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Abstract

This note will present results of an !a analysis of the 1999 data using the ratio method. Data

processed using both the g2o� and G2Too analysis packages were studied. The �nal values of

R = (fo�fa)=fo (fo = 229:1 kHz) are 143:37�1:28�0:17 ppm (g2o�) and 143:03�1:28�0:19

ppm (G2Too), where the �rst uncertainty is statistical and the second systematic speci�cally

related to the �t procedure. R as given has an arbitrary o�set. The data overlap between g2o�

and G2Too allows for a statistical 
uctuation of about 0.27*1.28 = 0.35 ppm, and hence the

two R values are statistically consistent.
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1 Introduction

This note will detail the results of an !a analysis of the 1999 data using the ratio method, see

[1] for a complete description of the formulation and implementation of the ratio method. For

the current analysis, data processed using both the g2o� and G2Too software packages were used.

Event reconstruction from the raw WFD traces are described in [2] for the fortran/PAW-based

g2o� package and in [3] for the c++/ROOT-based G2Too package. The pulse reconstruction for

G2Too to which this note refers is also known as G2Too (NEW). This pulse �tter uses constant

errors in �tting the WFD ADC samples to the average pulse shape, and is essentially the same as

the pulse �tter used in g2o�. Because my focus was primarily the ratio method, no independent

data selection study was conducted. Rather, I have used for the g2o� data Cenap's selection [4],

and for the G2Too data Gerco's selection [5].

Often the important principal elements are missed when accompanied by presentation of detailed

results. To avoid this, I will explicitly state now that for the �nal �tting to extract the !a values as

given in the abstract, the ratio method was applied to histogrammed data that had been treated

with �ll randomization [6], to wash out the e�ects of fast rotation, and pileup subtraction using

shadow pulses [7]. The two physical e�ects of muon losses and coherent betatron oscillation (CBO)

did not have to be included in the �t due to the unique nature of the ratio formulation, in contrast

to the multiparamter �t. The other physical e�ects of AGS 
ashlets, double CBO, vertical waist,

and energy calibration shifts within a �ll will be given systematic errors, as well as the CBO and

muon losses.

Finally, for ease of communication, the following color code will always be followed when plotting

results, unless otherwise stated.

� RED: results for g2o� data

� BLUE: results for G2Too (NEW) data

� BLACK: results for (g2o� - G2Too) or for simulated data

2 A Review of The Ratio Method

Basically, the ratio method is a �lter which takes a �ve-parameter like function N(t)

N(t) = Noe

�t

�� [1�A � cos(!at+ �)] +B(t) (1)

with B(t) small compared to No and transforms it into a ratio function R(t) where

R(t) =
N

�
t+ 1

2
�a

�
+N

�
t� 1

2
�a

�
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in which the ratio background terms Bnum(t) and Bden(t) are constructed from B(t) by

Bnum(t) =
B

�
t+ 1

2
�a

�
+B

�
t� 1

2
�a

�
� 2B(t)

4Noe

�t

��

(3)

Bden(t) =
B

�
t+ 1

2
�a

�
+B

�
t� 1

2
�a

�
+ 2B(t)

4Noe

�t

��

(4)

2



It will be shown later in the results section that with �ll randomization and pileup subtraction

applied, the remaining data can be acceptably (meaning a good �2=ndf and small systematic �tting

errors) parameterized by the function in Eq. 2 with Bnum(t) = 0 and Bden(t) = 0. Therefore, all

the �nal �tting results to be presented will use the function

R(t) = A � cos(!at+ �) +
1

16

 
�a

��

!2

= A � cos(!at+ �) + 0:00028736 (5)

with the three parameters (A;!a; �). A second function with one more parameter, K, to account for

pileup, will also be used in studying the systematic uncertainty associated with pileup subtraction.

In that case, the function RK(t) is

RK(t) = [1�Ke
�

t
�� ] �A � cos(!a + �) + 0:00028736 (6)

where the pileup parameter K is de�ned to be

K = �d

�
A�Ad

A

�
(7)

In Eq. 7, �d is the fraction of pileup to singles pulses at injection, and Ad is the asymmetry of the

pileup pulses. Throughout the rest of this note, R(t) and RK(t) will always denote the functions

as given in Eqs. 5 and 6, respectively. Furthermore, (A, !a, �, K), will always be used to refer to

the parameters as de�ned in Eqs. 5� 7. Note that the three parameters (A;!a; �) have the usual

physical meanings: A is the muon forward-backward decay asymmetry, !a is the anomalous spin

precession frequency, and � is the g-2 phase. For a �nal comment, do not confuse R(t) which refers

to the ratio function in Eq. 5 with the parameter R = (!o �!a)=!o (!o = 2� � 229100 rad/s) used

as an alternative expression for !a.

2.1 Systematic Uncertainty in the Ratio Fitting Method

In Ref. [1], the background term B(t) in Eq. 1 was set to zero (so that Bnum(t) = 0 and Bden(t) = 0

as well in Eq. 2), and the ratio �tting procedure itself was then quantitatively characterized using

analytical techniques as well as using �ts to 1600 sets of data simulated to have about the same

statistical power as the 1999 data, i.e. � 1:2 ppm uncertainty in !a. The pertinent results of that

study are enumerated below.

1. The distribution of (�2=ndf) for the ratio �tting procedure is gaussian with mean (1:00069�
0:00047) and width (0:96 � 0:01)(

p
2=ndf), (Section 4.2, pg 6-7).

2. The distribution of values R = (!a(fit) � !a(MC))=(!a(MC)) is gaussian with mean �0:020 �
0:030 ppm and width 1:14 � 0:02 ppm, (Section 4.2, pg 6).

3. When comparing the �tted values of !a between the ratio and �ve-parameter like �ts, the

distribution of values D = !a(�ve-parameter)�!a(ratio) is a Gaussian with mean zero and

width � 13% of the statistical uncertainty, (Section 4.3, pg 7-8).

The results above were for a �t start time of 25 �s. The value of �0:02 ppm above is statistically

consistent with zero. Therefore, for a 90% CL, a value of 0.05 ppm can be ascribed to the �tting

error for the ratio method itself using the statistical uncertainty of 0.03 ppm. In the �tting routine

the time assigned to the binned data was the time at the center of time bins of width 149.185 ns.

Therefore, this uncertainty of 0.05 ppm includes the error for the ratio �tting procedure as well as

binned data. This value of 0.05 ppm will be one of the entries in the systematic �tting uncertainties

table, Section 4.7.
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3 Endpoint Energy Calibration and Average Energy

3.1 Endpoint Energy Calibration

Figure 1 shows a plot illustrating the details of the endpoint energy calibration procedure for G2Too.

First, the milli�t area distribution with a time cut of 200 �s for about 80% of all the 1999 data

was constructed. The maximum count Nmax was then found, at area � 170 in Figure 1. Next the

area distribution in the area range corresponding to (0:6� 0:2)*Nmax was �tted to a straight line,

and the point at which the straight line crosses the area axis is set to be the endpoint energy, 464.8

in Figure 1, which corresponds to 3.1 GeV. For G2Too data, a single endpoint value was used for

each detector for all runs used in the analysis, whereas for g2o� data, di�erent run intervals may

have di�erent endpoint values [4],[10]. Figure 2 shows a comparison over all the 1999 data for the

endpoint calibrations for g2o� (as was done in [4]), versus G2Too data. The endpoint values for

g2o� is � 3.09 GeV and for G2Too is � 3.10 GeV, a 0.3% di�erence. However, keep in mind that

this is does not transform directly into a data overlap since the two endpoint calibration schemes

may di�er by more, a few percents, for any particular run.

3.2 Average Energy

The average energy versus time in a �ll were studied using two very di�erent methods: a macroscopic

method (similar to the one Alex uses), and a microscopic method via pileup construction using

shadow pulses. The macroscopic method, [8] Section 4.4, uses the fact that changes of the average

energy due to pileup vary with upper energy cuts. Therefore, taking ratios of the average energies

for di�erent upper energy cuts can give estimates for the pileup contribution to the average energy.

By correcting for such contributions, the pileup-free average energy is extracted. In the microscopic

pileup subtraction, energy (E) and number (N) histograms of the singles pulses (S1; S2) used to

construct the pileup pulses (D) are combined to extract the pileup-free average energy by the

formula

< E(t) >=
EALL(t)� [ED(t)�ES1(t)�ES2(t)]

NALL(t)� [ND(t)�NS1(t)�NS2(t)]
(8)

Figures 3� 5 show plots of the average energy changes, normalized to values in the range 200�
400 �s, versus time in a �ll for all 22 detectors used in the analysis. Note the excellent agreement

between the two macroscopic and microscopic methods, giving con�dence that the average energy

changes as shown are accurate. With the exception of 1, all detectors have normalized energy

changes for times > 30 �s that are within � 0.1% of 1.0. For all the detectors except 4, g2o� and

G2Too data agree very well. For reference it should be noted that for normalized energy changes

that are linear with magnitude 0.1% per 200 �s, the systematic error in !a is about 0.1 ppm.

Therefore, with the exception of 1, the individual detectors have energy calibrations that are good

to about 0.1 ppm in !a. Figure 6 shows the normalized average energy for the sum of all the

detectors. In this case, the average energy changes are < 0.03%, and hence summing the detectors

together and then �tting will incur a smaller systematic error due to energy calibration changes

within a �ll, see Section 4.2.

4 Systematic Fitting Uncertainties

4.1 Fast Rotation Randomization

The systematic �tting uncertainty associated with the randomization procedure [6] can be estimated

as follows. Begin with an illustrative example of the four t0 pulses shown in Figure 7. The t0 pulses

shown have widths of 21.8 ns. Consider that the means of the four t0 pulses in Figure 7 are at
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Figure 3: Average energy versus time (in �s), normalized to values in the range 200 � 400 �s for

detectors 1� 8. Macroscopic (open circles) and microscopic (closed circles) pileup subtraction are

both used. The vertical line indicates the 34 �s mark.
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Figure 4: Average energy versus time (in �s), normalized to values in the range 200 � 400 �s for

detectors 9� 16. Macroscopic (open circles) and microscopic (closed circles) pileup subtraction are

both used. The vertical line indicates the 34 �s mark.
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Figure 5: Average energy versus time (in �s), normalized to values in the range 200 � 400 �s for

detectors 17 � 24. Macroscopic (open circles) and microscopic (closed circles) pileup subtraction

are both used. The vertical line indicates the 34 �s mark.

8



0 50 100 150 200 250 300 350 400
0.999

0.9995

1

1.0005

1.001
Chi2 / ndf = 76.69 / 80
p0       = 0.0005726 +- 4.089e-05 
p1       = 82.07 +- 6.219 
p2       = 0.0003585 +- 4.628e-05 
p3       = 30.64 +- 2.157 
p4       = 9.273 +- 1.808 

Chi2 / ndf = 76.69 / 80
p0       = 0.0005726 +- 4.089e-05 
p1       = 82.07 +- 6.219 
p2       = 0.0003585 +- 4.628e-05 
p3       = 30.64 +- 2.157 
p4       = 9.273 +- 1.808 

f(t) = (1-p0*exp(-t/p1)) * (1+p2*exp((t-p3)**2/p4)

Figure 6: Average energy versus time (in �s), normalized to values in the range 200� 400 �s, and

averaged over all detectors. Both macrocospic (open circles) and microscopic (closed circles) pileup

subtraction are used. The �tted function f(t) will be used to estimate the systematic uncertainty

due to energy calibration changes.
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Figure 7: Illustration of the idea of the t0stream: the four individual t0 pulses are randomized so

that the e�ective t0 pulse more closely approximates a constant across the fast rotation period of

150 ns.
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the four values (0, 0.33, 0.66, 1.0) times the fast rotation period of 149.105 ns. The sum of

these four "randomized" t0 pulses forms the "t0stream". From the detector's view point then, �ll

randomization makes the decay positrons look as though they originated from the t0stream. In the

limit of many, many randomized t0 pulses, the e�ective t0 is then nearly a constant over the fast

rotation period.

Figure 8 shows a plot of the calculated t0stream for the case of randomizing t0 pulses using

a ranlux sequence with seed 4292730. This is one of the random number sequences used in the

implementation of �ll randomization for detector 1, g2o� data. The t0 pulses used were gaussian

in shape with widths 21.8 ns. To account for the varying beam intensities, the magnitudes of the

individual t0 pulses were taken from a gaussian distribution with a width equalling � 1/3 the

mean, mimicking the variation over the 1999 data run. Notice that the e�ective t0 structure is now

roughly constant, having a fractional peak of magnitude � 2/1028 = 0.002.

Figure 9 shows a plot of simulated g-2 data with the fast rotation structure not randomized,

and Figure 10 shows the ratio of the plot in Figure 9 divided by the normal �ve-parameter function

to isolate the fast rotation factor F(t). The simulated function shown in Figure 10 was derived at

as follows. Fast rotation peaks at early times, 5� 35 �s from injection, for detector 24 were �tted

to gaussian functions, and the means and widths of these �ts were extracted. The slope of the

mean versus time after injection was consistent with a fast rotation period of 149.105 ns, and the

widths were �tted to a quadratic function with the result

�fr(t) = 21:77 + 0:01585 � t+ 0:0005868 � t2 (9)

where both the time t and the fast rotation width �fr are in ns. The plot in Figure 10 was then

calculated as follows. Gaussian functions of widths as given by Eq. 9 with area 1 and means

equalling integral values of the fast rotation period were added together. The resulting sum was

normalized so that the value at 60 �s is 1, and the di�erence from 1 is plotted in Figure 10. The

envelope of the oscillation was �tted to a third degree polynomial with the result

A(t) = 3:183 � 1:828e�4 � t+ 3:485e�9 � t2 � 2:203e�14 � t3 (10)

Considering the idea of the t0stream, then the e�ect of �ll randomization is the replacement F(t)!
0:002 �F(t). The histogrammed data then becomes G(t)(1+F(t))! G(t)(1+0:002 �F(t)), where
G(t) is the usual �ve-parameter function, and the background term is B(t) = 0:002 �G(t)F(t).

In Ref. [1], it was shown that for the ratio method, the systematic error in �tting data of the

form (R(t) + �F (t)), with �� 1, to only the function R(t) can be well estimated by

Æ!a

!a
�
�

�

2�Ao

� 
�a

��

!�
cd� be

ac� bb

�
(11)

where (a; b; c; d; e) are functions of the �tting time interval and of the background term F (t). The

background B(t) in the normal g-2 histogrammed data will contribute to the background �F (t) in

the ratio method by

�F (t) = �Bden(t) �Acos(!at+ �) +Bnum(t) (12)

where Bnum(t) and Bden(t) are as de�ned in Eqs. 3 and 4, respectively. Figure 11 shows a plot

of calculations using Eq. 11 for the case of the background term B(t) = 0:002 � G(t)F(t) for fast
ratation peaks as seen by detector 1. Notice that the �tting error versus �t start time oscillates

at the g-2 frequency, and that the errors are minimized at zero crossings of the g-2 signal. The

preceding calculation gives that for �ll randomization of one detector, the systematic �tting error

is < 0.2 ppm for all start times > 30 �s. For another simple check, the error formula was applied

to detectors on opposite sides of the ring, see Figure 12. As expected, the �tting errors are 180

degrees out of phase.
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Figure 8: The t0stream for �ll randomization over 806 runs. The ranlux sequence with seed 4292730

was used. This is one of the sequences used for �ll randomization of detector 1, g2o� data.
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Figure 10: The fast rotation factor F(t). The envelope of the oscillation was �tted to a third degree

polynomial (red line).
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Figure 11: Systematic �tting error ÆR (ppm) for the case of �ll randomization for one detector

(black). The ratio function R(t) formed using g2o� data (red) is also plotted. Note that the �tting

error versus start time oscillates at the g-2 frequency, and that the error is minimized at zero

crossings of the g-2 function.
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Figure 12: Systematic �tting error ÆR (ppm) for the case of �ll randomization for detectors on

opposite sides of the ring.

To estimate the e�ect of �ll randomization error for 22 detectors, consider the following cal-

culation. For simplicity, neglect the fast rotation envelope A(t) and consider only the sinusoidal

component. Then for all 24 detectors with their g-2 phases aligned,

F(t) = 1

24

24X
i=1

�
1 + 0:002 � cos

�
!frt�

i

24
2�

��
(13)

Since we have only 22 detectors, the sum in Eq. 13 would retain detectors 14 and 8, diametrical

opposites of 2 and 20, respectively,

F(t) = 1 +
1

22
� 0:002 �

�
cos

�
!frt�

14

24
2�

�
+ cos

�
!frt�

8

24
2�)

��
(14)

The sum of the two cosine terms are at most 2 and hence adding the 22 detectors together yield

another factor of � 10 (2/22) in the reduction of the fast rotation structure. Therefore, for �tting

the sum histogram of all 22 detectors together, the error is < 0.2/10 = 0.02 ppm.

Another check of the �ll randomization procedure was the sensitivity of the �tted value of !a
to the fast rotation period. Figure 13 shows plots of the di�erences in the �tted value of R for the

cases of 147.2063 ns and 151.2063 ns compared to the case of 149.2063 ns. The e�ect is about 0.04

ppm over an uncertainty of 4 ns. We certainly know the fast rotation period to better than 0.4 ns,

and hence this e�ect is negligible.

From the preceding analysis, it is then desirable for reducing the systematic �tting uncertainties

due to fast rotation randomization that the sum of all detectors be used to extract the �nal value

of !a, and that the g-2 phases of the detectors should be aligned. It is also known that the

randomization procedure itself introduces a statistical 
uctuation in the �tted value of !a at the

level of about 10% of the statistics. For a goal of 1.3 ppm in !a, I will use six random sequences

so that the uncertainty due to statitiscal 
uctuation is 0.13/
p
6 = 0.05 ppm. Combining the

�tting error with the statistical 
uctuation gives that for �ll randomization, the systematic �tting

uncertainty is 0.06 ppm for the detectors summed and the phases aligned. Note also that choosing

zero crossings of the g-2 signal will make this error nearly zero.
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Figure 13: Systematic �tting error due to uncertainty in the knowledge of the fast rotation period.

Notice that over a range of 4 ns (147�151) in the accuracy of the fast rotation period, the variation

in R is only 0.04 ppm.

4.2 Energy Calibration Shifts (EC)

With an eye toward �tting for the �nal value of !a from the summed histogram of all the detectors,

the function f(t) as �tted from the normalized average energy in Figure 6 will be used to estimate

the e�ect on R of EC shifts within the �ll. The function f(t) is repeated here for reference with all

times in �s.

f(t) =

�
1� 0:00057 � exp

�
� t

82

��
�
 
1 + 0:00036 � exp

 
�
�
t� 31

9:3

�2!!
(15)

To estimate the error in R due to EC changes, a time changing software threshhold was applied

using f(t). Pulses with energy E(t) were replaced by E(t) � f(t) with the two amplitudes 0.00057

and 0.00036 multiplied by 20. The factor of 20 is used so that the software in
ated EC changes

would be larger than that seen in data by a factor of 10; the extra factor of 2 is needed to go from

the average energy (as in Figure 6) to an energy threshhold.

Figures 14 and 15 show plots of the errors in R due to software EC changes having only

the exponential component of f(t) and both the exponential and gaussian components of f(t),

respectively. Notice that there is a phase pulling error at twice g-2 frequency about the zero line of

magnitude < 0.5 ppm for all start times > 30 �s. Note also in Figure 14 that the g-2 zero crossing

at 34 �s actually falls at the peak of the phase pulling error. Using the average energy changes as

seen in Figure 6, then for both the g2o� and G2Too data, the maximal error in R due to EC shifts

in a �ll is 0.5/10 = 0.05 ppm.

Not all the detectors in the analysis experience the same average energy changes, and hence

the question arises as to what the e�ect is when only one or two detectors see large EC changes,

and the rest do not. Figure 16 shows a plot similar to that in Figure 15, but in this case only

detectors 10 and 15 had software in
ated EC changes at 110 times the level seen in data. The EC

averaged over all 22 detectors is as before, 10 times the level seen in data. Note that the phase

pulling error is as before, e.g. 0.3 ppm in amplitude at 40 �s. The systematic shift of 0.2 ppm is
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Figure 14: The error ÆR (ppm) due to a time changing energy threshhold implemented in software

at 10 times the level seen in the data. Only the exponential part of f(t) in Eq. 15 is used. The

vertical line indicates the 34 �s mark, and is a zero crossing of the g-2 function. Note that the

errors shown due to energy calibration changes are actually maximal at zero crossings of the g-2

function.
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Figure 15: The error ÆR (ppm) due to a time changing energy threshhold implemented in software

at 10 times the level seen in the data. Both the gaussian and exponential parts of f(t) in Eq. 15

are used.
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Figure 16: The error ÆR (ppm) due to a time changing energy threshhold implemented in software

at 10 times the level seen in the data. Both the gaussian and exponential parts of f(t) in Eq. 15

are used. However, only two detectors (10 and 15) were a�ected at the level 110 times seen in the

data so that EC changes averaged over 22 detectors is at 10 times the level seen in data.

due to statistical 
uctuations. In particular, the level of 110 times the exponential component in

f(t) is equal to an 8.7% change in the energy threshhold at 30 �s, which is roughly 17% di�erence

in the positron count. Summing over the 22 detectors yield a data overlap of (20 + 2*0.83)/22 =

0.98. Assuming for simplicity that the extra counts have the same asymmetry as the rest, then the

Kawall correlated statistics is 14% of the statistical power in R, 0.14*1.3 = 0.18 ppm.

4.3 Muon Losses

In Ref. [1], it was shown that besides using Eq. 11, the �tting errors ÆR in the ratio method

can also be well estimated by �tting to data simulated without any statistical 
uctuation. This

method will be used in this section to estimate the systematic error due to neglecting the muon

losses term in the ratio �tting procedure. With muon losses, the normal �ve-parameter function

G(t) is modi�ed to G(t) �MUL(t) where

MUL(t) = 1 +Am � e�
t
�m (16)

Figure 25 shows a plot of the errors due to the extra term MUL(t). The input muon losses

parameters used were Am = 0:025 and �m = 27 �s [4]. The 0.01 ppm phase pulling error at later

start times, > 80 �s, is due to neglecting second order terms in the ratio �tting method. The errors

due to the muon losses term cancel the 0.01 ppm errors in the ratio method in the time range

45 � 65�s. For earlier start times, the error due to the muon losses adds to the width of the 0.01

ppm peaks in the ratio �tting error. Clearly, this e�ect is negligible, at about 0.01 ppm.

4.4 AGS Flashlet

The same method used in the last section will again be used in this section to estimate systematic

�tting errors due to the AGS 
ashlets contamination. Simulated data with a 
ashlet/positron level

of 126 ppm, Figure 18, was generated using the time distribution (with t in �s) [9]
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Figure 17: Systematic �tting errors ÆR due to neglecting the muon losses term in the ratio �t. The

input muon losses function is (1 +Am � e�
t
�m ) where Am = 0:025 and �m = 27 �s.

FLA(t) =

 
11:409 � 0:0016947 � t� 0:00053516 � t2

398:982294

!
�MIC(t) (17)

where MIC(t) is the microstructure per AGS cycle having four peaks of varying amplitudes sepa-

rated by 1/6 of an AGS period, and is given by by the following function

MIC(t) = 0:17

i<=51X
i=1

Æ(t� 2:694 � i) + 0:21

i<=51X
i=1

Æ(t� 0:449 � 2:694 � i) +

0:28

i<=51X
i=1

Æ(t� 0:898 � 2:694 � i) + 0:34

i<=51X
i=1

Æ(t � 1:347 � 2:694 � i) (18)

In the presence of the AGS 
ashlets, the observed time spectrum becomes G(t) ! (G(t) +

FLA(t)), where G(t) is the �ve-parameter function. Figure 19 shows the error in R due to the

presence of the extra term FLA(t). Since the integral of the ratio of 
ashlet/positron is increasing

from injection, the error in R is growing as a function of �t start times and is not maximal until

about 80 �s, reaching a value of 0.12 ppm. Figure 20 shows the same plot as in Figure 19 for the

time range 20 � 65 �s. Since the �nal value of R will be quoted for �t start time around 35 �s,

a systematic error of 0.06 ppm per 126 ppm 
ashlet/positron contamination can be quoted. Since

our knowledge of FLA(t) is not exact, a �nal conservative value of 0.10 ppm will be assigned.

4.5 Coherent Betatron Oscillation (CBO)

The same method used in the previous two sections will again be used in this section to estimate

the systematic �tting uncertainty due to neglecting the CBO term in the g-2 time spectrum. The

CBO can be parameterized approximately by

CBO(t) = 1�Ac � e�
�
t
�c

�
2

cos(!ct+ �c) (19)
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Figure 18: Simulated time distribution of the AGS 
ashlets for one of the four ratio subhistograms.

Integrated over all times, the 
ashlet contamination is 126 ppm of the total
�
1
4

�
2� 109 positrons.
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Figure 19: Systematic �tting error ÆR versus �t start time due to AGS 
ashlets. The ratio of


ashlet to positron counts over all time is 126 ppm, and the AGS 
ashlets are parameterized by a

parabolic envelop with four subpeaks per AGS period of 2.694 �s, or frequency of 371 kHz.
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Figure 20: Systematic �tting error ÆR versus �t start time due to AGS 
ashlets. The ratio of


ashlet to positron counts over all time is 126 ppm, and the AGS 
ashlets are parameterized by a

parabolic envelope with four subpeaks per AGS period of 2.694 �s.

I did not myself study the CBO parameters. Rather, I will use values as extracted by Alex [10],

Ac � 0:0028, �c � 132 �s, !c � 470 kHz, (�c � �) � 1:0 rad, and study the ratio �t sensitivity

to changing those parameters. Note that the CBO parameterization here is (1 � Ac) instead of

(1 + Ac) in [10]. This is because I use (1 � A) instead of (1 + A) for the positron time spectrum,

and hence the minus sign is used in Eq. 19 to keep the phase shift value of 1.0 rad.

Figure 21 shows the �tting error due to neglecting the CBO parametization. For all times >

30 �s, the magnitudes of the �tting error is < 0.03 ppm. Note that the simulated CBO magnitude

is more than 3 times larger than that seen in the data, 0.01 compared to 0.0028. Figure 22 shows

the e�ect on the �tting error for the three cases of (�c � �) = 0.0, 1.0, 1.57 radians. Note the

complicated time structure of the oscillations in the �tting errors. The relative CBO phase shift to

g-2 essentially shifts the phase of the �tting error by the same amount. However, the magnitudes

are not a�ected. Figure 23 shows the e�ect on the �tting error for the three cases of �c = 112, 132,

152 �s; the �t error is not sensitive to the CBO time constant. Figure 24 shows the e�ect on the

�tting error for the three cases of !c = 460, 470, 480 kHz. Note that 460 kHz is close to twice g-2,

458.2 kHz. The error in that case is zero from the nature of the ratio formulation shifting things

around by 1/2 g-2 period. However, the CBO amplitude at 480 kHz is about 0.09 ppm, and hence

the �tting error magnitude has a growing dependence on (!c � 2 � !a).
As intuitively expected, the ratio method is a frequency �lter and hence is only sensitive to

the CBO frequency. The CBO frequency is known to about � 2 kHz, and so assuming a linear

interpolation between 470 and 480 kHz gives a value of 0.042 ppm as an estimate of the �tting error

given the uncertainty in the knowledge of !c. For the CBO signal seen in data, the value of 0.014

ppm will then be used (for detectors summed). Like the muon losses error, this e�ect is negligible.

Figure 25 shows the di�erence in the value of R when the detectors are �tted individually and

then averaged versus when the detectors are summed and then �tted. There is an oscillation of

magnitude 0.1 ppm and periodicity� 80 �s, which is near the di�erence (!c�2�!a) (470�2�229:1 =
11:8 kHz ! 4365.4*229.1/11.8 = 84.7 �s). The oscillation looks too regular and is too close to the

expected beat frequency to be interpreted as a statistical 
uctuation. Therefore, this will be added
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Figure 21: Systematic �tting error ÆR due to neglecting the CBO term in the ratio �t. The input

CBO function is (1 � Ac � exp(�(t=�c)2) � cos(!ct+ �c)), where Ac = 0:01, �c = 132 �s, !c = 470

kHz, and (�c��) = 1:0 rad. This CBO amplitude is about three times that seen in the data when

all detectors are summed.
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Figure 22: The e�ect on ÆR of changing the CBO phase for the three cases (�c � �) = 0, 1:0 and

1:57 radians. As in Figure 21, the axes are ÆR (ppm) versus �t start time (ns). The red line is at

34 �s and is at a zero crossing of the g-2 function.
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Figure 23: The e�ect on ÆR of changing �c for the three cases of 112, 132, 152 �s. As in Figure 21,

the axes are ÆR (ppm) versus �t start time (ns). The red line is at 34 �s and is at a zero crossing

of the g-2 function.
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Figure 24: The e�ect on ÆR of changing !c for the three cases of 460 (blue line), 470 (black line)

and 480 (red line) kHz.
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to the systematic error due to the CBO. It is known that in the sum of the detectors, the CBO

signal is reduced by about 1/3 compared to the individual ones. Therefore, an error of 0.05 ppm

will be assigned to this e�ect. The �nal systematic uncertainty for the CBO is then 0.05 ppm.
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Figure 25: The di�erence vs �t start time of R(averaged over all detectors) - R(sum of all detectors).

The error bars plotted are Kawall errors.

4.6 Software Pileup Subtraction (PUS)

Consider �rst the systematic �tting error in the ratio method due to neglecting the pileup term

completely. In this case, the background B(t) is

B(t) = �dNoe
�

2t

�� [1�Ad � cos(!at+ �d)] (20)

where No is the singles normalization constant, �d is the fraction of pileup to singles at time 0, Ad

is the pileup asymmetry, and �d is the pileup phase. Figure 26 shows a plot of the �tting errors as

calculated using Eq. 11 for the case of �d = 0:008, Ad = 0:1, �d = �0:1, A = 0:4 (these input values

were chosen to be close to what Cenap [4] �nds). The values shown in Figure 26 are the expected

�tting errors in R if in the data we have pileup with parameters as given, and the ratio �t was

implemented using the function R(t). To compare this to the case of real data, the following was

done. Values of R from �ts to data without PUS were subtracted from values of R from �ts to data

with PUS, and the results are plotted in Figures 27 and 28, g2o� and G2Too data, respectively.

Note that the error oscillates at twice the g-2 frequency about an o�set that decreases with �t start

time with a time constant of 64 �s. The magnitudes of the error oscillations should scale with the

g2o�/G2Too pulse resolution times of 2.9/5.0. From Figure 27, the magnitude at 30 �s is 0.2 ppm;

from Figure 28, the magnitude at 30 �s is 0.3 ppm.

Figure 29 shows plots of the di�erence dR = R(no PUS and �tted to RK(t)) � R(PUS). The

functionRK(t) has one additional parameter that can account for the pileup fraction and asymmetry

but neglects the phase di�erences between the pileup and singles pulses. In this case the phase

error oscillations are gone, but the o�set is still there. As in the case of the error oscillations, this

error is expected to scale with the pulse resolution time 2.9/5.0 as well. Figure 29 does not show

this. This is probably due to a statistical 
uctuation which is suggested by the "kink" at 80 �s.
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Figure 26: Calculated �tting error ÆR using Eq. 11 for the cae of the neglecting the background

term B(t) = �dNo �exp(� 2t
��
)[1�Ad �cos(!at+�d)] where �d = 0:008, Ad = 0:1, and �d�� = �0:1.
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Figure 27: R (without PUS) � R (with PUS) (g2o� data). This is the �t error in the ratio method

due to completely neglecting the pileup pulses. Note that besides the 0.2 ppm oscillation of twice

g-2 frequency, there is also a systematic o�set of magnitude � 0.3 ppm at 30 �s which decreases

with roughly a 64 �s time constant.
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Figure 28: R (without PUS) � R (with PUS) (G2Too data). This is the �t error in the ratio

method due to completely neglecting the pileup pulses. Note that besides the 0.3 ppm oscillation

of twice g-2 frequency, there is also a systematic o�set of magnitude � 0.3 ppm at 30 �s which

decreases with roughly a 64 �s time constant.
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Figure 29: The quantity dR = R (no PUS �tted using RK(t)) � R (PUS). This is the �t error in

the ratio method due to neglecting the phase di�erence between the pileup and singles pulses.
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This method of software PUS using shadow pulses is complete to about 90% [4]. Therefore, for

estimates of the error due to PUS, a factor of 0.1 times the values as given in Figures 27� 29 can

be used. For g2o� data at times > 30 �s, the error o�set is 0.4 ppm (this value is extrapolated

from 0.3 ppm at 40 �s), plus the oscillation magnitude of 0.2 ppm gives 0.6 ppm. Scaling by 5/3

gives 1.0 ppm for G2Too. Therefore, the �nal estimates for the systematic uncertainty due to PUS

is 0.06 ppm (g2o�) and 0.1 ppm (G2Too).

4.7 Summary of Systematic Uncertainties

Table 1 below summarizes the results of the systematic �ting uncertainties relating to the ratio

�tting procedure as discussed in Sections 4:1 � 4:6. The correlations between the various e�ects

as studied are small. For example, the energy calibration is a�ected by the fast rotation, but in

both the macroscopic and microscopic methods, the e�ects of the fast rotation are subtracted out

to a large extent. For another example, the PUS is a�ected by the energy calibration. However,

this is small since pileup only accounts about 1% of the pulses and so an error of 0.1% in the

average energy a�ects the total data at the level of 0.01*0.001. The AGS 
ashlets of course don't

care about any other thing. The next possible correlation among the various systematic errors is

in their correlations to the g-2 phase. For example, the �tting error due to EC shifts are known

exactly to oscillate at twice g-2 and is at its maximum at 34 �s. Column 3 in Table 1 lists the

sign, if known, of the �tting error at the start time of 34 �s. The STAT status of the fast rotation

is due to the statistical 
uctuation from the 6 random sequences. The STAT status of the �tting

method error was already explained in Section 2.1; the actual error due to neglecting higher order

terms in the �tting method itself was shown to be at only 0.01 ppm [1]. Considering the two STAT

errors and the nearly equal magnitudes of + and - errors give reason to add the systematic errors

in quadrature giving �nal values of 0.17 ppm (g2o�) and 0.19 ppm (G2Too). The uncertainty

estimates for the double CBO and vertical waist will be considered in Section 5.5 on �t residuals.

Table 1: The division of systematic �tting uncertainties for the ratio method. The values are

applicable for all start times > 30 �s (except the AGS 
ashlet which is limited to start times <

50 �s as well). The SIGN of the error at 34 �s is denoted if it is known in the last column. The

STAT in the last column denotes that the uncertainty itself is dominated by statistics.

EFFECT ÆR (ppm) SIGN

Fitting/binned data 0.05 STAT

Fast rotation randomization 0.06 STAT

(six random sequences)

Energy calibration shifts 0.05 +

Muon losses 0.01 (negligible)

AGS 
ashlets (126 ppm) 0.10 UNKNOWN

CBO 0.05 +

Double CBO 0.01 (negligible)

Vertical Waist 0.02 UNKNOWN

Pileup subtraction 0.06 (g2o�) -

0.10 (G2Too)

TOTAL 0.17 (g2o�)

(added in quadrature) 0.19 (G2Too)
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5 Fit Results

In this section �t results using the ratio method for both g2o� and G2Too will be presented. In

Section 4 it was shown that the systematic uncertainies can be made smaller by summing the

22 detectors together. Therefore, this section will focus mainly on �t results for the detectors

summed (�t results versus start time for the individual detectors are attached at the end of the

report). For all the results to be presented, both �ll randomization, with fast rotation periods of

149.1202 ns (g2o�) and 149.2063 ns (G2Too), and pileup subtraction were applied to the data.

Hence �tting with the ratio method requires only the three parameters (A;!a; �) or (A;R; �). In

all time histograms, bins of width 149.185 ns were used, and all �ts had a stop time of 500 �s.

This earlier stop time was needed to ensure gaussian statitics for all time bins included in the �t

since to implement the ratio method, the positron data had to be divided into four subsets. Apart

from section 5.4, all results are for the case of a 2.0 GeV lower energy cut and no upper energy

cut. Finally, results of �ts to simulated data will also be presented as a reference in helping judge

the "goodness of �t".

5.1 Detector Variations

In this section �t results for the individual detectors for mostly the start time of 34 �s will be

presented. In all results, the average over the six random sequences were taken.

The g-2 phases of all the detectors were aligned as follows. For about 80% of the runs, the data

for each detector were �tted, and the values of � at 40 �s were used as the phase o�sets for the

�nal histogramming of 100% of the 1999 data. Figure 30 shows plots of the �tted values of � versus

detectors at 40 and 34 �s. The detectors are aligned to � 2 mrad which is � 1.4 ns. This alignment

is 1.4/150 = 1% of the fast rotation period and is good enough for the purposes of minimizing the

fast rotation systematic error.

Figure 31 shows the �tted values of R at 34 �s for both the g2o� and G2Too data as well as the

di�erences versus detector. For g2o�, the R values averaged over all detectors is 143:44� 1:27 ppm

with �2=ndf = 1:25� 0:31, and for G2Too 143:11� 1:28 ppm with �2=ndf = 1:06� 0:31. Notice in

Figure 31 (bottom) that assuming Fred's data overlap estimate of 0.327*�R holds for all the 1999

data, then the di�erences seen between the g2o� and G2Too data are consistent with statistical


uctations, dR = 0:32 � 0:42 ppm with �
2
=ndf = 1:15 � 0:31.

Figure 32 shows the �2=ndf for �ts to the individual detectors. For both data sets, the �2=ndf

averaged over the detectors are 1:006 � 0:005. However, the G2Too spread is better, having a �t

�
2
=ndf to a constant of 0:87�0:31, whereas for g2o� data, the same value is only 0:29�0:31. This

value of 0.29 is (1 � 0:29)=0:31 = 2:3 sigmas from one, only a 2.8% probability! Figure 33 shows

the �tted asymmetries versus detectors; the agreement between g2o� and G2Too data is good.

5.2 Start Time Variations

In this section the results of �ts for the sum of all the detectors averaged over the six random

sequences will be presented. For organizational clarity the more detailed question of "goodness of

�t" will be addressed in the next section.

Figure 34 shows a plot of the values of R versus start time for �ts to the sum of all the detectors,

and Figure 35 shows the other �t parameters, A and �, as well as the �t �2=ndf . Note in Figure 34

that the R values of 143.37 and 143.03 are to be compared to the corresponding values of 143.44

and 143.11 in Figure 31. This di�erence was already discussed in Section 4.5 (CBO). The di�erence

of 0.0004 in the asymmetries between g2o� and G2Too is probably due to the di�erent endpoint

values of 3.09 and 3.10 GeV. The same physical point called 3.09 would result in slightly higher

asymmetry positrons when the same software cut of 2.0 GeV is used. For both g2o� and G2Too,
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Figure 30: � versus detectors at 40 �s �t start time (top) and at 34 �s �t start time (bottom).

The initial alignment of the g-2 phases were done at 40 �s using about 80% of all the 1999 data,

and hence the alignment is better at 40 �s then at 34 �s.
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Figure 31: R versus detector at 34 �s �t start time (top). The di�erences between the g2o� and

G2Too R values are shown in the bottom plot. The error bars plotted with the di�erences in the

bottom plot are the statistics of the �ts from the top plot multiplied by 0.327. This value is Fred

Gray's estimate for the allowed data overlap variation between g2o� and G2Too using run 4330.
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Figure 32: �2=ndf versus detector at the �t start time of 34 �s. Note that both g2o� and G2Too

distributions have means 1:006� 0:005. The error bars plotted with the �2=ndf values were calcu-

lated using
p
2=ndf which is

p
2=(3352 � 228 + 1� 3) = 0:024 for the start time 34 �s (bin 228)

and stop time 500 �s (bin 3352).
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Figure 33: Asymmetry versus detector at the �t start time of 34 �s.
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Figure 34: R versus �t start time. The correlated statistics bands were calculated in the usual

way �cor =
p
�R(t)2 � �R(33:94 �s)2. The R values at 33.94 �s are 143:37� 1:28 ppm (g2o�) and

143:03 � 1:28 ppm (G2Too).
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Figure 35: A, �, and �2=ndf versus start time for �ts to the sum of all detectors. The R values are

given in Figure 34. The �2=ndf at 34 �s are 1:004 � 0:025 (g2o�) and 0:986 � 0:025 (G2Too).
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the �t �2=ndf 's are consistent with one and are not seen to change with start time beginning at 30

�s.

5.3 Goodness of Fit and Correlated Statistics

In this section the issue of "goodness of �t" for results presented in the previous two sections will

be addressed. In particular, the behavior of �2=ndf and �t parameters versus start time, and

the behavior of the correlated (or Kawall) statistics will be studied. To aid in understanding the

behavior of �t results versus start time for the ratio method, 60 sets of data were simulated and

�tted. The data had time bins of width 149.185 ns, the input parameters were �� = 64:4 �s,

A = 0:36, �a = 4:366 �s, � = 0, and the total number of positrons was 2 � 109 per set. These

parameters give a �t statistical power of 1.24 ppm for the time range of 34� 500 �s. The �ts were

implemented beginning at time bin 168 (25 �s), skipping every two bins until bin 1100 (160 �s).

Note in Figure 35 that the �2=ndf for the g2o� data have seemingly sudden jumps at 70 and

95 �s. However, Figure 36 shows that this behavior is not unexpected even for �tting perfectly

simulated data, see the �2=ndf for data set 4 at 75 �s. Furthermore, note that for data sets 5 and

6, the �t �2=ndf actually moves by quite a bit versus start time. However, a "
at" �2=ndf is the

typical case. Therefore, the �t �2=ndf seen in Figure 35 are acceptable. For comparison the �t

�
2
=ndf for the case of no pileup subtraction for g2o� data is plotted in Figure 37.

Figure 38 shows plots for the �tted R values corresponding to the �2=ndf in Figure 36. Note

that for data sets 1, 2, 3 and 8, the values of R versus start time actually move outside the correlated

statistics (CS) bands for � 20 �s after the point at 34 �s. The R values then return back inside

the CS bands and may also venture outside the CS bands at later times, sets 2, 6 and 7. Therefore,

comparing the R values in Figure 34 to those in Figure 38 shows that R values for both g2o� and

G2Too behave acceptably versus start time.

Besides the �2=ndf and R versus start time checks, a more quantitative check of the �t param-

eters versus start time can be conducted, namely checking the distribution of values DP that can

be called the "correlated di�erences"

DP =
P (t2)� P (t1)

CSP
=

P (t2)� P (t1)p
�P (t2)2 � �P (t1)2

(21)

where the subscript P represents any of the �t parameters and CSP is the "correlated" or Kawall

statistics. In the present situation, t2 > t1, and therefore the �tted value of P for the start time

t2 will have come from data that is a complete subset of the data giving the �tted value of P at

start time t1. We've always assumed this distribution to be a gaussian centered at zero with a

width of one. However, recent and ongoing analytical studies by Ernst Sichterman, Mario Deile

and Sergei Redin have shown that for the multiparameter �t, the distribution DP is non-gaussian

for times t1 and t2 that are successive in time bins, i.e. (t2 � t1) = 149:185 ns for time bins of

width 149.185 ns. I expect that the ratio method should behave in the same manner. I myself have

not had time to analytically examine what the exact distribution of DP is for the ratio method

for (t2 � t1) = 149:185 ns. However, I have found in the �ts to the 60 sets of simulated data that

for times (t2 � t1) = 2 � 149:184 ns, the distributions DP happen to be gaussian centered at zero

with widths very close to 1, see Figure 39. Therefore, this result can be used as a means to check

the "goodness of �t" versus start time for the �ts thus far presented. To be absolutely clear, the

distributions in Figure 39 can be written in the following way

DP =
1100�2X

i=228 (even i)

P (ti+2)� P (ti)p
�P (ti+2)2 � �P (ti)2

(22)

where i is the bin number at which the �t was started, and ti = (i� 1) � 149:185 + 74:5925 ns.
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Figure 36: �2=ndf for �ts to eight sets of data simulated to have a statistical power of 1.24 ppm at

34 �s start time (the �t stop time was 500 �s). The time axes are in ns.
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Figure 37: �2=ndf for the cases of PUS (red) versus no PUS (green) for g2o� data.

One comment should be made regarding �ll randomization. For the previous checks "by eye" of

the behavior of �2=ndf and R versus start time, it is okay to average over the six random sequences.

However, for the more rigorous quantitative check using the correlated di�erences, the same would

not apply since the averaging procedure over the six random sequences would add correlations due

to the shifting around of the same positrons six times. Therefore, only one random sequence should

be used at a time when constructing the correlated di�erences.

To check whether the distributions DP constructed from �ts to real data are gaussian or not,

it is not exactly correct to require these distributions to be gaussian functions with means zero

and widths equalling one. Figure 40 shows what happens. The following was done. Each of the

60 distributions DP constructed from �ts to simulated data were individually �tted to a gaussian

function, and the �tted means and widths were used to �ll a histogram. For the same distributions,

the mean and rms values were also calculated. Keep in mind that the original distribution from

which the 60 sets was drawn is gaussian, and hence the calculated means and rms correctly describe

the properties of DP . Notice in Figure 40 that the �tted means remain clustered around zero, but

the �tted widths have moved to about 0.97. This is probably due to the missing tails when the

distributions are statistics limited. Therefore, one way to test the goodness of the distributions DP
would be to �t them to a gaussian function and require that the mean be zero and the widths be

about 0.97. I have chosen to do something di�erent. Since I have the properties of the distributions

DP themselves from simulated data (as in Figure 40), I will directly compare the same properties

from real data to those as a measure of goodness of �ts to the real data. Figures 41; 42; 43 show the

comparisons for the ratio �t parameters A;R; �, respectively. The six random sequences are entered

as six entries. Fits to both g2o� and G2Too data are consistent with the expected distributions

as seen from �ts to simulated data. Since the simulated data was in the form of a �ve-parameter

function G(t) transformed into the ratio three-parameter function R(t), this test shows that the

�ts to data are not di�erent from the form R(t) for both g2o� and G2Too. As a �nal check the

distribution DR is calculated using Eq. 22 but this time beginning at bin 229 instead of 228. The

result is shown in Figure 44. The mean and width properties are similar to those of the distributions

for using Eq. 22 starting at bin 228.

A natural question arises as to the sensitivity of the above test. Figures 45 and 46 show the

comparison of the distribution parameters DA and DR for g2o� data with pileup subtraction and
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Figure 38: R values for eight sets of data simulated to have a statistical power of 1.24 ppm at

34 �s start time (the �t stop time was 500 �s). The time axes are in ns. The input !a value is

100 ppm in the plots (red line). The correlated statistical bands are calculated in the usual way

�cor =
p
�R(t)2 � �R(33:94 �s)2
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Figure 39: Distributions of values DP = (P (t2) � P (t1))=
p
�P (t2)2 � �P (t1)2 for the ratio �t

parameters P = (A;R; �) in the case of �tting to 60 sets of simulated data. The correlated

di�erences DP between start times separated by 2*149.185 ns were calculated for the start time

range 34� 160 �s.
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Figure 40: Properties of the distributions DA and DR for the 60 sets of simulated data. In the

left column, the mean and rms values are calculated and plotted. In the right column, the mean

and width values as returned by �tting to a gaussian function are plotted. The abscissa are either

the mean or width of the correlated di�erences distributions DA or DR. Notice that if a �t to a

gaussian function is used, then the returned means are expected to be distributed about 0, but the

returned widths are expected to be distributed about roughly 0.97 and not 1.
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Figure 41: Properties of the distributionDA for the ratio �t asymmetry parameter constructed from

�ts to data compared to the same properties constructed from �ts to 60 sets of simulated data.

As usual, the red is g2o� and blue is G2Too. The six random sequences are shown as individual

entries.
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Figure 42: Properties of the distribution DR for the ratio �t R parameter constructed from �ts to

data compared to the same properties constructed from �ts to 60 sets of simulated data. As usual,

the red is g2o� and blue is G2Too. The six random sequences are shown as individual entries.
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Figure 43: Properties of the distribution D� for the ratio �t � parameter constructed from �ts to

data compared to the same properties constructed from �ts to 60 sets of simulated data. As usual,

the red is g2o� and blue is G2Too. The six random sequences are shown as individual entries.
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Figure 44: Properties of the distribution DR for the ratio �t R parameter constructed from �ts to

data compared to the same properties constructed from �ts to 60 sets of simulated data. As usual,

the red is g2o� and blue is G2Too. The six random sequences are shown as individual entries. The

distribution DR whose properties are shown here are di�erent from the ones shown in Figure 42 in

that the sum in Eq. 22 was started at bin 229 instead of at 228.
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Figure 45: Properties of the distributionDA for the ratio �t asymmetry parameter constructed from

�ts to data compared to the same properties constructed from �ts to 60 sets of simulated data.

The red is g2o� with pileup subtraction, and the green is also g2o� but with no pileup subtraction.

Both data sets were �tted to the three- parameter ratio function R(t). The six random sequences

are shown as individual entries.
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Figure 46: Properties of the distributionDR for the ratio �t asymmetry parameter constructed from

�ts to data compared to the same properties constructed from �ts to 60 sets of simulated data.

The red is g2o� with pileup subtraction, and the green is also g2o� but with no pileup subtraction.

Both data sets were �tted to the three- parameter ratio function R(t). The six random sequences

are shown as individual entries.
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without pileup subtraction. Without pileup subtraction there is an 0.2 ppm oscillation in the �tted

value of R as well as a systematic o�set of about �0:3 ppm, Figure 27. Figure 46 shows that the 0.2

ppm oscillation shows up as a width in DR that is on the edges of the distribution, about 1.1, but

no discernable e�ect on the mean is seen due to the 0.3 ppm o�set. The telltale sign in this case is

however the large asymmetry mean of 0.3, more than 3 sigmas o� from the expected distribution

(this would probably have also been the case for G2Too (OLD) milli�t pulse reconstruction). So

the �2=ndf test, Figure 37, and this test would disprove that the data without pileup subtraction

can be �tted in the ratio formulation to the three-parameter function R(t). This is already known,

but I think it is nice to see that the necessary tests which we do have would have shown this to be

the case.

To summarize, the �2=ndf and �t parameters versus start times were checked both "by eye" and

by the more quantitative correlated di�erences distributions. The �t results are not inconsistent

with the expected functional R(t).

5.4 Energy Variations

In this short section the �t results versus energy threshhold will be presented. Only G2Too data

for one random sequence was studied.

Figure 47 shows �t results at 34 �s start time versus the lower energy threshold for the energy

range of 2:0 � 2:6 GeV, stepping by 0.05 GeV. As is seen in Figure 47 (top), the changes in R

with energy threshold is not inconsistent with the expected 
uctuations as given by the correlated

statistics bands. The R value in Figure 47 at 2.0 GeV cut is 142:71 � 1:28 ppm. The statistical

deviation from this value to the value as given in Figure 34 is 0.15*�R = 0.19 ppm (the 15% is due

to both the �ll randomization sequence and the randomization sequence used to �ll the four ratio

subhistograms), a 1.7 sigma deviation. A and � are expected to vary with energy, and hence no

statistical check is made. Figures 48 and 49 show the same plots as in Figure 47, but for the cases

of start times 40 and 45 �s, respectively. The dependence of the R value on energy threshold is

again not inconsistent with statistical 
uctuations.

5.5 Fit Residuals and the Double CBO/Vertical Waist

In this section, the �t residuals will be studied for the case of summing the 22 detectors together.

The focus, as in Section 5.3, is to consider the "goodnes of �t", in this case using the tool of the

Fourier transform.

In the case of histogram counts, the data Ni can be directly Fourier transformed for frequency

content. In that case,the variance in a time bin i is �2
i
= Ni, the number of positrons in that bin.

Taking this as a guide, then the ratio histograms, being just a pure cosine, should be weighed by

�
2
R
to obtain the frequency content where

�
2
R =

1�R
2(i)

u(i) + v(i)
� 1�R

2(i)

4Noe
�

t
��

(23)

See [1] for more details on the functions u(i) and v(i). For the present situation, it's enough to

note that this weighing accounts for the more numerous positrons at earlier times as well as the

di�erential positron counts from the g-2 oscillation, R2 � A
2
cos

2.

Figure 50 shows the di�erences between taking the Fourier transform of Ri alone versus Ri=�
2
R
.

The Fourier transform for the data Ni is also included for comparison. Notice that at the g-2

frequency, the frequency amplitude due to the muon decay exponential is reduced by a factor of 3

for the ratio time histogram, hence the reduced sensitivity of the ratio method to backgrounds that

a�ect the 64.4 �s exponential such as energy calibration changes (see for example Alex's �ts for

detector 1 showing that without energy scale correction, the �tted value of R has a phase pulling

error of magnitude about 5 ppm where as for the ratio �ts attached at the end of the note, the
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Figure 47: Fit parameters versus energy threshold for one random sequence for G2Too data at start

time 34 �s. The open red squares were calculated using �2
cor

= (�22��21), and the closed red squares

were calculated using �2
cor = (�22 � �

2
1) �

�
2A1

A2
cos(�1 � �2)� 1

�
(suggested by Sergei Redin [11]).

�1 is the statistical uncertainty in R at energy threshold 2.0 GeV and �2 the corresponding value

for the varying energy thresholds 2:0� 2:6 GeV, (A1 �1), (A2 �2) the corresponding �t paramters.
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Figure 48: Fit parameters versus energy threshold for one random sequence for G2Too data at start

time 40 �s. The open red squares were calculated using �2
cor

= (�22��21), and the closed red squares

were calculated using �2
cor = (�22 � �

2
1) �

�
2A1

A2
cos(�1 � �2)� 1

�
(suggested by Sergei Redin [11]).

�1 is the statistical uncertainty in R at energy threshold 2.0 GeV and �2 the corresponding value

for the varying energy thresholds 2:0� 2:6 GeV, (A1 �1), (A2 �2) the corresponding �t paramters.
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Figure 49: Fit parameters versus energy threshold for one random sequence for G2Too data at start

time 45 �s. The open red squares were calculated using �2
cor

= (�22��21), and the closed red squares

were calculated using �2
cor = (�22 � �

2
1) �

�
2A1

A2
cos(�1 � �2)� 1

�
(suggested by Sergei Redin [11]).

�1 is the statistical uncertainty in R at energy threshold 2.0 GeV and �2 the corresponding value

for the varying energy thresholds 2:0� 2:6 GeV, (A1 �1), (A2 �2) the corresponding �t paramters.

47



0 0.02 0.04 0.06 0.08 0.1

-2x100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
FFT of Ratio Data (no weighing)

0 0.02 0.04 0.06 0.08 0.1

-2x100

2000

4000

6000

8000

10000

1x10
FFT of Ratio Data (variance-weighed)

0 0.02 0.04 0.06 0.08 0.1

-2x100

2000

4000

6000

8000

10000

1
x10

FFT of normal g-2 Data

0 0.02 0.04 0.06 0.08 0.1

-2x100

2000

4000

6000

8000

10000

12000

frequency (1/ns)

FF
T 

am
pl

itu
de

Figure 50: Fourier transform signals of the normal time histograms and of the ratio time histograms,

G2Too data. The three smaller plots on top show that with the variance weighing e�ected, the

FFT signal of the ratio time histogram produces a similar amplitude signal as the FFT of the

normal time histogram. The lower plot shows the FFT signals of the normal and variance-weighed

ratio time histograms for the amplitude range 0� 12000. The red lines are at the three frequencies

fa = 229:1 kHz, 2 � fa and 3 � fa; the black line is at the CBO frequency fc = 470 kHz. The

shaded region is the FFT signal of the ratio time histogram, the unshaded region of the normal

time histogram.
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phase pulling error is only about 1 ppm). Note also that due to the 1/2 g-2 period shifting, there

is a peak in the ratio FFT signal at three times g-2 frequency, and that the CBO signal is not seen

at all in the ratio FFT signal.

In the case of the �t residuals, the quantity � = (Ri � R(i))=�R itself is the more appropriate

quantity to Fourier transform since were're interested in the frequency components that are above

those accompanying the statistical 
uctuations themselves. Figure 51 shows the FFT of � for �t

residuals to simulated data, g2o� data, and G2Too data. Figure 52 shows the same plots as in

Figure 51, but now zoomed into the region around the g-2 frequency. No apparent peaks are seen

above the noise 
uctuations.

For curiosity sake, consider the following question: if no frequency peaks are seen above the

noise level, then what is the order of magnitude of the error that the �ts can incur if the background

is CBO-like, i.e. relating to beam dynamics. To answer this question and understand better the

errors associated with the ratio method, the following was done. The CBO function

CBO(t) = 1�Ac � e�(
t
�c
)2 � cos(!ct+ �c) (24)

was used to simulate data which was then �tted, and the maximum error in the �tted value of R

in the start time range 25 � 45 �s was found as a function of the CBO frequency !c in the range

0 � 3 MHz. This method of estimating the �tting error due to the CBO background is exactly

the same as that used in Section 4.5. The input CBO parameters were Ac = 0:008, �c = 132 �s,

and �c � � = 1:0. Figure 53 shows the magnitude of the �t error as a function of !c. This CBO

magnitude is about 0.008/0.4 = 20000 ppm of the g-2 signal. Notice that for even multiples of

the g-2 frequency, the errors are zero, and for odd multiples, the errors are maximal, with those

maximal values decreasing for increasing !c. For the vertical waist frequency of 1.7 MHz, the error

is 0.5 ppm from Figure 53. From Figure 51, the background 
uctuations are about 0.06 on that

scale. For the same �R weighing in the FFT of the the ratio time signal (Ri=�R), the value of the

g-2 peak is more than 120, which gives 0.06/120 = 500 ppm. Taking the ratio of 500/20000 then

gives a value of 0.013 ppm for this frequency component if it had the functional form of the CBO.

After the last g-2 collaboration meeting, Jan 11 � 12, I also checked what the error would be for

the case of a shorter �c � 10 �s. In that case, the error was slightly larger but still less than 0.02

ppm. Hence the error for the vertical waist is set at 0.02 ppm in the systematic uncertainties table

in Section 4.7. In the same manner, the systematic error for the double CBO is set at 0.01 ppm.

Figure 54 shows the FFT signal for the normal g-2 time histgram for G2Too when all the detectors

are summed. Notice that the vertical waist signal there is very small.

5.6 Statistical Properties of Fits to Individual Detectors

I had originally intended to not present detailed results for �ts to the individual detectors because

the �nal results were extracted from the sum histogram. It was enough to check that the �tted values

of R across the detectors were not statistically inconsistent. However, in light of the "contiguous

detector e�ect", I will add this following subsection detailing some statistical checks of �ts to the

individual detectors.

Figure 55 shows the "contiguous detector e�ect". Detectors which are grouped in contiguous

halves of the g-2 ring, such as 1� 12, see movements in R which are seemingly large compared to

the correlated statistics bands. Breaking the g-2 ring up into odd-even detectors for example do

not show this e�ect. The question is then are we seeing an e�ect which is not statistical in nature?

Figure 56 shows plots of the properties of the distributions DR and DA for the 22 individual

detectors, g2o� data for one random sequence. The �tted means, widths, and �t �2=ndf was

evaluated using exactly the same algorithm as outlined in Section 5.3. Figure 57 shows the same

plots as in Figure 6 for G2Too data. Figures 56 and 57 show no discernible di�erences in the

statistical properties of detectors 1�12 compared to detectors 13�24. Figures 56 and 57 also show
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Figure 51: The FFT of � = (Ri � R(i))=�R for �ts to two of the 60 sets of simulated data (top),

two random number sequences of the g2o� data (middle) and two random number sequences of

the G2Too data (bottom). The three green lines are the g-2 frequency at 229.1 kHz, the CBO

frequency at 470 kHz, and the vertical waist frequency at 1700 kHz. The vertical axis is the FFT

amplitude, and the horizontal axis is frequency in (1/ns). No apparent frequency peaks are seen

above the noise level in the �t residuals for both g2o� and G2Too data.
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Figure 52: A zoomed in view around the region of the g-2 frequency of the FFT of � = (Ri �
R(i))=�R for �ts to two of the 60 sets of simulated data (top), two random number sequences of the

g2o� data (middle) and two random number sequences of the G2Too data (bottom). The green line

is at the g-2 frequency of 229.1 kHz. The vertical axis is the FFT amplitude and, the horizontal

axis is frequency in (1/ns).
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Figure 54: The frequency content of the normal g-2 time histogram for G2Too for all detectors

summed. Notice that the CBO signal is about 200 above the exponential background where as the

vertical waist at 1.7 MHz is hardly noticeable.
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Figure 55: R averaged over the two groups of detectors 1� 12 and 13� 24 (top), and R averaged

over the two groups (odd) and (even) (bottom). The middle plot shows the di�erences between the

two R values in the top plot. Notice that there is quite a bit of movement in the R values versus

start time for the group of detectors 1 � 12. This is G2Too data averaged over the six random

sequences.
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Figure 56: Properties of the correlated di�erences distributionsDR and DA for �ts to the individual

detectors for g2o� data, one random sequence. The green entries are for detectors 1� 12 and the

red entries are for detectors 13� 24. The black lines are the properties of the 60 sets of simulated

data.
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Figure 57: Properties of the correlated di�erences distributionsDR and DA for �ts to the individual

detectors for G2Too data, one random sequence. The green entries are for detectors 1� 12 and the

blue entries are for detectors 13� 24. The black lines are the properties of the 60 sets of simulated

data.
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that �ts to the individual detectors are not inconsistent with what's expected when the function is

the ratio three-parameter function R(t).

Figures 58 and 59 show the distributions DP for P = (A;R; �) for g2o� data and one random

sequence for the two detector groups 1�12 and 13�24, respectively. For both detector groups, the

distributions DP are not inconsistent with gaussian functions. The width of DR for group 1� 12 is

larger at 1:02�0:01 compared to 1:00�0:01 for group 13�24. The two means are 0:006�0:015 and

0:009� 0:015. In this comparison, no systematic drift up/down of the R values versus start time is

seen, and the larger swing of R for group 1�12 produces a bigger width in DR, 1.02. However, this
is not inconsistent with statistics, especially when considered together with the width distributions

in Figure 56.

In summary, the statistical checks using the correlated di�erences distribution for the individual

detectors show that the "contiguous detector e�ect" is not inconsistent with statistical 
uctuations.

6 Summary and Conclusion

In this behemoth of a note, an !a analysis of the 1999 data using both the g2o� and G2Too WFD

pulse reconstructions in conjuction with the methods of �ll randomization, pileup subtraction and

the ratio method was conducted. All the known systematic uncertainties were considered and the

dominant ones listed in Table 1. The �t results versus detectors, start times, energy threshholds,

etc. were studied and found to be statistically consistent. The one notable statistically unlikely

result which was found was that for the g2o� data, the �t �2=ndf distribution across the detectors

was extremely clusted around 1.006, a 2.3 sigma e�ect (Section 5.1). In light of all the numerous

(I assure you of the order of 100's) other tests which were conducted, however, this is not a major

concern. In conclusion then I would quote that the �nal values of R from the ratio method analysis

for g2o� is 143:37 � 1:28 � 0:17 ppm, and for G2Too 143:03 � 1:28 � 0:19 ppm (with o�set).

These values were gotten by �tting the summed histograms of all 22 detectors (1 � 24 w/o 2 and

20) for the time interval 34 � 500 �s, averaged over six random sequences. The start time of 34

�s used was simply to maximize statistics. The latest detectors gated on were about 30 �s after

injection. Giving about 1 �s for the PMT's to recover from the gating would go to about 31 �s.

However, the ratio method requires shifting the data by � 2:183 �s, and hence the nice round

number of 34 �s was used. This start time is at a zero crossing of the g-2 signal.

References

[1] Long Duong, "The Ratio (Orlov-Kindem) Method", g-2 Note 366, August 23, 2000.

[2] Vanya Logashenko, "Shapes of WFD Pulses and the FIT Pulse Finding Algorithm", g-2 Note

369, September 13, 2000.

[3] Fred Gray and Gerco Onderwater, "Love and Death on Long Islands", a writeup on the G2Too

pulse �tting.

[4] Cenap Ozben's !a report.

[5] Gerco Onderwater's !a report.

[6] Cenap Ozben and Yannis Semertzidis, "Removing the Fast Rotation from the Data", g-2 Note

331, July 31, 2000.

[7] Cenap Ozben and Yannis Semertzidis, "Eliminating Pile-up from the g-2 Data", g-2 Note 365,

July 31, 2000.

56



-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

Asymmetry Correlated Differences Chi2 / ndf = 55.61 / 41
p0       = 302.2 +- 5.347 
p1       = 0.01847 +- 0.0147 
p2       = 1.002 +- 0.01022 

Asymmetry Correlated Differences Chi2 / ndf = 55.61 / 41
p0       = 302.2 +- 5.347 
p1       = 0.01847 +- 0.0147 
p2       = 1.002 +- 0.01022 

-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

R Correlated Differences Chi2 / ndf = 47.63 / 45
p0       = 294.7 +- 5.391 
p1       = 0.005539 +- 0.01497 
p2       = 1.022 +- 0.01137 

R Correlated Differences Chi2 / ndf = 47.63 / 45
p0       = 294.7 +- 5.391 
p1       = 0.005539 +- 0.01497 
p2       = 1.022 +- 0.01137 

-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

Phase Correlated Differences Chi2 / ndf = 50.97 / 47
p0       = 295.8 +- 5.363 
p1       = 0.006205 +- 0.0149 
p2       = 1.019 +- 0.01103 

Phase Correlated Differences Chi2 / ndf = 50.97 / 47
p0       = 295.8 +- 5.363 
p1       = 0.006205 +- 0.0149 
p2       = 1.019 +- 0.01103 

Figure 58: Distribution of values DP = (P (t2) � P (t1))=
p
�P (t2)2 � �P (t1)2 for the ratio �t pa-

rameters (A;R; �) in the case of �tting individual detectors for detectors 1 � 12. The correlated

di�erences DP between start times separated by 2*149.185 ns were calculated for the start time

range 34� 160 �s. G2o� data for one random sequence was used.
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Figure 59: Distribution of values DP = (P (t2) � P (t1))=
p
�P (t2)2 � �P (t1)2 for the ratio �t pa-

rameters (A;R; �) in the case of �tting individual detectors for detectors 13 � 24. The correlated

di�erences DP between start times separated by 2*149.185 ns were calculated for the start time

range 34� 160 �s. G2o� data for one random sequence was used.
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Figure 60: Fit paramters for detector 1 and 3. As usual, R is in ppm and times in ns.
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Figure 61: Fit paramters for detector 4 and 5. As usual, R is in ppm and times in ns.
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Figure 62: Fit paramters for detector 6 and 7. As usual, R is in ppm and times in ns.

62



200 400 600 800 1000 1200

2x100.3755

0.376

0.3765

0.377

0.3775

0.378

0.3785

0.379

0.3795

Asymmetry (Det 08)Asymmetry (Det 08)

200 400 600 800 1000 1200

2x10110

120

130

140

150

160

170

R (Det 08)R (Det 08)

200 400 600 800 1000 1200

2x100.373

0.3735

0.374

0.3745

0.375

0.3755

0.376

0.3765

0.377

0.3775

Asymmetry (Det 08)Asymmetry (Det 08)

200 400 600 800 1000 1200

2x100.9

0.95

1

1.05

1.1

Chisq/NDF (Det 08)Chisq/NDF (Det 08)

200 400 600 800 1000 1200

2x100.3705

0.371

0.3715

0.372

0.3725

0.373

0.3735

0.374

0.3745

Asymmetry (Det 09)Asymmetry (Det 09)

200 400 600 800 1000 1200

2x10

120

130

140

150

160

170

R (Det 09)R (Det 09)

200 400 600 800 1000 1200

2x100.371

0.3715

0.372

0.3725

0.373

0.3735

0.374

0.3745

0.375

Asymmetry (Det 09)Asymmetry (Det 09)

200 400 600 800 1000 1200

2x100.9

0.95

1

1.05

1.1

Chisq/NDF (Det 09)Chisq/NDF (Det 09)

Figure 63: Fit paramters for detector 8 and 9. As usual, R is in ppm and times in ns.
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Figure 64: Fit paramters for detector 10 and 11. As usual, R is in ppm and times in ns.
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Figure 65: Fit paramters for detector 12 and 13. As usual, R is in ppm and times in ns.
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Figure 66: Fit paramters for detector 14 and 15. As usual, R is in ppm and times in ns.
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Figure 67: Fit paramters for detector 16 and 17. As usual, R is in ppm and times in ns.
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Figure 68: Fit paramters for detector 18 and 19. As usual, R is in ppm and times in ns.
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Figure 69: Fit paramters for detector 21 and 22. As usual, R is in ppm and times in ns.
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Figure 70: Fit paramters for detector 23 and 24. As usual, R is in ppm and times in ns.
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