random distribution according to Eq. A.1, and fit to a 5 parameter
function. The fitted values of the parameters of the function are plotted vs.
starttime of the fit. The red lines are the correlated error bands.
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Figure A.2: Fit results to simulated data. The simulated spectrum is derived
from a random distribution according to Eq. A.1, rearranged according to
Eq. A.7 and fit to the 3 parameter function A.20. The fitted values of the
parameters of the function are plotted vs. starttime of the fit. The red lines are
the correlated error bands.
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r(t) =
A cos(ωat) + C2 sin(ωat))− C1(1−A cos(ωat)) + bnum(t)

(1− C2 sin(ωat)) + C1(1−A cos(ωat)) + bden(t)

=
A′ cos(ωat)− C1 + C2 sin(ωat) + bnum(t)

1− C2 sin(ωat) + C1(1−A cos(ωat)) + bden(t)
(A.22)

where

bnum(t) =
2B(t)−B(t+ T/2)−B(t− T/2)

4N0exp(−t/τ)
(A.23)

and

bden(t) =
2B(t) +B(t+ T/2) +B(t− T/2)

4N0exp(−t/τ)
(A.24)

Therefore, the ratio becomes, neglecting the same terms as before but keeping
the background terms to first order,

r(t) = A cos(ωat)(1− bden(t))− C1 + bnum(t) (A.25)

From this result one immediately sees that if the background term is large
enough, the fit result for ωa will be fit-start-time dependent. We also see that
any background that oscillates, such as pileup and CBO, will produce “beat
frequencies” in the ratio time spectrum. Pileup will produce beat frequencies
of fbeat = 0 and f = 2fa, whereas CBO will produce beat frequencies of fbeat =
fcbo ± fa. If a beat frequency sits close to the actual g-2 frequency fa, then fits
to the data that do not have background subtracted or fits to the data with a
simple three-parameter function will show oscillations in the fit value of ωa at
frequencies f = fbeat ± fa. This is readily seen when the 2001 data set is fit to
the three-parameter ratio function: ωa oscillates vs. fit start time at frequencies
f ' 40 kHz and f ' 32 kHz for the low- and high-n data sets respectively.

Another, perhaps more subtle, expectation is g − 2 oscillations in difference
plots of ω vs. fit start time with a non-oscillating background “removed” (either
subtracted or fitted out) and the background left in. A good example of this
is gain or ESC corrections; since gain or ESC effects N0, τ and in particular A
versus time, one finds that bden(t) ∝ cos(ωat). Therefore, in the fit-start-time
scan of ωa with the background left in, ωa will have small oscillations at f = 2fa
(since cos(ωa)

2 = 1
2 (1 + cos(2ωa))) and the fit-start-time scan of ωa with the

background term removed will either have no oscillations at this frequency or
at least oscillations of a much smaller amplitude. When looking at (R(corr.) vs.
t)−(R(no corr.) vs. t), one expects to see oscillations at twice the g-2 frequency.
This is indeed the case, as shown in Fig. 3.17.
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A.3 A General Derivation of the Ratio Function

with CBO

From past experience, we know that Eq. A.1 is not sufficient to obtain stable
fit results from the data. This is because the counting rate is changed by other
effects, primarily those from detector gains, muon losses, and coherent betatron
oscillations (CBO). The ratio method is largely insensitive to detector gains and
muon losses, however it is not blind to CBO.

Assume that the number, asymmetry and phase are affected by CBO. Then
the number of decay electrons or positrons as a function of time is in general
written as:

N(t) = (N0 +Ncbo(t))e
−t/τ [1 + (A+Acbo(t)) cos(ωat+ φ+ φcbo(t))] (A.26)

Assuming that the effect of CBO is small, we expand Eqn. A.26 out and keep
terms to only first order:

N(t) = (N0 +Ncbo(t))e
−t/τ [1 +A cos(ωat+ φ) +Acbo(t) cos(ωat+ φ)−

Aφcbo(t) sin(ωat+ φ)]

= N0e
−t/τ (1 +A cos(ωat+ φ))

(

1 +
Ncbo(t)

N0

)

+

N0e
−t/τ

(

1 +
Ncbo(t)

N0

)

(Acbo(t) cos(ωat+ φ))−

Aφcbo(t) sin(ωat+ φ))

= N5(t) (1 + f1(t) + f2(t))

= N5(t) (1 + fcbo(t)) (A.27)

where

f1(t) =
Ncbo(t)

N0
, (A.28)

f2(t) =
Acbo(t) cos(ωat+ φ))−Aφcbo(t) sin(ωat+ φ)

1 +A cos(ωat+ φ)
, (A.29)

and

fcbo(t) = f1(t) + f2(t) (A.30)

Eqn. A.27 is equivalent to having a background term,

N(t) = N5(t) +B(t) (A.31)

where
B(t) = N5(t) · fcbo(t) (A.32)
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In the previous section it was shown that with a background term B(t), Eqn.
A.20 becomes:

r(t) = [1− bden(t)]A cos(ωat+ φ)− C1 + bnum(t) (A.33)

where
bden(t) = 2b(t) + b+(t) + b−(t), (A.34)

bnum(t) = 2b(t)− b+(t)− b−(t), (A.35)

b(t) =
B(t)

4N0exp(−t/τ)
, (A.36)

b+(t) = b(t+ T/2), (A.37)

and
b−(t) = b(t− T/2), (A.38)

Now,

b+(t) + b−(t) =
1

4

(

1− T

2τ
+

1

2

(

T

2τ

)2
)

(1−A cos(ωat))×

fcbo(t+ T/2) +

1

4

(

1 +
T

2τ
+

1

2

(

T

2τ

)2
)

(1−A cos(ωat))×

fcbo(t− T/2) (A.39)

where we have left out all terms with Aδ sin() since they are small compared to
the A cos() terms, and the phase, φ is implied in all cosine terms. Since fcbo(t)
is small, we keep only the highest order terms:

b+(t) + b−(t) =
1

4
(1−A cos(ωat)) (fcbo(t+ T/2) + fcbo(t− T/2)) (A.40)

Similarly,

2b(t) =
1

2
(1 +A cos(ωat)) fcbo(t) (A.41)

Using Eqns. A.28 and A.29, we find that

b+(t) + b−(t) =
1

4
(1−A cos(ωat))

(

Ncbo(t+ T/2) +Ncbo(t− T/2)
N0

)

−

1

4
(Acbo(t+ T/2) +Acbo(t− T/2)) · cos(ωat) +

1

4
(Aφcbo(t+ T/2) +Aφcbo(t− T/2)) · sin(ωat) (A.42)

and again similarly,

2b(t) =
1

2

(

(1 +A cos(ωat))
Ncbo(t)

N0
+Acbo(t) cos(ωat)−Aφcbo(t) sin(ωat)

)

(A.43)
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Next, we look at bden and bnum:

bden = 2b(t) + b+ + b−

=
1

4

(

2Ncbo +Ncbo+ +Ncbo−

N0

)

+

1

4

(

A cos(ωat)
2Ncbo −Ncbo+ −Ncbo−

N0

)

+

1

4
((2Acbo −Acbo+ −Acbo−) cos(ωat))−

1

4
((2Aφcbo −Aφcbo+ −Aφcbo−) sin(ωat)) (A.44)

and

bnum = 2b(t)− b+ − b−

=
1

4

(

2Ncbo −Ncbo+ −Ncbo−

N0

)

+

1

4

(

A cos(ωat)
2Ncbo +Ncbo+ +Ncbo−

N0

)

+

1

4
((2Acbo +Acbo+ +Acbo−) cos(ωat))−

1

4
((2Aφcbo +Aφcbo+ +Aφcbo−) sin(ωat)) (A.45)

The above equations look a bit scary, but we can simplify them quite a bit.
If one assumes Ncbo ∼ Acbo ∼ φcbo ∼ exp(−t/τc) cos(ωct) and that τc is much
greater than T/2, then since

cos(ωc(t± T/2)) = cos(ωct) cos(ωcT/2)∓ sin(ωct) sin(ωcT/2) (A.46)

we find thatNcbo++Ncbo− ' 2Ncbo cos(ωcT/2), Acbo++Acbo− ' 2Acbo cos(ωcT/2)
and φcbo+ + φcbo− ' 2φcbo cos(ωcT/2). Therefore we can rewrite Eqns. A.44
and A.45 as

bden =
1

2
(
Ncbo

N0
(1 + ξ) +A cos(ωat)

Ncbo

N0
(1− ξ) +

Acbo(1− ξ) cos(ωat)− φ′c(1− ξ) sin(ωat)) (A.47)

and

bnum =
1

2
(
Ncbo

N0
(1− ξ) +A cos(ωat)

Ncbo

N0
(1 + ξ) +

Acbo(1 + ξ) cos(ωat)− φ′c(1 + ξ) sin(ωat)) (A.48)

where ξ = cos(ωcT/2) and φ
′
c = Aφc.
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Several aspects of these results should be noted. First, when we took data
with quadrupole focusing such that Tcbo ' 1

2Tg−2 (ie: 1999 and 2000 runs), then
many terms in bden and bnum cancel since ξ ' 1. We end up with

bden '
Ncbo

N0
(A.49)

and

bnum '
(

A cos(ωat)
Ncbo

N0

)

+

A′cbo cos(ωat)− φ′cbo sin(ωat) (A.50)

Looking at Eqn. A.33 we see that all CBO terms involve products of cos(ωcbot)
with either cos(ωat) or sin(ωat), which reduce to some linear combination of
cos((ωcbo −ωa)t) and cos((ωcbo +ωa)t). Note that there are no terms involving
simply cos(ωcbot)! This is a rather unique result, and obviously does not apply
to the 2001 data.

Next, the amplitude of the main cbo peak can in principle be either mini-
mally zero or maximally the same size as would be seen in a multiparamter fit
of the normal “wiggle” plot, which is the special case of the 2000 run conditions.
Otherwise, the cbo amplitude should be suppressed by some factor in the ratio
method. For the 2001 data, where fc ' 419 and 490 kHz, then ξ ' -0.15 and
0.10 respectively and the suppression factor is ∼ 2.

A.4 Error Propagation

In a counting measurement, the uncertainty in the number of counts within a
time bin is simply the square root of the number of counts in that time bin,
or, more precisely the square root of the function averaged over that time bin.
Therefore, if one were to fit the data directly to a function N(t), in a log-
likelihood or χ2 fit, the error on each bin is

√
N or

√

N(t). However, when
fitting the data to a function f(N(t)), the uncertainty of that function must be
determined.

The ratio is defined as

r(t) =
V (t)− U(t)

V (t) + U(t)
(A.51)

where
V (t) = v1(t) + v2(t) = N1(t) +N2(t) (A.52)

and
U(t) = u+(t) + u−(t) = N(t+ T/2) +N(t− T/2) (A.53)

It is important to note that N1(t), N2(T ), N(t + T/2), N(t − T/2) are all
statistically independent data sets. The uncertainty of the ratio at time t is
therefore

σr(t)
2 =

(

∂r(t)

∂V (t)

)2

δV (t)2 +

(

∂r(t)

∂U(t)

)2

δU(t)2 (A.54)

107



Now,
∂r(t)

∂V
=

1

U + V
−
(

V − U
(U + V )2

)

, (A.55)

∂r(t)

∂U
=
−1

U + V
−
(

V − U
(U + V )2

)

, (A.56)

δV 2 = δv21 + δv22 = v1 + v2 = V (A.57)

and
δU2 = δu2+ + δu2− = u+ + u− = U (A.58)

where both V and U are at time t. Therefore we find

σ2r =
4UV

(V + U)3
=

1− r2
V + U

(A.59)

The above is the correct derivation of the error propagation when no back-
grounds are subtracted from the data. However, in this analysis, pileup events
are statistically constructed from the data and then subtracted from the data
set; therefore one must properly calculate the correct error bar due to subtract-
ing a subset of correlated data from a set of data. This is determined in [5] for
a multiparameter fit: the error at a given time t is increased by

σ2N → σ2N (1 + γe(t−t0)/τ ) (A.60)

where γ is the product of the fraction of pileup events at t0 and a “correlation”
factor as described in [5], and τ is the pileup lifetime (32.2 µs). γ was determined
for each detector in this data set at t0 = 32µs; the typical value of γ is ∼ 1.04%.

However, one must first determine the proper functional form of the “cor-
rect” error of the ratio due to pileup subtraction. We begin with the modification
of the errors on V and U .

δV 2 = δv21(1 + γ(t)) + δv22(1 + γ(t))

= (v1 + v2)(1 + γ(t)) = V (1 + γ(t)) (A.61)

where γ(t) = γe(t−t0)/τ , and

δU2 = δu2+(1 + γ(t+)) + δu2−(1 + γ(t−))

= u+(1 + γ(t)e−T/2τ ) + u−(1 + γ(t)eT/2τ )

' (u+ + u−)

(

1 + γ(t)

(

1 +
1

2

(

T

2τ

)2
))

= U

(

1 + γ(t)

(

1 +
1

2

(

T

2τ

)2
))

(A.62)

However, since γ(t) is already very small at 32µs, we neglect the extra 1
2

(

T
2τ

)2

term and find that the change in the error due to pileup subtraction is, to a
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Figure A.3: The “fast factor” as a function of time after injection. This enhances
the effect of pileup at early times, albeit by a small amount.

very good approximation, the same for ratio fits as for multiparameter wiggle
fits: σ2r → σ2r(1 + γe−(t−t0)/τ ).

One further correction must be made, and that is to the value of γ itself.
At early times after injection, the bunched structure of the beam causes an
enhancement of the pileup by the so-called fast-factor:

ff(t) =
< N2 > (t)

< N >2 (t)
(A.63)

where t denotes the center of a bin of a given bin width dt. The fast factor was
found by extracting N(t) spectra using bin widths of dt = 5 ns, and taking the
ratio of N(t)2 rebinned with dt = 150 ns to the square of N(t) rebinned with
dt = 150 ns. In the 2000 data, the fast factor was found to be as large as 1.6
around 20 µs after injection, however, as shown in Fig. A.3, in the 2001 data
the fast factor is only ∼ 1.03 at 20 µs. The difference is due to a sharp reduction
in data rate between the 2000 and 2001 runs.

We therefore find that the error on the ratio at time t is given as σr →
σr(1 + ff(t)γe−(t−t0)/τ ). Using this improved estimation of the error bars of
the ratio results in an improvement in the χ2/d.o.f. of the 9-parameter fit by
about 3× 10−3, changes the fitted R value by less than 0.06 ppm, and changes
the statistical uncertainty on R by less than 0.005 ppm.
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