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Abstract

This document gives a measurement of the muon anomalous precession frequency
w, in the data from the 2000 g — 2 run, including estimates of some of the systematic
uncertainties. The data are divided into energy bins of width 200 MeV, and each
energy bin is fitted separately. This allows the use of the full statistical power of the
data, and it has somewhat different systematic issues than the traditional approach.
The recommended value of w, corresponds to R = 128.71 &+ 0.70(stat.) £ 0.26(syst.).
The total uncertainty, statistical and systematic combined, is 0.75 ppm. This result is
biased by a previously secret offset of +14.744 ppm.

1 Philosophy

There are many reasons why it is interesting to perform an energy-binned analysis:

o The statistical uncertainty of the result is reduced. Over the range from 2.0 GeV to 3.2
GeV, the uncertainty is 5 percent smaller for the energy-binned method than for the
traditional fit. Even more statistical power can be gained by lowering the threshold to
1.4 GeV, since the low-asymmetry data does not dilute the high-asymmetry data. This
process yields a statistical uncertainty that is 12 percent smaller than for the 2.0-3.2
GeV conventional fit.

e The CBO modulation of the asymmetry (the so-called “Rob effect”) could be sup-
pressed by fitting in narrow energy bins. Indeed, this modulation arises entirely from
the mixing of energies. In the expression

/ dEe /" N(E)[L+ A(E) cos(wat + $(E))][1 +e 50 Acpo(E) cos(wepot + dopo(E))]

note that the CBO modulation of the non-wiggling part is weighted with N (/) whereas
for the wiggling part it is weighted with N(E)A(FE). (Unfortunately, this potential
advantage is not apparent in practice; the asymmetry modulation amplitude in a single
energy bin is found to be comparable to that in the entire range.)

e Mapping w, as a function of energy provides a substantial consistency check, possibly
excluding classes of unknown systematic errors that would affect R differently for
different energies.



e Determining the energy dependence of parameters other than w, can provide insight
into subtle effects. Most notably, the CBO amplitudes and phases as a function of
energy have been used to construct beam dynamics models.

e When all three of the CBO effects (rate, asymmetry, and phase modulations) are
included in the fitting function, w, drifts significantly as a function of fit start time.
For some reason, this drift is smaller when fitting by energy bin.

This analysis does not use explicit “mop” terms. Where possible, known effects are taken
into account. Then, stations are included in the fit only at start times where their spectra
can be fit with physically motivated terms.

2 Executive summary

This report gives six different results. All of them are based on the same functional form,
which is the full physics function including all known CBO-related effects. The start times
are determined by three different criteria, called A, B, and C. In method A, all stations
simply start at 49.1 us. In method B, each station is allowed to start at its own appropriate
time. Method C extends this further, allowing a different start time for each energy bin.
The other variable is the energy range that is included; results A’, B’, and C’ use energies
from 2.0 GeV to 3.2 GeV whereas the unprimed results A, B, and C extend this range down
to 1.4 GeV.

Results A and A’ are presented for comparison purposes only, since they do not yield
an acceptable y?/dof. Among the other four results, C is chosen as the recommended value
because it has the smallest uncertainty.

The results and their associated systematic errors are shown in Table 1.



A A’ B B’ C o

R 128.996 | 128.866 | 128.105 | 127.857 | 128.711 | 128.589

Statistics 0.636 0.686 0.727 0.781 0.701 0.754

x?/dof 1.0109 | 1.0100 | 1.0032 | 1.0030 | 1.0033 | 1.0027

dx?/dof 0.0018 | 0.0023 | 0.0019 | 0.0023 | 0.0019 | 0.0023

Included in statistics:

Half ring effect 0.270 0.289 0.312 0.334 0.297 0.319
Pileup statistics 0.112 0.131 0.095 0.114 0.117 0.131
Gain 0.037 0.045 0.070 0.086 0.086 0.10

Pileup scale 0.194 0.175 0.156 0.170 0.167 0.175
Pileup energy dependence 0.080 0.080 0.080 0.080 0.080 0.080
Unseen pileup 0.057 0.076 0.073 0.090 0.085 0.104
Muon loss scale 0.072 0.058 0.043 0.034 0.048 0.037
Muon loss shape 0.039 0.027 0.019 0.016 0.014 0.008
Flashlets 0.011 0.013 0.002 0.002 0.019 0.021

CBO frequency 0.033 0.039 0.085 0.098 0.042 0.005
Main CBO envelope 0.057 0.053 0.024 0.017 0.016 0.005
CBO phase modulation envelope | 0.102 0.095 0.079 0.032 0.021 0.032
Random seed 0.045 0.045 0.053 0.051 0.046 0.041

Bin width 0.061 0.057 0.151 0.123 0.094 0.103
Vertical waist 0.0051 | 0.0047 | 0.0071 | 0.0082 | 0.0030 | 0.0038
Double CBO 0.012 | 0.0082 | 0.0066 | 0.00066 | 0.0083 | 0.011

Lost protons 0.002 0.007 0.005 0.008 0.003 0.007
Systematics (quadrature) 0.276 | 0.260 0.288 0.285 0.255 0.271
Total uncertainty 0.693 0.733 0.782 0.832 0.746 0.802

Table 1: Summary of fitted R values (including offset), with statistical and systematic error

estimates.




3 Data selection

In general, Ernst Sichtermann’s run list of January 9, 2002 is used to define the data set for
this analysis. There are a number of runs in the list, at the level of a few percent, which are
not included because of local data processing problems.

Detector station 2 is not used in this analysis, because a WED problem leads to a distorted
average pulse shape for it; this is the same problem that caused it to be excluded in the 1999
analysis. In principle, detector station 20 is usable; it was at the same radial position
as the other detectors for the 2000 run, and it was calibrated by the same procedure as
the other detectors. Nevertheless, its energy distribution is very different than that of the
other detectors because the traceback chambers are located directly upstream from it. More
importantly, it has a large background, uniform in time and very visible at late times, that is
not present in other detectors. The source of this background is not understood; one model
is that it arises from electrical noise created by the traceback electronics that are mounted
on it. Consequently, this station is excluded from this analysis as well.

Laser runs are included in the data set. Fills containing laser pulses are removed by
looking at the laser reference WED and the CAMAC ADCs. It should be noted that the
data acquisition system does not necessarily preserve the synchronization of fills between
crates when a fill is missed by a subset of the crates. Consequently, it is possible for a few
laser pulses to be included in the data set even when checks are made to exclude them. This
is not believed to be a large effect, however.

The sweeper magnet was in place for most of the 2000 run, so flashlets are much less
of a concern than in the 1999 analysis. Consequently, the current analysis uses only a fill-
by-fill cut on the TO counter rather than an AGS-cycle-by-AGS-cycle cut. This change was
necessary in order to be able to use the data collected with only ten of the twelve AGS
bunches populated. The precise requirement is that there must be exactly one pulse in
the TO counter with a height greater than 20 ADC counts. Because this cut is below the
hardware threshold, the effective requirement is that there be exactly one waveform digitizer
trigger for the TO counter, excluding marker pulses and forced digitizations. Because the
quadrupole firing was suppressed for a subset of the fills in the 2000 run, flashlet data is
available to evaluate this choice quantitatively. An estimate of the systematic error due to
flashlets is given later in this report.

The digitized traces of the electrostatic quadrupoles were checked to ensure that the
quadrupole trace extends to at least 700 us after the data acquisition start signal (about
640 ps after injection). The precise requirement is that the value at 125 us after the data
acquisition start signal must not differ by more than 20 ADC counts from the value at 700 us.
In addition, a check is performed to identify fills where the quadrupole firing was suppressed.
If the value in the trace does not change by more than 5 ADC counts over the range from
2.5 ps to 600 us after the data acquisition start signal, then the quadrupoles did not fire in
that fill.

Some statistics on the number of counts lost to each of these cuts are shown in Table 2.
About six percent of the data from the runs on Ernst Sichtermann’s list is lost.

The fast rotation modulation is removed by adding a random offset to the fill’s T0 time.
A separate random number sequence is used for each detector station. The random numbers



Issue > 2.0 GeV, > 50 us | > 1.4 GeV, > 50 us
Total included (not cut) 3.73 x 10° 7.84 x 107
Laser fills 9.1 x 107 1.9 x 108
Data processing faults (est.) 6.1 x 107 1.3 x 108
Quad trace not recorded 4.8 x 107 1.0 x 108
Number of T0 events # 1 2.5 x 107 5.3 x 107
T0 trace not recorded 5.0 x 10° 1.1 x 107
Possible quad spark 1.6 x 10° 3.3 x 10°

Table 2: Number of events lost due to various cuts compared with the number of events
included.

are chosen from a uniform distribution over the range from -74.6 ns to 74.6 ns. ROOT’s
TRandom3 random number generator is used. The authors claim that this random number
generator has a period of 21937 — 1. The result is averaged over five random seeds. However,
the systematic studies use only a single seed (indeed, not all of the studies even use the same
seed). Systematic uncertainties are attributed to the random seed and to the fast rotation
time.

A parameterization of the gain corrections determined from the average energy vs. time
is applied to the data. The method by which these corrections are obtained is described in
detail later in the report, and a systematic uncertainty is attributed to them.

The times and energies are computed with G2Too’s MilliFit pulse finding algorithm [2].
However, the run-to-run endpoint calibrations that convert pulse area to energy were taken
from Ernst Sichtermann’s analysis, which used G20FF data. They were scaled by a factor
which was constructed to give in each detector a (g — 2) asymmetry of 0.4 over the energy
range from 2.0 to 3.2 GeV. Time offsets were applied to give a (¢ — 2) phase of 0 over the
same energy range.



4 Pileup construction method

The pileup construction procedures that were used for the 1999 data analysis work effectively
for pileup at energies greater than twice the WFD hardware threshold. This was adequate
for the 1999 data, where the hardware thresholds were set below 1 GeV. During the 2000
run, though, the thresholds for several of the detectors were raised as high as 1.4 GeV. Also,
the average intensity per fill is 50 percent higher in the 2000 data, so the motivation for
effective pileup subtraction is even greater. Consequently, the procedure was extended to
allow effective pileup subtraction at lower energies.

The “raw material” for the pileup subtraction procedure is a set of spectra made for each
run separately and then summed. Each of the following is a two-dimensional histogram with
time bins of width 150 ns and energy bins of width 200 MeV:

e A conventional spectrum with all fitted events in the selected data set included, with
a 10 ns artificial deadtime applied. The algorithm for applying the artificial deadtime
is defined below. The 10 ns parameter was chosen by examining the spectrum of time
differences At between successive pulses. 10 ns is near the point where the pulse finder
becomes fully efficient for finding even very low-energy pulses.

e A “shadow pulse” spectrum that includes all pulses which fall in the intervals between
10 ns and 15 ns before and after a “trigger pulse” whose energy is greater than the
assumed WEFD hardware threshold. For each time bin, this gives the full energy distri-
bution, independent of the hardware threshold. The 10 ns to 15 ns window was chosen
because it is generally the flattest portion of the At spectrum. This spectrum will be

called Syew(F,t).

e A constructed two-pulse pileup spectrum based on the shadow pulse spectrum. The
energies of consecutive shadow pulse events from the same time bin are added together
and multiplied by an adjustment factor that accounts for the nonlinearity of the pulse
fitter. This factor is drawn for each pulse from a distribution; on average, it is 0.94. The
pulses that are combined are usually from different fills and often even from different
runs. This spectrum will be called Dy, (F,1).

o A “shadow-+trigger pulse” distribution that includes both the set of shadow pulses and
the set of trigger pulses. This spectrum will be called Syq(F,1).

e A constructed two-pulse pileup spectrum based on the shadow-+trigger pulse spectrum.
The energies of corresponding shadow and trigger pulses are added together and multi-
plied by the nonlinearity adjustment factor. In this case, the pulses that are combined
are always from the same WFD digitization interval. This spectrum will be called
Daa(EL ).

The conventional pileup construction that was used in the 1999 analysis is
Npvoa(E,t) = Doa(E,t) — Saa(F, 1)

This spectrum is correct for energies F greater than twice the WFD hardware threshold
Eywinresn. 1t is not correct for lower energies: a pileup event with energy 2 K gwinresn — € can
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be made by overlapping two pulses each with an energy Enwinresn — €/2. This combination
would not trigger the WFD), so it would not be included in the constructed pileup. However,
at energies where the method works, it should obtain the correct pileup normalization.
Conversely, the new pileup construction Npypew = Drew(F, 1) —Snew(F, ) obtains the correct
energy distribution in each time bin. However, it does so only up to an arbitrary time-
dependent normalization factor.

The improved pileup construction is

NPU(E7 t) - fold/new(t)[Dnew(E7 t) - Snew(E7 t)]

with .
_ S DaalE, 1)
57 Diew(E, )

The limits of integration are £;,=2.8 GeV and Fy=4.0 GeV. The lower limit is chosen to
be just above twice the highest hardware threshold; the upper limit is somewhat arbitrary.
This method uses the conventional pileup construction to set the scale factor, but it takes
the energy distribution at low energies from the new construction. In practice, the scale
factor is fit to a function of the form

fold/new (t)

fold/new(t) - N(l + Acos(wat + (b))

and the function is evaluated at each point rather than using the actual data there.

It should be noted that the pileup construction is intrinsically symmetric in time around
the trigger pulse; pre-shadow pulses (in the window before the trigger pulse) are treated
the same as post-shadow pulses (in the window after the trigger pulse). This approximately
removes the g —2 phase shift between the real and the constructed pileup. However, to avoid
double-counting, pre-shadow pulses are never combined with post-shadow pulses; they are
treated as two separate streams of events until they are matched up.

A small correction is applied to the pileup spectrum to account for the fast rotation
modulation. At very early times, the rate in the trigger pulse window differs substantially
from the rate in the shadow pulse windows. The correction is given by

< thm'gger (t) >
< Rtm’gger(t) . Rshadow(t) >

Riyigger(t) is the average rate in a £10 ns window around time ¢, Rspadow(t) is the average
rate in the regions where shadow pulses are collected, and the brackets imply an average over
a fast rotation cycle. The correction was calculated from the data itself in fine time bins; it
is shown in Figure 1. It is a 0.5 percent effect at 30 us, and it is completely negligible by 40

1S,
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Figure 1: Correction to constructed pileup from the fast rotation modulation.



5 Fits to constructed pileup spectrum

The pileup spectrum is expected to be described by a function of the form

Npy (t) = 672t/TFFR(t)
[1 -+ e~t/meBo B(t) Ao po cos(wopot + ¢opo))?
[Npy — Apyi cos(wet + ¢pu1) — Apya cos(2(wat + dpusa)]

F(t) accounts for the enhancement of the pileup by the fast rotation [7]. It was determined
by calculating on a finely binned time spectrum R(t)

< RAt) >
Fral) = Zhiy =

where the brackets imply an average over a fast rotation cycle. It is approximated by the
function
t?
FFR(t) = NpRexp(—

)

with Npp = 2.21 and 7pr = 5.78us. It has previously been parameterized with two Gaussian
functions, but the extra structure is not relevant after 50 us. These values are fixed in the
fit.

In practice, the lifetime 7 and the frequency w, are fixed in these fits. The values that
are used are 7 = 64.4076 us and R = 128.55 ppm. The CBO parameters are also fixed to
the same values that are used for the fits to the ordinary spectra, which will be discussed
later.

It has been noted (see [1]) that a correction to the x? (specifically, to the error estimate
o) is required when fitting a pileup-subtracted spectrum. The extensions to the new pileup-
subtraction method cause this correction to become both larger and less straightforward to
compute. The problem is made somewhat more tractable by first fitting the constructed
pileup spectrum, then using those results to fix parameters in the physics fits. When fitting
the pileup spectrum in narrow energy bins, no y? correction factor is necessary. This is
true because there are no pulses below the pulse finder’s threshold of about 200 MeV, so the
spectrum of single pulses lost from a bin whose width is less than this threshold is statistically
independent from the spectrum of double pulses gained. The uncertainty assigned to each
point is taken to be

2
2Thp

6NPUnew (E7 t) - fold/new (t) \/Dnew (E7 t) + Snew(E7 t)

Clearly, this is only an approximation, since it implies perfect knowledge of fu4/mew(t)-

The fits are performed with a per-station start time determined from the flatness of the
x?/dof. The algorithm that was used to determine these times is described later in this
report. The stop time for all of the fits is 120 us.

It is clear that there is not a single best way to present the results of 198 fits (22 stations,
9 energy bins per station) so that they are both meaningful and reasonably compact. The
trends versus energy are mostly independent of the station number, so each parameter is
shown as a function of energy, averaged over all stations, in Figure 2. The results of all
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of the individual fits are shown in Figures 3 through 5. In these plots, the nine leftmost
points are the fits to station 1 in order of increasing energy. The next nine points are absent,
corresponding to the nine energy bins of station 2; other stations follow similarly. In addition,
stations alternate marker style and color.
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Figure 2: Results of fits to constructed pileup spectrum by energy bin, averaged over detec-
tors. These results are from the earliest allowed fit start time to 120 us.
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Figure 3: Results of fits to constructed pileup spectrum by energy bin and by detector.
These results are from the earliest allowed fit start time to 120 us.
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6 Fitting procedures
The overall form of the function that is used to fit the data is
N(t) = e’t/TA(t) [NCi(t) — A(CL(t) + Ca(t)) cos(wat + @)] + Npy(t)

The CBO modulation of the rate and the apparent CBO modulation of the g—2 amplitude
(i.e. the “Rob effect”) are included in C; and Cy:

Ci(t) =1+ e /B0 [(t)[Acpoio cos wopot + Acpors sin wepot]

Oy(t) = e 780 B(1)[ Ao poge cos wopot + Acpozs sinwopol]

The modulation of the g — 2 phase by the CBO (“Jim effect”) is included by modifying the
time throughout the fitting function:

t =t + Cs(t)

Cy (t) = eit/TCBOS E(t) [ACBOSC cos wepol + Acposs sin ngot]

Parameterizing the CBO effects with sine and cosine amplitudes rather than with an ampli-
tude and a phase leads to more reliable fit convergence when the phase is difficult to predict
in advance.

The CBO frequency wepo is assumed to be time-independent, although it is known that
it changes slightly over the fill time. These changes occur at early times as the n values
varies during the transition from scraping to non-scraping quadrupole voltages, and at late
times because the quadrupole voltage slowly drops. Systematic uncertainties will be assigned
for these effects. Also, the CBO frequency is now fixed in the fits, in contrast to previous
versions of this analysis. A systematic uncertainty is also assigned for it.

Several variations of the fit function are occasionally used in this report. They differ in
the CBO effects that are included:

o : “rate only”: Ci(t) included in fit; Cy(t) = C3(t) =0

o : “ratetasymmetry”: Ci(t) and Cy(t) included in fit; C5(t) = 0

o : “rate-tasymmetry-+phase”: Cy(t), Ca(t), and Cs(t) all included in fit
o : “ratetphase”: Cy(t) and C3(t) included in fit; Cy(t) =0

The “rate+asymmetry+phase” function is used unless otherwise noted.
Muon losses are incorporated with the term

£
A(t) = expl=Na/7 [ (a(t) + Noxd fa(t))dt]
0
fa(t) is the fractional muon loss rate measured by three-fold coincidences in the FSDs, as

determined by Chris Polly in [3]. §fa(t) is his estimate of the error band on the shape.
These functions are shown in Figure 6. The overall normalization factors Ny and Nss were
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Figure 6: Muon loss function fa () together with its uncertainty §f5(¢). The label “proton
correction” is not accurate; the lower curve is the uncertainty on the shape.

determined once from a global y* minimization for start time set C. They are thus fixed at
the values Ny = 1.62 x 1077 (arbitrary units) and Nsy = 2.53.

Pileup is taken into account by including the term Npy () as defined in section on pileup
fitting. All of the pileup parameters are now fixed, in contrast with previous versions of this
analysis.

Previous versions of this analysis contained terms to account for vertical betatron, vertical
waist, and double CBO modulations. Because all stations and energy bins have fit start times
that are too late to be significantly affected by these oscillations, these terms were removed
from the fitting function. Systematic uncertainties are assigned for these effects instead.
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7 Fit start and stop times

Three sets of fit start times are used for the results cited in this report:

o A: All fits start at 49.1 pus. This result does not yield an acceptable x?/dof, so it is
given for comparison with other w, analyses only.

e B: Each station starts at a different time. The earliest allowable fit start time was
determined for each detector based on the flatness of its x?/dof as a function of time.
The earliest x?/dof point at which 68.2 percent of the subsequent points fall within
the one standard deviation correlated error band was chosen. However, no station was
allowed to start before 45 us. These start times are based on the average x?/dof across
energy bins for each detector; plots of this quantity appear in Figures 7 through 10.
The start times are moved later in time to the (g — 2) zero crossing immediately after
the first acceptable point.

e C: An earliest start time is determined separately for each energy bin within each
station. Again, the times are based on the stability of the y?/dof. However, the
consistency requirement is tightened somewhat: to accept a start time, no more than
15.9 percent of the subsequent points may fall above the correlated error band, and no
more than 15.9 percent may fall below it.

The correlated error between the y?/dof at time ¢; (with Npp; degrees of freedom) and
the same quantity at time ¢y (with Nppo degrees of freedom) is taken to be

\/2(NDF1 — Npp2)

Npr2

Sergei Redin has written a rigorous proof [4] of this result, which I had written down semi-
intuitively. Curiously, the formula seems to give approximately the same numerical result as
the standard “Kawall band.”

The average y?/dof values for each station are plotted in Figures 7 through 10. The
earliest allowed fit start times are shown for each detector in Figure 11. They have been
moved forward to the g — 2 zero crossing immediately after the first acceptable point. As a
cross-check (suggested by Ernst Sichtermann), the distributions of point-to-point differences
in the x?/dof after the first acceptable fit start time are plotted in Figure 12. For both
methods A and B, the mean of the distribution is indeed at 0. However, the distributions
are distinctly asymmetric about the mean.

The stop time for each fit is at the first time bin to have fewer than 20 counts. This
implies that higher-energy bins have an earlier stop time than lower-energy bins.
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Figure 9: y?/dof averaged across energy bins for each station as a function of fit start time.
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8 Fit results

Figures 13 through 18 show the fit parameters as a function of energy. For the parame-
ters which are not related to CBO, an ordinary weighted average is used to combine the
22 included detectors. The CBO parameters require more care. CBO amplitudes are small
quantities that are always positive. When they are averaged in this way, the result is biased
towards larger values since the error bars on the input points are actually symmetric. Conse-
quently, these parameters are rotated by 27/ (station—6) radians to align them geometrically
with station 6, and the sine and cosine parts are then averaged separately. The amplitude
and phase are computed from the combined sine and cosine parts.

It should be noted that all results presented in this section are for only a single random
seed. The final R value quoted in Table 1 is averaged over five random seeds. Consequently,
there are small apparent discrepancies.

The next set of figures shows fits for each station and energy bin. R and y? are shown
for each of the three start time determination methods in Figures 19. For conciseness, the
other parameters are shown only for method C in Figures 21 through 24.

Start time consistency plots are shown for each of the results (A, A’, B, B’, C and C’)
in Figures 25 through 36. Most of the parameters vary dramatically by energy, so it is
necessary to move the values onto the same scale in order to create a reasonable weighted
average. Also, in order to avoid artificial inflation of the CBO-related amplitudes from the
asymmetric error bars, the sine and cosine components are shown separately. (They are,
indeed, the actual fit parameters, and the amplitude and phase are derived from them.)
Parameters fall into three categories:

o R, 7, x*/dof: these parameters are in principle energy-independent, so they are not
transformed.

o N, A, Acpoic, Acpois, Acposc, Acpozs, Acposc, Acposs: these parameters are
amplitudes, and they vary with energy. The values in each energy bin are rescaled to
pass through 1 at 49.1 us, or at the earliest start time for the method if that is later.
Consequently, the stability plot indicates relative changes.

e ¢: this parameter is a phase, and it varies with energy. The values in each energy bin
are shifted to pass through 0 at 49.1 us, or at the earliest start time for the method if
that is later. The stability plot shows phase changes in units of radians.

The consistency plots for methods A and A’ are ordinary start time scans. For the other
methods, the data from a station and energy bin is only included at times after the earliest
allowed start time for that method. However, so that the statistical error bar increases
monotonically with time, the value from the earliest start time is included in all previous
points. Consequently, these are “pseudo-start time” scans. The correlated error band that
is shown is computed from the standard Kawall formula a5 = /|04 — 03]
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Figure 13: Non-CBO parameters as a function of energy for method A (all stations start at
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Figure 21:

7, N, and A for fits by energy bin, for each station and energy bin (method C).
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Figure 25: (Pseudo-)start time scans for R, for various start time methods.
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Figure 26: (Pseudo-)start time scans for y?/dof, for various start time methods.
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Figure 27: (Pseudo-)start time scans for 7, for various start time methods.
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Figure 28: (Pseudo-)start time scans for IV, for various start time methods.
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Figure 29: (Pseudo-)start time scans for A, for various start time methods.
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Figure 30: (Pseudo-)start time scans for ¢, for various start time methods.
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Figure 31: (Pseudo-)start time scans for Acpoic, for various start time methods.



0.08— 0.98—
F 0.96
L] S I N SR PR P FEEEE PR T ST P PR T PR PR R P P R S P
40 50 60 70 80 920 100 110 120 130 40 50 60 70 80 920 100 110 120 130
Fit start time [us] Fit start time [us]
(a) ACBOlS (method A) (b) ACBOlS (method A7)
15} F o] L
2 2
S o S 1.08—
c r c r
T 1.06— @ r
g T 3 108
< L < r
1.04— -
r 1.04_—
102 102~
I
1 !!|I|||||||
0.98— 088~
il IPRPRPEFI EPRPRPINE IUPININTN NEPAPIFI EPAPRFIPE AN NI AR I I PSPPIV IFEPINIFIN A EAPEPAV IFRPIPIrS INAIN B
50 60 70 80 920 100 110 120 130 50 60 70 80 920 100 110 120 130
Fit start time [us] Fit start time [us]
(C) ACBOlS (method B) (d) ACBOlS (method B7)

e IRE]
< 1.08— & L
£ F £ F
- [ % 108
5 F 5 F
Soe- 3 r
L 1.06[—
1.04— [
F 1.04—
1021~ 102 e
L u il
L
1 1
0.98— 0.88—
= AP I R SN EN I S T Eo 1 ! el ! [P T
50 60 70 80 9 100 110 120 130 50 60 70 80 9 100 110 120 130
Fit start time [us] Fit start time [ us]
(e) Acgols (method C) (f) Acgols (method C7)

Figure 32: (Pseudo-)start time scans for Acpoig, for various start time methods.
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Figure 33: (Pseudo-)start time scans for Acposc, for various start time methods.
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Figure 34: (Pseudo-)start time scans for Acpoas, for various start time methods.
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Figure 35: (Pseudo-)start time scans for Acposc, for various start time methods.
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Figure 36: (Pseudo-)start time scans for Acposg, for various start time methods.
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Figure 37 shows the distributions of point-to-point differences between R values at con-
secutive fit start times, normalized to the correlated error. The distributions are all centered
at 0, suggesting that there is not a statistically significant trend to lower values versus fit
start time. However, the distributions are approximately 10 percent too wide (they should
have an RMS of 1), and they are not quite Gaussian. This is typically the signature of phase
pulling.

Similar plots were examined for the R value after combining the 198 separate fits. They
show the same features, only with much lower statistics.
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Figure 37: Distributions of point-to-point differences between R values at successive fit start
times in each energy bin, normalized to the correlated error.
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9 Half-ring effects

The systematic uncertainties from the half-ring effects (CBO modulations of the g —2 asym-
metry and phase) are absorbed as an increased statistical error because they are included in
the fitting function.

The alternative approach, neglecting the half-ring effects and attributing a systematic
uncertainty to them, was considered and rejected. The cancellation of the effects from
averaging around the ring is not sufficiently complete.

Cancellation factors were obtained by taking a weighted average of the sine and cosine
parts of the CBO amplitude. The factor is computed by taking the ratio of the combined
amplitude for half the ring to the combined amplitude for the entire ring:

\/(< Acosd >1 04)? + (< Asing >1 94)?

o= %(\/(< Acosd >1 19)2 + (< Asing >1 19)% + \/(< Acos d >13_94)% + (< Asing >13_94)?)

The weighted average for each parameter (generically called P) is done according to the
uncertainty on R as follows:

ZiGEnergy ZjGStation SRi;

<P >= 1
ZiGEnergy ZjGStation oRi;

The cancellation factors that were found are shown in Table 4. They are quite large. Bill
Morse has pointed out that they are dominated by resolution effects, and that this study
therefore represents an upper limit on the possible systematic error.

Figure 38 illustrates the half-ring effect for various fitting functions; the combined R
values for stations 1-12 and 13-24 are shown. The apparent half-ring effect for the “rate
only” function is approximately +2 ppm (that is, the full width is 4 ppm). For all of the
other fitting functions (including the rate-+asymmetry-phase version, for which there should
be no half-ring effect), there is a discrepancy between the two halves at the level of about +1
ppm. It is thus not clearly distinguishable from a statistical fluctuation. However, the most
reasonable assumption is that approximately 1 ppm of the half-ring effect may be attributed
to to the CBO modulation of the g— 2 asymmetry and about 1 ppm to the CBO modulation
of the ¢ — 2 phase.

Multiplying the cancellation factors for the asymmetry and phase modulations by 1 ppm
then gives the estimated half-ring systematic uncertainty from neglecting these effects. The
estimates are quite large, of order 1 ppm. Consequently, there is no choice with the energy
binned method other than to fit for all of the CBO effects.

The difference between the fitted statistical uncertainties for the rate-+asymmetry+phase
and “rate only” functions gives another estimate of the systematic error from the half-ring
effect. Unfolded in quadrature, it is approximately 0.3 ppm.
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(D

(I

(1)

(IV)

increase in stat.
error from I to I11

A
A7
B
B7
C
C?

128.058 £ 0.565
128.153 £ 0.608
128.523 £ 0.650
128.133 £ 0.697
128.119 £ 0.624
128.265 £+ 0.671

128.606 £ 0.590
128.415 £ 0.635
128.089 £ 0.679
127.808 £+ 0.729
128.481 £ 0.652
128.389 £ 0.702

128.861 £ 0.626
128.717 £ 0.673
127.931 £ 0.721
127.693 £ 0.773
128.573 £ 0.691
128.447 £ 0.743

128.145 £+ 0.590
128.340 £ 0.634
128.474 £ 0.679
128.094 £ 0.727
128.121 £ 0.651
128.291 £ 0.699

0.270
0.289
0.312
0.334
0.297
0.319

Table 3: R values for fitting functions with different CBO-related terms. Fitting functions:
(I) rate only, (II) ratef-asymmetry, (I1I) ratet-asymmetry+phase, (IV) rate4phase.

CBO: Rate Asymmetry Phase SR () oR (1) OR (IV)
A 0.476 £ 0.008 0.324 £ 0.096 0.456 £ 0.171 | 0.77 0.46 0.32
A’ 10425 £ 0.008 0.200 £ 0.127 0.336 £ 0.170 | 0.53 0.34 0.20
B 0.475 £ 0.012 0.174 £ 0.129 0.807 £ 0.295 | 0.97 0.81 0.17
B’ 0.418 £ 0.012 0.455 £ 0.223 0.961 £ 0.401 | 1.41 0.96 0.46
C 0.495 £ 0.010 0.302 £ 0.131 0.718 £ 0.249 | 1.02 0.72 0.30
¢ 0.439 &£ 0.010 0.271 £ 0.173 0.727 £ 0.269 | 1.00 0.73 0.27

Table 4. Cancellation factors when half-ring effects are averaged over all available sta-
tions, together with the estimated systematic uncertainties on R that would be applicable
if these effects were neglected. Fitting functions: (I) rate only, (II) ratetasymmetry, (IV)
rate+asymmetry+phase.

ol



—132
o131
130
129
128
127

126

[ —
[——

=

—

==
[ — e

125

132
131
130
129
128
127

126

1250 Loy

Figure 38: R versus fit start time for stations 1-12 and 13-24 for various fitting functions.

20

w
o

8F

80 920 100
Fit start time [us]

80 920 101
Fit start time [us]

(¢) ratetasymmetry+phase

0

128

127

126

125

128

126

125kt

el

920 100
Fit start time [us]

(b) ratetasymmetry

90 100
Fit start time [ us]

(d) rate+phase

This illustrates the magnitude of the half-ring effect for the various fitting functions.
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10 Gain corrections

The gain stability of the detector and pulse fitter comes from the average energy versus time
after pileup subtraction:

5ot BIN(E) — Npy(E)|dE
[EF N(E) = Npy(E)dE

low

< EPUS > (t) -

These plots are made for Ej,, =2 GeV, with two different upper cuts Ep;gn = 3.2 GeV and
Ehign, = 6.2 GeV. They appear in Figures 39 through 42. The different upper energy cuts
provide some measure of the systematic error from residual pileup in < F > (¢).

These gain corrections were parameterized with two exponentials:

G(t) =1+ Aje /™ + Aye /™

The coefficients A; and 7y are defined by the behavior after 90 us. They are then held
fixed and Ay and 79 are determined starting at very early times (the start time is station-
dependent, but is 15 us for most stations). In a final step, all four parameters are allowed
to vary. The parameters that are determined from these fits are listed in Table 5.

To determine the systematic error from the time-dependent gain, fits were performed on
three slightly different data sets:

e one without gain corrections applied (set 0), and
e one with gain corrections applied (set 1),

e one with five times the gain corrections applied (set 5)

The data set with gain corrections (set 1) is taken to be the central value. 4% is taken from
the slope of a line fit through the R values, as illustrated in Figure 43(a). The results of
these fits for the various start time groups are shown in Table 6.

A level of confidence in the gain corrections is estimated from two different sources. First,
the difference between G(t) with upper energy cuts at 3.2 GeV and 6.2 GeV can be quantified
by takin

Y ¢ Glow - Ghigh
Glow -1
at each point from 50 us to 200 ps. An appropriately weighted average over the time points
is taken for each station, yielding the results shown in Figure 44. Averaged over all stations,
the value is 34 percent.

This level of confidence is approximately confirmed by the position of the x? minima as
illustrated in Figure 43(b) and listed in Table 6. The maximum deviation from 1 unit of
gain correction is 41 percent, and most of the groups are within 15 percent.

The value of 41 percent is the largest deviation noted, so it is the level of confidence in
the gain corrections that is assumed for calculating the systematic effect on R.
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Figure 39: G(t) after pileup subtraction; the open circles are integrated from 2.0 to 3.2 GeV
while the closed circles are integrated from 2.0 to 6.2 GeV. The conversion factor from < £ >
to gain is already applied. Stations 1-6.
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Figure 40: G(t) after pileup subtraction; the open circles are integrated from 2.0 to 3.2 GeV
while the closed circles are integrated from 2.0 to 6.2 GeV. The conversion factor from < £ >
to gain is already applied. Stations 7-12.
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Figure 41: G(t) after pileup subtraction; the open circles are integrated from 2.0 to 3.2 GeV
while the closed circles are integrated from 2.0 to 6.2 GeV. The conversion factor from < £ >
to gain is already applied. Stations 13-18.
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Figure 42: G/(t) after pileup subtraction; the open circles are integrated from 2.0 to 3.2 GeV
while the closed circles are integrated from 2.0 to 6.2 GeV. The conversion factor from < £ >
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Station Ay 71 18] Ay 7o [ps] || (50 ps) [%]
1 -1.51x10° Y| 404 | 1.53x10°1 | 39.7 -0.04
3 -1.26x107* | 500.0 | -4.00x1071| 5.4 -0.02
4 3.73x10°!' | 31.6 |-3.82x10°'| 31.2 -0.05
5 -3.24%1073 | 1156 | -4.00x107' | 6.6 -0.23
6 1.91x1073 | 139.0 | 4.00x10°* 5.5 0.14
7 1.47x10°3 | 163.9 | 4.00x10°! | 3.1 0.11
8 22501071 | 40.9 | 2.56x10°! | 40.1 0.00
9 2.42x1071 | 10.0 | 2.51x107 | 10.2 0.02
10 -3.64x107*| 1382 | 1.81x10°2 | 76 -0.02
11 1.31x107%2 | 94 | 529x10~* | 171.9 0.05
12 746x1072 | 4.3 | 7.40x10°3 | 22.2 0.08
13 -1.99%1071 | 87.1 | 1.97x10°!' | 86.2 -0.18
14 4.52x1073 | 122.3 | 7.13x10~* | 16.9 -0.30
15 -1.07x1073 | 1104 | 6.03x10°3 9.3 -0.07
16 -1.39x1073 | 1325 | 1.65x102 6.5 -0.09
17 -1.07x1073 | 187.0 | -1.87x1072| 4.2 -0.08
18 -3.18x1073 | 78.4 | 1.73x102 7.7 -0.17
19 -1.74x1073 | 58.1 | 4.11x1073 | 134 -0.06
21 -9.44x1072 | 55.0 | 9.24x10°2 | 53.2 -0.20
22 -1.60x1072 | 116.7 | 1.19x1072 6.9 -0.10
23 -1.72%x1073 | 68.4 | 3.84x10°%2 | 64 -0.08
24 -1.60x1073 | 171.8 | 1.33x10°' | 4.6 -0.12

Table 5: Coefficients in the parameterization of the gain corrections G(t) = 1 + Aje /™ +
Ay 67t/T2 .
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Figure 43: R and y? for fits with different amounts of gain correction applied. (Start time
group C.)
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Difference between G(t) with 3.2 and 6.2 GeV upper cuts
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Figure 44: Difference between G(t) for two upper energy cuts, quantified as | < (Gl —
Ghigh)/(Giow — 1) >|. This quantity sets the level of confidence in the gain corrections.

A A B B’ C ¢
2% [ppm/unit of gain correction] 0.09 | 0.11 | 0.17 | 0.21 | 0.21 | 0.25
x? minimum [unit of gain correction] | 0.85 | 0.94 | 0.65 | 1.02 | 0.59 | 0.91
x? width [unit of gain correction] 0.02 | 0.02 | 0.04 | 0.04 | 0.03 | 0.02
dRyqin [PPmM] 0.037 | 0.045 | 0.070 | 0.086 | 0.086 | 0.100

Table 6: Estimate of the gain systematic error.
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Figure 45: Correlation coefficients between energy bins for the pileup phase ¢py;.

11 Systematic errors from pileup

Several separate systematic uncertainties are assigned for pileup. The first is really a renamed
statistical error; it folds the statistical uncertainties from the pileup fits into the uncertainty
of the ordinary fits. It is the moral equivalent of the correction of the y? at early times
from pileup subtraction as described in [1]. The second value accounts for a possible global
under- or over-estimation of pileup. Such an effect could be caused, for instance, by non-
uniformities in the pulse fitter as a function of the time separation between pulses. The
third value accounts for a possible energy dependence of the pileup construction efficiency.
The final pileup-related systematic uncertainty accounts for the “unseen” pileup below the
hardware threshold.

Gerco Onderwater has found that the fitted pileup phases are substantially uncorrelated
from one energy bin to the next. He used the following procedure (some of the following
text is drawn from a work-in-progress draft of his note):

e Cut up the full data set into 40 subsets of essentially uniform size.
e For each subset, construct the pileup spectrum as a function of energy and time.
e In each energy bin within each subset, fit the pileup spectrum as usual.

e Tor every pair of energy bins i and j, plot ¢y, versus ¢hby,. Obtain the correlation
factor p = 0;/(0; - 0;). Average p over the full energy range from 1.4 to 3.2 GeV.

The distributions of correlation factors are shown in Figure 45. They form a Gaussian
distribution about 0, and there is no apparent trend as a function of energy.

Consequently, the statistical part of the pileup systematic error can be determined by
independently varying each of the pileup phases over the range of their uncertainties. The
other parameters (Npy, Apyi, and so on) are varied together in the same way. The procedure
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Figure 46: Distribution of R values obtained from fits with pileup parameters chosen ran-
domly over their 1 o range. (Start time group C.)

that was actually used was to perform the fit several times with each of the pileup parameters
modified independently by adding a random number. The random numbers were chosen from
a Gaussian distribution whose width is the statistical uncertainty of the parameter. The RMS
of the resulting distribution of R values is then taken as the result. The results are shown
in Figure 46 and summarized in Table 8. When presented in the overall error table, this
uncertainty is combined with the statistical error rather than the systematic error.

The global pileup efficiency systematic error was evaluated by performing the fit with
the pileup terms Npy (£, t) multiplied by various scale factors Mpy. dl\ﬁu was determined
from the slope of a line fit through the points, as illustrated in Figure 47(a). The results
for the various start time groups are given in Table 8. For all of the start time groups, the
slope is approximately 5 ppm per unit of pileup. Consequently, it is important to know the
efficiency of the pileup construction procedure.

This efficiency has been established as 3.4 percent based on three different sources of
information. First, the difference between the energy spectra at early and late times gives
an estimate of how well the procedure works at high energies. The early-time data is taken
from 49.11 ps to 66.57 us (4 precession cycles) and the late-time data from 300 ps to 439.69
s (32 precession cycles). The spectra are normalized relative to each other based on energies
from 1.8 GeV to 2.2 GeV. The data for each station are shown in Figures 48 through 51.
The residual pileup is the ratio of the sums of the absolute values of the two curves. This
quantity is plotted versus station number in Figure 52. The average inefficiency determined
with this method is 3.4 percent; that figure is used to quantify the systematic error.

An additional contribution accounts for the possible energy dependence of the pileup
subtraction efficiency. It is assumed that the change in this efficiency over the range from
1.4 to 3.2 GeV is less than approximately twice the global inefficiency. The systematic
uncertainty was evaluated by comparing the fitted R values for several efficiency functions:

(A)GPU =1

E —23GeV

Blepy — 1+ 0.034
(Blepy =1+0.034—07
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Figure 47: R and x? for fits with varying pileup scale factors applied. (Start time group C.)

E—23GeV

0.9GeV
It was found that Bgp — R4 = —0.08 ppm and that R — B4 = 0.07 ppm. Consequently,
an uncertainty of 0.08 ppm is attributed to the energy dependence of the pileup subtraction
efficiency. This systematic error was only estimated for analysis method C, though it has
been copied to all lines of the table.

A second view of the pileup construction efficiency is provided by the difference between
the gain corrections G(t) with two different upper energy cuts, at 3.2 GeV and 6.2 GeV.
The sum of the squares of the differences between these curves over the range from 40 us
to 100 ps is plotted as a function of the pileup subtraction scale factor Mpy. It forms a
parabolic minimum as shown in Figure 53(a). The positions of these minima are shown for
each station in Figure 53(b). The largest discrepancy from 1 is 3.5%, and the average is 2%.

Finally, this level of confidence is supported by the positions of the fit y? minima, which
differ from 1 by at most 2 percent. These results are shown in Table 8.

The first step in the “unseen” pileup systematic error analysis is to use a simulation to
compute the changes in the spectrum caused by pulses that are too small to be considered by
MilliFit. The simulation first chooses an ordinary event from the "real” (/,¢) distribution
(the pileup-subtracted spectrum of station 18) weighted by an additional factor of

e[+ Aunseen 08(Wat + Punseen)].

(C)GPU =1-0.034

The parameters Aynseen aNd Gunseen are chosen quite conservatively as Aypeeen = 0.08 and
Gunseen = 100 mrad. It then chooses the energy of the unseen pulse from the portion of
the GEANT energy distribution below 200 MeV. A simulated WFD island containing the
two pulses is created and processed with MilliFit. The original (£,t) pair is filled into a
histogram with weight -1 and the modified (#,¢) is filled with weight +1. The energy and
time distributions of the simulated unseen pileup are shown in Figure 54.

The second step in this analysis is to observe the effect of the unseen pileup on the
stability of the (g — 2) asymmetry. The simulated unseen pileup distribution is added to
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pileup subtraction. Stations 1-6.
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Figure 49: Difference between energy distributions at early and late times with and without
pileup subtraction. Stations 7-12.
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Figure 50: Difference between energy distributions at early and late times with and without
pileup subtraction. Stations 13-18.
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pileup subtraction. Stations 19-24.
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Residual pileup from early-late energy spectrum (E > 3.0 GeV)
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Figure 52: Residual pileup fractions for each station for energies above 3 GeV based on
early-late energy spectrum differences.
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Figure 54: Energy and time distributions of simulated unseen pileup. The statistics of these
plots correspond to 10 “units” per station.

each station’s histogram, multiplied by factors of 0, 1, 3, and 5. Fits are done at each of the
ordinary fit start times and at 129.9 us. The difference between the average asymmetry at
49.1 ps and 129.9 us is plotted versus energy for each unseen pileup multiplier. To compute
this average, the asymmetry for each station is rescaled to be 1 at 49.1 us, and an arithmetic
mean is taken. The correlated error bars are from the standard difference-of-quadratures
Kawall formula. Several things are evident from this plot, which appears in Figure 55.

e Over this time range, the unperturbed spectrum has an average asymmetry which is
consistent from early to late times in each energy band above 2.2 GeV.

e For energies less than 2.2 GeV, the asymmetry in the unperturbed spectrum decreases
as a function of fit start time. One mechanism that would account for this is lost
protons. Their distribution cuts off near 1.8 GeV, they are non-wiggling, and they
become a larger fraction of the data at later times. (Another point of interest is that
protons also have different CBO properties from muons, possibly accounting for some
of the interesting trends of CBO parameters versus energy. )

e The asymmetry consistency is much more sensitive to unseen pileup at very high
energies than at lower energies. Consequently, we can set the best limit on unseen
pileup by looking at these energies.

The amount of unseen pileup in the data was estimated to be 0.29£0.26 units, where each
unit corresponds to 1.5 x 10® generated events after 45 us. This estimate was constructed
from the values shown in Table 7. In this table, A A represents the change in the asymmetry
of the unperturbed data while A Ay ecen stands for the asymmetry change that would be
caused by 1 unit of unseen pileup.

The fitted R value is also plotted versus number of units of added unseen pileup, as
illustrated in Figure 56. The resulting slope varies by start time group from 0.20 to 0.36
ppm per unit of unseen pileup. This slope is multiplied by 0.29 to obtain the final systematic
error estimate.
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Asymmetry change from 49.1 to 129.9us
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Figure 55: Change in the fitted asymmetry between fit start times of 49.1 us to 129.9 us,
for the unperturbed data and with various amounts of added unseen pileup.
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Figure 56: R and x* for fits with varying amounts of added unseen pileup. (Start time group
C.)
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Energy AAJAAunseen
2.2-2.4 0.03+1.15
2.4-2.6 —0.82+£0.64
2.6-2.8 0.36 £ 0.52
2.8-3.0 0.45 £+ 0.85
3.0-3.2 0.67 £ 0.40
Weighted average | 0.29 4+ 0.26

Table 7: Change in asymmetry (AA) from a fit start time of 49.1 us to 129.9 us, as a fraction
of the amount expected from one arbitrary unit of unseen pileup (AAunseen). The error bars
only take into account the uncertainty of A A, not that of AA,,scen-

A A B B’ C C
dRpy: statistical part [ppm| | 0.112 | 0.131 | 0.095 | 0.114 | 0.117 | 0.131
% [ppm/unit of pileup] 571 | 515 | -4.59 | -4.99 | -4.93 | -5.15
x? minimum [unit of pileup] | 0.992 | 0.980 | 0.991 | 0.999 | 0.984 | 0.980
x? width [unit of pileup] 0.003 | 0.004 | 0.004 | 0.005 | 0.004 | 0.004
dRpy: global scale part [ppm| | 0.194 | 0.175 | 0.156 | 0.170 | 0.167 | 0.175

dRpy: unseen part [ppm| 0.057 | 0.076 | 0.073 | 0.090 | 0.085 | 0.104

Table 8: Estimated systematic errors from pileup.
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12 Muon losses

The muon losses as measured by triple coincidences in the FSDs are supplied by Chris Polly.
The supplied data is in the form of a histogram f§**(¢) which is proportional to the absolute
muon loss rate. It is first necessary to convert it to a fractional muon loss rate fx(f) =
fs(t)e!/™. 1In this calculation, an assumed lifetime 7 = 64.367 us is used. Now, during
a time interval dt where the number of stored muons is N(¢), the absolute number of lost
muons is proportional to fx(¢) N(t) dt.

In the absence of muon losses (and, for simplicity, averaging over the g — 2 cycle), the
differential equation that is solved is

N(t) = NQ exp (—(t — to)/T)
Now including muon losses, the differential equation is modified:

D= NG+ Nafale)

dt
¥ 1
_ /7_ - /
N dN /T +NAfA(t) dt
No to
t
ot /
logNO—logN*—?Jrf—NA/fA(t) dt

N(t) = Noexp (—(t — to)/7) exp (—NA/fA(t/) dt/)

Note that we can choose any value of 5 that might be convenient. We can even choose tg
independently in the decay term and in the muon loss term; when we do so, we only modify
Ny, which is a floating parameter in the fit. Since we don’t know the absolute efficiency of
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A A’ B B’ C ¢

ﬁ [ppm/unit of loss] 0.60 | 0.48 | -0.36 | -0.28 | -0.40 | -0.31
djl\,]jA [ppm/unit of loss error] 0.009 | 0.008 | 0.004 | 0.004 | 0.003 | 0.002
N x? minimum [unit of loss] 0.921 | 0.960 | 1.002 | 0.885 | 0.981 | 0.886

Ny x* width [unit of loss] 0.014 | 0.021 | 0.020 | 0.030 | 0.017 | 0.026

Nsa x? minimum [unit of loss error] | -4.34 | -3.43 | -4.80 | -4.08 | -4.60 | -3.87
Nsa x? width [unit of loss error] 0.35 | 0.52 | 0.35 | 0.53 | 0.35 | 0.53
R [ppm] 0.072 | 0.058 | 0.043 | 0.034 | 0.048 | 0.037

dRsa [ppm] 0.014 | 0.019 | 0.019 | 0.016 | 0.014 | 0.008

Table 9: Estimated systematic errors from muon losses.

the FSD triple coincidence counter, Ny must also be a floating term in the fit. In fact, ¢y in
the loss term is chosen to be 20 us.

In addition to the muon loss rate, Chris Polly also supplies an error band that is based
primarily on the uncertainty in the proton correction. The loss shape is allowed to vary by
a multiple of the error band; the parameter N5 provides this. The final form of the muon
loss factor is therefore

AE) = expl=Na/r [ (0 + Noaba(e )t

R and y? were plotted versus the a scale factor by which the nominal N, was multiplied,
as shown in Figure 57. The slope is of order 0.5 ppm per nominal loss unit, as given in Table
9.

There is one possible source of external evidence for a level of confidence in Ny. By
taking an appropriately constructed difference between the data before and after the radial
field change (when the loss rate dropped by an order of magnitude), it may be possible to
obtain an independent absolute calibration. However, this analysis has not yet been done.
Consequently, the only information available for this systematic error is internal to the fit.

The value of N, that is used for the final results was determined from a global y?
minimization at the start times determined by method C. However, it is found that the
position of the y? minimum for the N, scale factor varies from 0.88 to 1.00 depending on
the start time method. Slightly different procedures therefore give normalizations that differ
by up to 12 percent. Consequently, 12 percent is adopted as the level of confidence in this
parameter. The resulting systematic uncertainty for R is of order 0.05 ppm.

A similar procedure was performed for Nsy. This parameter ought to be 0, since all
relevant corrections to the muon loss shape have already been applied, but the value from
the fit is around -4. The entire difference from 0 is used as a level of confidence. Nevertheless,
the resulting systematic uncertainty for R is small, at most of order 0.04 ppm.
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13 CBO systematic uncertainties

It should be kept in mind that the largest component of the CBO-related systematic error
is actually included in the statistical error because the half-ring effects are included in the
fitting function. However, there are other systematic issues that must be accounted for
separately.

The CBO modulations of the (g — 2) normalization and asymmetry have an envelope
function which is taken to be e~*/7¢2o F(t). E(t) measures the deviation from a purely
exponential form. This envelope arises from the time dependences of the position and width
oscillations of the beam, which have lifetimes that probably differ by a factor of two. It is
also influenced significantly by the combination of data with different CBO frequencies.

The procedure for determining the envelope was first to determine the approximate ex-
ponential lifetime 7opo and then to measure deviations from that exponential. 7opo is
determined from a fit with a start time of 49.1 us, where it was allowed to vary in the fit. It
varies with energy as shown in Figure 58. It is then fixed in fits to each energy bin, with a
different lifetime for each energy. In these fits, first the full function (with a CBO rate mod-
ulation only) is applied to the entire time range. Then all of its parameters are frozen except
for a scale factor that multiplies the CBO amplitude, and fits of that single parameter to
short time intervals are performed. The scale factors are averaged across energy bins to give
the CBO envelope F(t) which is shown in Figure 59. F(t) is parameterized as a polynomial
and inserted into the fitting function. It is cut off at times after 245 us, where the envelope
is assumed to be purely exponential.

Two separate systematic errors are assigned for the main CBO envelope; they are added
linearly to obtain the quoted result. First, the procedure for constructing the envelope
perturbations £(t) from the data is not completely defensible. Consequently, an uncertainty
is assigned for the entire difference between the fitted R values with and without the F(¢)
factor. Fortunately, it is very small, of order 0.01 ppm.

The variation of the fitted exponential CBO lifetime with energy also seems too large to
understand fully; it moves by 30 percent from very low to very high energies. Consequently,
a systematic error will be assigned to cover this range. A scale factor A,opo is introduced
to multiply the energy-dependent CBO lifetime in the fit. This scale factor is varied over the
range from 0.7 to 1.3; the effect on R and y? is shown in Figure 61. The slope of R versus
Arcpo is determined, and it is multiplied by 0.15 to obtain the systematic error estimate.
This value is half of the 30 percent lifetime variation.

There are two systematic errors assigned for the CBO frequency weopo. The first accounts
for the uncertainty in the value of the frequency. It varies with energy from 465.79 kHz to
466.11 kHz as shown in Figure 60. A conservative systematic error is evaluated to take into
account this entire range of +£0.16 kHz. A scan is made, fixing wopo for all energy bins
together at three different settings, which are chosen to be the endpoints and midpoint of
this range. The slope of R as a function of wepe is then measured; depending on start time
group, it ranges from 0.01 to 0.4 ppm per kHz. The final systematic error estimate is 0.16
kHz times this slope. The results are shown in Table 10.

The envelope of the CBO modulation of the (g — 2) phase is derived from the same
underlying effects as that of the other CBO effects, but it probably mixes the position and
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Figure 58: CBO lifetime 7cpo as a function of energy.

width modes in different proportions. Consequently, its lifetime may differ from that of the
other modulations by up to a factor of 2. Unfortunately, this lifetime cannot be determined
from the data with any precision. Consequently, it is necessary to attribute a systematic
uncertainty to this envelope. Fits were performed with various values for the ratio of this
lifetime to the ordinary CBO lifetime. The x? minimum, as shown in Figure 62(b), is very
shallow, but R does not depend heavily on this parameter. The systematic uncertainty is
determined by taking half the difference between the maximum and minimum R values over
the range from 0.5 to 2 in the ratio of the two envelope lifetimes.

There are two physical sources for the CBO phase modulation. First, the time of flight is
modulated by the radial beam motion. However, GEANT simulations have shown that this
cannot be the dominant effect. Another model, the so-called “FBI effect,” holds that the
angle between the muon’s momentum vector and the central orbit is modulated at the CBO
frequency. As the momentum is rotated, the spin moves along with it. There is a subtle
difference between the functional forms associated with the two models. If the time of flight
is modulated, then the time should be altered by the CBO throughout the fitting function.
In the “FBI effect” model, though, only the g — 2 phase is modified. Fits were performed
with both fitting functions. For all start time methods, the effect is less than 0.01 ppm; for
the preferred method C it is less than 0.001 ppm. Consequently, this difference is not even
listed in the systematic error table.
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A A B B’ C C
dR from FE(t) 0.013 | 0.011 | 0.013 | 0.010 | 0.001 | 0.002
dR/dAcBo -0.292 | -0.282 | 0.070 | 0.048 | -0.10 | -0.02
X2 minimum 1.094 | 1.103 | 1.087 | 1.099 | 1.090 | 1.110
x? width 0.0083 | 0.010 | 0.011 | 0.014 | 0.010 | 0.012
0R from 100 0.044 | 0.042 | 0.011 | 0.007 | 0.015 | 0.003
Total 0 R from main CBO envelope | 0.057 | 0.053 | 0.024 | 0.017 | 0.016 | 0.005
dR/dwepo 0.158 | 0.219 | 0.381 | 0.445 | -0.062 | 0.007
OR for wepo value 0.025 | 0.035 | 0.061 | 0.071 | 0.010 | 0.001
O R for time variation of wepo 0.008 | 0.004 | 0.024 | 0.027 | 0.032 | 0.004
Total 6 R from wepo 0.033 | 0.039 | 0.085 | 0.098 | 0.042 | 0.005
OR from CBO phase modulation 0.102 | 0.095 | 0.079 | 0.032 | 0.021 | 0.032

Table 10: Systematic uncertainties assigned for various CBO-related effects.
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A A B B’ C ¢’
dR /AN p1ashiers [ppm/unit of flashlets] | -0.011 | -0.013 | -0.002 | -0.002 | -0.019 | -0.021

Table 11: Results of fits to spectra with artificially enhanced flashlets.

14 Systematic error from flashlets

The data from the fills in which the quadrupole firing was suppressed provides a measure of
both the total number of flashlets and their distributions in time and ring position. These
distributions are shown in Figure 64. (They have been multiplied by the ratio of the numbers
of quadrupole-on to quadrupole-suppressed fills.)

Simulated flashlet distributions were constructed based on these distributions. Flashlets
were added to the data at 0, 5, and 10 times their actual level, and the slope of the graph of
R vs. flashlet level was determined. Table 11 shows the magnitude of this effect.
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A A’ B B’ C ¢’
Random seed 0.045 | 0.045 | 0.065 | 0.060 | 0.048 | 0.044
Bin width 0.061 | 0.057 | 0.151 | 0.123 | 0.094 | 0.103
Fast rotation time | 0.080 | 0.073 | 0.115 | 0.111 | 0.085 | 0.078

Table 12: Systematic uncertainties from effects related to fast rotation.

15 Fast rotation effects

Five random seeds were used for the final results. For all of the start time groups, the
RMS of the distribution of R values for the various seeds was approximately 0.1 ppm. The
systematic uncertainty that is assigned for the random seed is therefore approximately 0.1
ppm/+/5 = 0.45 ppm.

The fast rotation randomization period was varied from 149.0 ns to 149.4 ns in steps of 0.1
ns. (The nominal period is 149.2 ns.) For this study, the histogram time bin width remained
fixed at 150 ns. The RMS of the resulting distribution of R values, which was approximately
0.1 ppm, was previously assigned as the fast rotation time systematic error. This is clearly
an upper limit on the effect, since there are statistical variations among the various data sets
as well. Indeed, at the w, review committee meeting, it was determined that this width is
entirely within the statistical expectation, so it is not included as a systematic uncertainty.

Finally, the histogram bin width was varied from 148 ns to 152 ns in steps of 1 ns. The
RMS of the distribution of R values, again approximately 0.1 ppm, is assigned as the bin
width systematic error. Again, this is an upper limit because of statistical variations.

For each of these effects, the R and y? values are shown in Figure 15. The systematic
errors are summarized in Table 12.
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Figure 65: Results of systematic studies related to the fast rotation randomization
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A A B B’ C ¢’
dR/dAyw [ppm/unit of VW] -0.0051 | -0.0047 | -0.0071 | -0.0082 | 0.0030 | 0.0038
dR/dAscpo [ppm/unit of double CBO] | -0.012 | -0.0082 | -0.0066 | -0.00066 | -0.0083 | -0.011

Table 13: Systematic effects from vertical waist and double CBO.

16 Vertical oscillations and double CBO

Particles in the storage ring perform vertical betatron motion at a frequency fyo = 2.36 MHz.
Beating with the fast rotation frequency leads to coherent motion—the “vertical waist”— with
a frequency of fyw = frr — 2fvo = 1.75 MHz. Each of these effects leads to a modulation
of the detector acceptance and therefore of the counting rate. These frequencies are well
separated from w,, and the associated time constants are very short. The lifetime of the
vertical betatron oscillations is approximately 3 us, while that of the vertical waist is about
15 ps. Consequently, the effect on R is very small.

Also noticeable is the second harmonic of the radial CBO at 932 kHz. The time constant
for this effect is significantly longer, about 50 us, but the amplitude is very small.

The frequencies and time constants were estimated from overall fits at early start times.
The amplitudes and phases were then determined for each energy bin for each station from
fits starting at 31.6 us. Stations 3 through 6 are not available at 31.6 us; they were assigned
vertical oscillation and vertical waist amplitudes and phases from the average of the other
stations. For the vertical waist, the phase was adjusted properly for the ring position. The
double CBO is sufficiently long-lived that its amplitude and phase can be reliably determined
with a fit starting at 49.1 us, so it is not necessary to interpolate values for stations 3-6 for
this quantity. The parameters that were determined are shown in Figures 66 and 67.

For each of these modulations, fits were performed with the relevant amplitudes fixed
at 0, 1, 5, and 10 times the values found from the early-time fits. The associated phases
were held at the values found from the early-time fits. The slope of R versus the amplitude
multiplier is determined.

The effect of the vertical betatron oscillations at these start times is too small even to
write down; it is less than 0.0003 ppm in all cases. The systematic shifts of R and x?/dof
from the vertical waist and double CBO are larger, though still very small. They are given
in Table 13.
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Figure 66: Vertical waist parameters determined from fits at early start times.
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A A B B’ C ¢’
R for ? 128.848 | 128.706 | 127.944 | 127.703 | 128.574 | 128.449
SR for x* 0.627 0.673 0.720 0.771 0.691 0.743
R for log(L) (20 counts) | 128.807 | 128.666 | 127.788 | 127.539 | 128.480 | 128.374
dR for log(L) (20 counts) | 0.627 | 0.673 | 0.722 | 0.774 | 0.691 0.743
R for log(L) (550 ps) 128.863 | 128.709 | 127.892 | 127.728 | 128.458 | 128.363
SR for log(L) (550 us) | 0.618 | 0.663 | 0.714 | 0762 | 0.680 | 0.729
SR — log(L)) 0.041 | 0.040 | 0.156 | 0.163 | 0.094 | 0.07
dR ((20 counts) - 550 ps) | 0.056 | 0.043 | 0.104 | 0.189 | 0.022 0.011

Table 14: Differences between results obtained with y? and maximum likelihood fitting.

17 Maximum likelihood fitting

Sergei Redin suggested [5] that a potentially large bias results from fitting small subsets of
the data with a y? minimization. He suggested that the bias would be much smaller if a
(log) maximum likelihood fit is performed instead. (This claim has since been retracted [6]; a
similar bias is obtained for the two fitting methods.) This systematic error was evaluated by
fitting with both methods and subtracting the results. The resulting systematic differences
are of order 0.1 ppm, and they are largest for start time groups where the subsets are smallest.
The results are listed in Table 14.

At an w, review committee meeting, Ernst Sichtermann pointed out that the difference
between y? and maximum likelihood fits is primarily statistical. As a check, Long Duong
suggested comparing the results of y? and maximum likelihood fits to data which was simu-
lated with no statistical fluctuations. The difference between the results in this case was less
than 0.001 ppm. Consequently, this “systematic error” is not included in the final table.

Jim Miller has also suggested that a bias may be introduced by the procedure of choosing
a fit stop time based on the number of counts in a bin. Maximum likelihood fitting does
not require a minimum number of counts per bin. Maximum likelihood fits were performed
with a stop time of 550 ps in all bins. The difference between these results and those of the
ordinary maximum likelihood fits is within the statistical expectation.

86



A A B B’ C o
0 R from lost protons | 0.002 | 0.007 | 0.005 | 0.008 | 0.003 | 0.007

Table 15: Systematic errors from proton contamination.
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Figure 68: Energy and time distribution of lost protons.

18 Proton contamination

Because this analysis includes data from below 2 GeV, there is some contamination of the
positron spectrum by lost protons. Their distribution was determined from Chris Polly’s
data. He identified straight tracks through three FSDs with energy deposited in the final
calorimeter. The energy and time distributions are shown in Figure 68. There are two data
sets in the energy distribution plot. One shows the energy distribution of all calorimeter
pulses in the proton dump after the quads are turned off, and the other shows the distribution
of those found in association with a threefold FSD coincidence. The ratio of the integrals of
these distributions is approximately 13.4. The in-fill FSD triple coincidence data must be
scaled up by this factor. There are 406 counts per station in this histogram in the ranges
1.3-2.2 GeV and 50-400 ps. Scaling up, there are 5440 proton counts per station in these
ranges.

To determine the effect on R, simulated protons were added to the spectrum based on
these distributions. They were added at levels corresponding to 0.33, 1.67, and 3.33 times
the expected level (a factor-of-3 mistake was originally made in the normalization, leading to
the peculiar numbers). The slope of R versus this scale factor is taken to be the systematic
error. It is very small, in all cases less than 0.01 ppm. The results are given in Table 15.
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T N A (b R ACBOlC ACBOlS ACBOQC ACBOQS ACBOSC ACBOSS

1.000 -0.897 0.002 0.009 0.006  0.005 -0.003 0.003 0.005 -0.009 0.007
-0.897 1.000 0.002 -0.012 -0.009 -0.006 0.004 -0.004  -0.007 0.012 -0.010
0.002 0.002 1.000 -0.061 -0.065  0.007 0.000 0.106 -0.151 0.132 0.120
0.009 -0.012 -0.061 1.000 0.908 -0.002 0.002 0.146 0.197 -0.202 0.137
0.006 -0.009 -0.065 0.908 1.000 -0.002 0.001 0.097 0.164 -0.163 0.093
0.005 -0.006 0.007 -0.002 -0.002 1.000 -0.002 0.036 -0.004 0.067 0.004
-0.003 0.004 0.000 0.002 0.001 -0.002 1.000 0.001 0.034 0.001 0.062
0.003 -0.004 0.106 0.146 0.097  0.036 0.001 1.000 -0.000  -0.013 0.125
0.005 -0.007 -0.151 0.197 0.164 -0.004 0.034 -0.000 1.000 -0.177  -0.011
-0.009 0.012 0.132 -0.202 -0.163  0.067 0.001 -0.013  -0.177 1.000 -0.005
0.007 -0.010 0.120 0.137 0.093  0.004 0.062 0.125 -0.011  -0.005 1.000

Table 16: Parameter correlation matrix, averaged over fits to all stations and energy bins.

Energy [GeV] | 1.4-1.6 1.6-1.8 1.8-2.0 2.0-22 2224 2426 2628 2830 3032
T 0.007  0.007  0.007 0.008 0.007 0.007 0.006 0.004 0.003
N -0.01r  -0.01 -0.01 -0.011 -0.01 -0.009 -0.009 -0.006 -0.004
A -0.061  -0.061 -0.064 -0.065 -0.067 -0.068 -0.066 -0.067 -0.068
o) 0.904 0901 0908 0912 0909 0905 0909 0914 0914

R 1 1 1 1 1 1 1 1 1
Acpoio -0.025 -0.011 -0.004 -0.002 0.001 0.003 0.003 0.004 0.009
Acpois 0.022  0.004  0.002 0 -0.001  -0.003 -0.003 -0.003 -0.005
Acpose 0.17 0.067 0.094 0.167 0.093 0.106  0.088 0.06 0.031
Acposs 0.165 0.166 0.135 0.129 0.137 0.212 0.147  0.129 0.254
Acposc -0.171  -0.172  -0.14 -0.131 -0.139 -0.208 -0.143 -0.125 -0.241
Acposs 0.171  0.063 0.092 0.164 0.088 0.103 0.081 0.053  0.025

Table 17: Correlations to R by energy, averaged over detectors.

19 Parameter correlations

The correlation matrix for the 12 free parameters in the fit is given in Table 16. This matrix
is averaged over detectors and energy bins. In order to show the dependence on energy,
the column with couplings to R is also given in Table 17. As expected, ¢ correlates very
strongly with R. The half-ring effect amplitudes have a weaker but still significant correlation
coefficient, approximately 0.2 in many of the energy bins.
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