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Pulse fitting in G2Too

Fred Gray and Gerco Onderwater

September 5, 2002

1 Introduction

MilliFit is the name given to the pulse fitter in G2Too. It processes the raw samples recorded by the wave-
form digitizers into values of time and energy for each arriving positron.



3 Breaking up long islands

During periods with a high “flash” level, the signals from the stations located near the inflector exceeded
the WFD hardware threshold for more than 100 µs. It is impractical to fit all of the pulses residing on these
continuous digitizations simultaneously: the number of fit parameters becomes too large, and the pedestal
is no longer approximated well by a constant. Consequently, the island must be split up.

The first step in locating points at which it is safe to break the island is to estimate the pedestal as a
function of time within the island. To do this, the island is broken into segments of up to 64 samples.
Within each such interval, the pedestal is taken to be the average of the lowest few samples, where “few”
is defined based on the RMS of the set of pedestal samples. The precise algorithm follows.

• Compute a histogram of the sample values. That is, count the number of occurrences of each integer
between 0 and 255 in the samples in the interval.

• Let T step from 0 to 255. At each point:

– Compute the mean and the RMS of the subset of the histogram less than T .

– If the RMS is less than 0.25, set P to be the mean, and continue to the next point.

– If the RMS is greater than 0.25, define the pedestal to be the last value set as P , and stop.

Less than 1 percent of the area of a pulse follows the peak by more than 60 ns. Consequently, islands are
split at points where the preceding 60 ns are consistent with the pedestal.

4 Minimization

The function that is minimized in each fit is the sum of the squared differences between the measured
samples and the samples computed from the average pulse shape:

R =
∑

i ε samples

[Si − P −
∑

j ε pulses

Ajfi(tj)]2. (1)

In this expression, Si are the measured samples and fi(t) is the average pulse shape. tj , Aj and P are the fit
parameters, representing the times and areas of each pulse and the overall pedestal.

In order to remove any possible dependence on the length of the digitization island, only a subset of the
samples is included in the fit. A total of 15 samples are used for each pulse that is included in the fit, ranging
from seven samples before the peak through seven samples after the peak. However, samples which equal
0 or 255 are not included since there is no way to know what voltage level they really represent. When
several pulses are included in the fit, any of them can cause a sample to be included. The set of included
samples is chosen before the minimization process begins based on the initial guess, and it is kept constant
during the fit (that is, it is not allowed to change as the pulse times are varied).

For the 1999 data, tj , Aj and P were all treated as independent fit parameters, and MINUIT was used
for all fits. A refinement of the algorithm was introduced for the 2000 and 2001 data sets which recognizes
that only the tj need to be included directly as fit parameters; the optimal Aj and P can be calculated
analytically from them. The partial derivatives of R in Equation 1 are

dR

dP
= −2

∑
i ε samples

[Si − P −
∑

j ε pulses

Ajfi(tj)]

dR

dAj
= −2

∑
i ε samples

fi(tj)[Si − P −
∑

j ε pulses

Ajfi(tj)]
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The minimum occurs at the point where dR
dAj

= dR
dP = 0. This condition defines a system of linear equations

which may be written in matrix-vector form as AX = B where

X =




P
A0

A1

A2

...




,

A =
∑

i ε samples




1 fi(t0) fi(t1) fi(t2) · · ·
fi(t0) fi(t0)fi(t0) fi(t0)fi(t1) fi(t0)fi(t2) · · ·
fi(t1) fi(t1)fi(t0) fi(t1)fi(t1) fi(t1)fi(t2) · · ·
fi(t2) fi(t2)fi(t0) fi(t2)fi(t1) fi(t2)fi(t2) · · ·

...
...

...
...

. . .




and

B =
∑

i ε samples




Si

Sifi(t0)
Sifi(t1)
Sifi(t2)

...




.

For the typical case where there is only one pulse present in the interval being fit, there is only a single
fit parameter (the time of the pulse). A simple one-dimensional minimizer is used to optimize it. It assumes
that its initial guess is near a parabolic minimum. At each iteration, it computes R at three points (t0 − 0.2
ns, t0, and t0 + 0.2 ns), calculates the parameters of the parabola which passes through these points, and
determines the position of the minimum. Up to three iterations are allowed. It reports convergence when
the time changes from one iteration to the next by less than 0.02 ns. It reports failure if it ever changes by
more than 1 ns.

If there is more than one pulse in the fit, or if the simple minimizer fails, MINUIT is used. Its EPS pa-
rameter is set to 10−5 since this is several times larger than the jump in R as the fitted tj cross the boundary
from one 5 ns clock cycle into the next. STRATEGY is set to 0 to request quick-and-dirty computation of
derivatives. The parameters to MIGRAD request a maximum of 1000 iterations and determination of the
minimum χ2 to an accuracy of 10%.

5 Initial guesses

The fitting procedure requires initial assumptions for

• the number of pulses present in the interval being fit, and

• their times tj

The associated pulse areas Aj and the pedestal P can then be calculated based on the raw samples and the
average pulse shape, as described in the previous section.

The pulses that are initially included are local maxima which exceed a software threshold of 40 ADC
counts over the estimated pedestal. Of course, significantly smaller pulses will eventually be found and
included, but not in this first iteration.

The first step in estimating the time of the pulse is to compute its “pseudotime”

τ = (2.5 ns)(imax +
2
π

tan−1 Simax − Simax−1

Simax − Simax+1
)

where imax is the index of the maximum sample and Si is the value of the ith sample. It should be noted
that both the pedestal and the scale of the pulse cancel out in this calculation.
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The true time of the pulse is in general a nonlinear function t(τ) of the pseudotime. However, for any
reasonable pulse shape, t(τ) is a monotonically increasing function. The distribution of pseudotimes N(τ)
can be measured, and the distribution N(t) of true times is known to be uniform. t(τ) is then determined
to be

t(τ) = to + (5 ns)

∫ τ

0 N(τ ′)dτ ′
∫ 5 ns

0
N(τ ′)dτ ′

The initial guess for each pulse time tj is determined from its pseudotime using this formula.
Since the pseudotime is derived from a ratio of integers, the distribution is discretized. In order to

remove this purely cosmetic flaw from the final time distribution, the initial guesses are perturbed by a
small random number.

6 Adding and removing pulses

The decision to add a pulse to the fit is based on local fit quality. Each group of three consecutive samples
is examined. The criteria for adding a pulse are (all must apply):

• The residual area must be at least 30 units (approximately 200 MeV).

• The average squared residual of the three samples must exceed 9.

• There must be no other pulse within 2.63 ns.

The initial guess for the time of a pulse that is added is based on the pseudotime computed from the
residuals.

There are two sets of criteria for removing pulses that are applied at different stages in the fitting process.
At intermediate stages, only pulses that have physically unreasonable parameters are removed. If any of
the following properties is met, the pulse is removed:

• The area is less than 20 units (approximately 140 MeV).

• The time is more than 5 ns before the beginning of the interval being fit or more than 5 ns after the
end.

• The pulse is within 1.75 ns of another pulse.

In the final stage, stricter criteria are applied to keep pulses:

• The area must be greater than 40 units (approximately 275 MeV).

• The time must be within the interval being fit.

• There may not be another pulse within 3.5 ns.

The area and time separation thresholds may appear to be “magic” numbers. In fact, they were obtained
with a simple Monte Carlo simulation, which is described in Section 9. The chosen thresholds arose from
an iterative application of this simulation. They were first set to very low values and then progressively
raised until no spurious pulses were reconstructed.

7 Average pulse shape library

Separate average pulse shapes are built for each detector. The time of a pulse is determined by its peak
position, which varies from 0 to 5 ns with respect to the rising edge of the 200 MHz clock which drives the
WFD. The pulse shape library is organized into 100 bins along this axis of time relative to the 200 MHz clock.
At each of these points, a snapshot is stored of the average pulse shape for pulses at that particular time
offset. Examples of these snapshots are illustrated in Figure 1. Each snapshot holds 24 samples, starting 5
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Figure 1: A few snapshots from the pulse shape library for station 1 in the 2000 run. Each snapshot shows
how a pulse at a given time offset ∆t from the 200 MHz clock boundary is sampled (on average) by the
WFD. The pulse shape library for each detector contains 100 of these snapshots.
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samples before the peak of the pulse and going through 18 samples after. The snapshots are normalized to
an area of 1.

The pulse shape snapshots from different offset times can be interleaved to show the overall pulse shape,
as shown in Figures 2 through 3. These snapshots should be directly comparable to those from G2OFF.

The pulse shapes were determined from the following runs:

• 1999 data: 4330, 4331, 4333, 4334, 4335, 4341, 4343, and 4347

• 2000 data: 6288, 6614, and 7326

• 2001 data: 11229

Standard quality cuts are applied to remove laser fills, fills with potential quadrupole sparks, and so on. To
eliminate pileup, only pulses later than 200 µs after the marker pulse (approximately 145 µs from injection)
are used. A pulse area cut from 300 to 350 counts (approximately 2.1 to 2.5 GeV; this varies significantly
by detector) is also applied. This is rather arbitrary, since one of the fundamental assumptions of the entire
procedure is that the pulse shape is not a strong function of energy. For the 2001 data, the pulse shapes
from several different runs were compared and found to be in good agreement.

The pulses which are used to build the pulse library must be aligned in time and normalized to have
unit area. The time alignment is particularly critical; if an incorrect procedure is used to determine the time,
then the resulting average pulse shape will be distorted. The area normalization is almost irrelevant, since
the pulse shape is not a strong function of energy. The pedestal is estimated using the method described
in Section 3 in connection with breaking up long digitization islands. The time is estimated with the pseu-
dotime method in Section 5. The area is computed simply by adding together the 16 pedestal-subtracted
samples starting 4 samples before the peak of the pulse.

Building the average pulse shape library requires two passes through the data. During the first pass,
the distribution N(τ) of pseudotimes is constructed. The second pass actually builds the pulse library.

8 Cancellation of very low-energy pulses

One of the properties of a pulse finder is that pulses with an energy below a certain software threshold
cannot be reconstructed. The reason to have this threshold is to avoid reconstructing noise on the WFD
trace as a small pulse. However, true small pulses remain undetected in this case as well. Depending on
where these small pulses occur, whether close to a large pulse or far away from it, the effect they have on
the large pulse varies.

When a small pulse is close to a large pulse, it will be absorbed in the large one, thereby raising the
energy of the large pulse and possibly shifting its time. If a small pulse is far away from the main pulse,
it will be absorbed in the pedestal, thereby raising the pedestal by some amount, which in turn leads to a
lowering of the energy of the main pulse. By how much the pedestal is affected depends on the length of
the island under consideration.

In an ideal case, the energy contributed by small pulses exactly cancels out when averaged over many
fills. The proof [5] of this result follows from three assumptions:

• Small pulses are equally likely to appear at any time separation from the large pulse. This is certainly
true for suitably small time separations.

• The pulse time is not allowed to vary in the fit. This is true for most pulses in G2OFF FIT, but never
exactly true for MilliFit. The effect of a small pulse on the pulse time is, however, small.

• A constant is used for the denominator in the computation of χ2, so that the procedure reduces to a
least-squares fit.

We may simplify the expression in Equation 1 for the typical case of a single pulse over the hardware
threshold:

R =
∑

i ε samples

[Si − P − Afi(t)]2.
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(c) Station 3
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(d) Station 4
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(e) Station 5
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(f) Station 6
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(h) Station 8
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(l) Station 12Figure 2: Average pulse shapes from the 2000 data in detectors 1 through 12. Phase 0 is shown in blue and
phase 1 is shown in red; alternatively, phase 0 is the shape with more pronounced oscillatory behavior.
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Figure 3: Average pulse shapes from the 2000 data in detectors 13 through 24. Phase 0 is shown in blue and
phase 1 is shown in red; alternatively, phase 0 is the shape with more pronounced oscillatory behavior.
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Then the solution for the minimum is

A =
(
∑

i Si)(
∑

i fi(t)) − Nsamples

∑
i Sifi(t)

(
∑

i fi(t))2 − Nsamples

∑
i(fi(t)2)

If a sample Sk is perturbed by an amount δSk then the fitted area is perturbed by

δAk = δSk

∑
i fi(t) − Nsamplesfk(t)

(
∑

i fi(t))2 − Nsamples

∑
i(fi(t)2)

It should be clear that
∑

k δAk = 0 if the perturbation δSk is the same for all samples.
In spite of this cancellation, the presence of small pulses causes an increased energy resolution. Conse-

quently, the energy resolution changes from early to late times. A procedure for evaluating the systematic
uncertainty in ωa from this effect is given in [3]. There is a potential early-to-late average time shift as well,
but it is minimized by choosing a range of samples that is symmetric about the peak of the pulse to be used
in the minimization.

9 Monte Carlo tests

The system has been tested with a Monte Carlo simulation. It samples the pulse shape to generate raw WFD
events containing a set of pulses of known times and areas. It is used to superimpose two pulses from the
pulse shape library, fit the resulting waveform, and compare the result with the known input parameters.
The figures that are presented here were all generated from a set of 2 × 106 events from the simulation.

Figure 4(a) shows the probability that MilliFit reconstructs two pulses as a function of the separation
in time between the two pulses, broken down into energy bins. All energies follow a similar pattern;
for separation times less than 2 ns, essentially no double pulses are reconstructed. For separation times
greater than 4 ns, two pulses are essentially always found. In the region between 2 and 4 ns, there is a
gradual transition between these two states. Because two pulses are not allowed to have a reconstructed
time separation of less than 3.5 ns, double pulses found in this transition region must have (often grossly)
misreconstructed times. The individual energies of the two pulses are similarly mistreated. It is found that
the individual times and energies can only be trusted for pulses with a separation of at least about 5 ns.

The energy-weighted average time and the sum of the energies are treated reasonably by the algorithm,
even for pulses in the transition region. Figure 4(b) shows the ratio of the sum of the energies in all pulses
reconstructed by the fitter to the sum of the true energies of the two pulses created by the simulation. It
deviates from 1 by as much as 15 percent percent in the transition region; averaged over all unresolvable
pileup events, the ratio is 0.94. This necessitates a correction at the histogram-building phase of the analysis.

These corrections (called “Logashenko factors”) are computed for all combinations of overlapping pulse
energies E1 and E2. Figure 5(a) shows the average Logashenko factor versus these energies. The factor
depends strongly on the separation ∆t between the two pulses that are combined. Figure 5(b) illustrates
this point by showing the distribution of Logashenko factors obtained for a pair of 2 GeV particles over the
entire range of ∆t values. Histograms like this one are constructed for every pair of energy ranges E1 and
E2; when simulated pileup is generated, a value is drawn at random from the appropriate distribution.

Figure 4(c) shows the difference between the energy-weighted average time of all pulses reconstructed
by the fitter and the energy-weighted true time of the two pulses created by the simulation. It deviates from
0 by a maximum of 150 ps in the transition region, which is not enough to require a correction.

The level of cancellation of the effects of small pulses below the software threshold was also estimated
from the simulation. Figure 6 shows the ratio of the reconstructed to the true energy as a function of the
location of a small pulse with respect to the main pulse. Of course, what matters is the average over the time
bins in each of these plots: the extent by which it differs from 1 measures the amount of non-cancellation of
the low-energy pileup. These averages are given in Table 1.

The simulation was further used to examine the behavior of the pulse fitter for very large pulses. The
response is linear to within about 1 percent, as shown in Figure 7. It must be noted that this procedure
assumes the pulse shape remains the same for these large pulses. The intent of this procedure was to test
the sensitivity of the pulse fitter to overflow samples (which are not used in the fit).
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Figure 4: Monte Carlo study of the reconstruction efficiency, the ratio of reconstructed to true energy, and
the shift between true and reconstructed time for the MilliFit algorithm as a function of separation time.

Energies ∆E/E
1.0 + 0.00-0.05 GeV 2.1 × 10−3

1.0 + 0.05-0.10 GeV 1.7 × 10−3

1.0 + 0.10-0.15 GeV 1.6 × 10−3

1.0 + 0.15-0.20 GeV 2.1 × 10−3

1.0 + 0.20-0.25 GeV 2.6 × 10−3

2.0 + 0.00-0.05 GeV 6 × 10−4

2.0 + 0.05-0.10 GeV 1.6 × 10−3

2.0 + 0.10-0.15 GeV 1.5 × 10−3

2.0 + 0.15-0.20 GeV 1.5 × 10−3

2.0 + 0.20-0.25 GeV 3.0 × 10−3

Table 1: This table shows the average over all separation times of the relative influence of low-energy pileup.
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Figure 5: Logashenko factors Ereconstructed/Etrue for station 19 in the 2000 data.
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Figure 6: This figure illustrates the effect of small pulses on the energy of 1 GeV (left) and 2 GeV (right)
pulses.
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Figure 7: This figure shows the “gain” of the fitter as a function of energy.
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