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Abstract. Firms typically use query-based search to help consumers find information/
products on their websites. We consider the problem of optimally ranking a set of results
shown in response to a query. We propose a personalized ranking mechanism based on a
user’s search and click history. Our machine-learning framework consists of three mod-
ules: (a) feature generation, (b) normalized discounted cumulative gain–based Lambda-
MART algorithm, and (c) feature selection wrapper. We deploy our framework on large-
scale data from a leading search engine using Amazon EC2 servers and present results
from a series of counterfactual analyses.We find that personalization improves clicks to the
top position by 3.5% and reduces the average error in rank of a click by 9.43% over the
baseline. Personalization based on short-term history or within-session behavior is shown
to be less valuable than long-term or across-session personalization. We find that there is
significant heterogeneity in returns to personalization as a function of user history and
query type. The quality of personalized results increases monotonically with the length of a
user’s history. Queries can be classified based on user intent as transactional, informational,
or navigational, and the former two benefit more from personalization. We also find that
returns to personalization are negatively correlated with a query’s past average perfor-
mance. Finally, we demonstrate the scalability of our framework and derive the set of
optimal features that maximizes accuracy while minimizing computing time.
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1. Introduction
1.1. Online Search and Personalization
As the Internet has grown, the amount of information
and products available in individual websites has
increased exponentially. Today, Google indexesmore
than 130 trillion web pages (Google 2018), Amazon
sells more than 562 million products (ScrapeHero
2018), and more than 400 hours of video are uploa-
ded to YouTube every minute (Tran 2017). Although
such large assortments give an abundance of choice to
consumers, they also make it hard for them to locate
the exact product or information they are looking for.
Therefore, most businesses have adopted a query-
based search model that helps consumers locate the
product/information that best fits their needs. Con-
sumers enter queries (or keywords) in a search box,
and the firm presents a set of documents that is deemed
most relevant to the query.

However, search is costly in both time and effort as
documented by a large stream of research (Weitzman
1979, De los Santos et al. 2012, Koulayev 2014). Search
costs not only affect how much a consumer searches
before finding the information that she is looking for,
but also whether the search is ultimately successful or

not. Long and/or unsuccessful searches can have
negative consequences for a firm because consumers
may leave its website without clicking and/or making
purchases. Firms have, therefore, long grappled with
the question of how to improve the search process.
Broadly speaking, there are twoways to do this. The

first is to provide a more relevant set of results. The
second is to rank relevant results higher or to show them
earlier in the search process so that consumers can avoid
clickingonwrong results or scrolling all thewaydown to
find them (and thereby avoid scroll and click costs). In
this paper, we focus on the latter method of improving
search. Indeed, the optimal ordering of results within
a list is an important problem because recent research
has shown that position effects have a significant
impact on consumers’ click behavior and firm profits
(Narayanan and Kalyanam 2015, Ursu 2018).
At the first glance, this seems a trivial problem;

given a set of documents, simply rank ordering them
in decreasing order of relevance should ensure that con-
sumers reach the relevant information with minimum
cost. However, the difficulty lies in identifying the correct
relevance value for each document for a given user and
search-instance. If preferences are homogeneous across
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users and search instances, then we have a globally
valid rank ordering of relevance for all documents for a
given query, and the ranking problem is straightfor-
ward. However, if user preferences are heterogeneous,
that is, if two users using the same query are looking for
different pieces of information, the problem becomes
muchmorechallenging (Mihalkova andMooney 2009).
This can be illustrated using the classic example of
“java” (De Vrieze 2006). A user who searches for java
can be looking to (a) get some coffee, (b)find information
on the programming language Java, or (c) vacation in
the Java islands. The relevance values of documents are
therefore user-specific (e.g., a coffee shop is relevant to
the user looking for coffee but not to the one looking for
vacation packages), and the optimal rank ordering has to
be individual and search-instance specific.

A potential solution to this problem is to person-
alize the rankings of search results. Indeed, all the
major search engines have experimented with and/
or deployed personalized search algorithms.1 See
Figure 1 for an example of how personalization can in-
fluence search results. However, the extent and effec-
tiveness of search personalization has been a source of
intense debate (Schwartz 2012, Hannak et al. 2013).
Given the privacy implications of storing long user
histories, both consumers and firms need to under-
stand the returns to personalization and identify situ-
ations in which personalization helps.

1.2. Research Agenda and Challenges
In this paper, we study personalization of search
results through reranking, that is, the optimal search
instance–specific rank-ordering of the first page of
search results. Our goal is to build a scalable frame-
work to implement personalized search and evaluate
the returns to personalization. In the process, we seek
to quantify the role of user and query-level hetero-
geneity on personalization.
This is a challenging problem for three reasons.

First, we need a framework with extremely high out-
of-sample predictive accuracy. Note that the search
engine’s problem is one of prediction: which result or
document will a given user in a given search instance
find most relevant? Formally, what is the user search–
specific rank-ordering of the documents in decreasing
order of relevance, such that themost relevant documents
are at the top for each user search instance? Traditional
econometric tools are not well suited to answer this
question because they have been designed for causal
inference (to derive the best unbiased estimates) and
not for prediction. So they perform poorly in out-of-
sample predictions. Indeed, the well-known bias–
variance trade-off suggests that unbiased estimators
are not always the best predictors because they tend to
have high variance and vice versa (Hastie et al. 2009).
Second, we have to accommodate a large number of

attributes and allow for complex interactions between

Figure 1. (Color online) An Example of Personalization

Notes. The right panel shows results with personalization turned off by using the Chrome browser in a fresh incognito session. The left panel
shows personalized results. The fifth result in the left panel from the domain babycenter.com does not appear in the right panel. This is because the
user in the left panel had previously visited this URL and domain multiple times in the past few days.
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them. A commonly used modeling approach is to
assume a fixed functional form to model an outcome
variable, include a small set of explanatory variables,
allow for a few interactions between them, and then
infer the parameters associated with the prespecified
functional form. However, this approach has poor
predictive ability (as we later show). In our setting,
we have a large number of features (close to 300), and
we need to allow for nonlinear interactions between
them. This problem is exacerbated by the fact that
we don’t know which of these variables and which
interaction effects matter a priori. Indeed, it is not
possible for the researcher to come up with the best
nonlinear specification of the functional form either
by manually eyeballing the data or by including all
possible interactions. The latter would lead to more
than 45,000 variables even if we restrict ourselves to
pairwise interactions. Thus, we are faced with the
problem of not only inferring the parameters of the
model, but also inferring the optimal functional form
of the model itself. So we need a framework that can
search and identify the relevant set of features and all
possible nonlinear interactions between them.

Finally, our approach has to be efficient and scal-
able. Efficiency refers to the idea that the runtime
and deployment of the model should be as small as
possible with minimal loss in accuracy. Thus, an ef-
ficientmodelmay lose a small amount of accuracy but
make huge gains on runtime. Scalability refers to the
idea that X times increase in the data leads to no more
than 2X (or linear) increase in the deployment time.
Both scalability and efficiency are necessary to run the
model in real time.

To address these challenges, we turn to machine-
learning methods that are specifically designed to
provide extremely high out-of-sample accuracy, work
with a large number of data attributes, and perform
efficiently at scale.

1.3. Our Framework and Findings
We present a general framework for search person-
alization that employs a three-pronged approach:
(a) feature generation, (b) normalized discounted
cumulative gain (NDCG)-based LambdaMART algo-
rithm, and (c) feature selection using the wrapper
method. The first module consists of a program that
uses a series of functions to generate a large set of
features (or attributes) that function as inputs to the
subsequent modules. These features consist of both
global and personalized metrics that characterize the
aggregate and user-level data regarding relevance of
search results, respectively. The secondmodule consists
of the LambdaMART ranking algorithm that maxi-
mizes search quality as measured by NDCG. This
module employs the Lambda ranking algorithm in

conjunction with the machine-learning algorithm
called gradient-boosted regression trees to maximize
the predictive ability of the framework. The boosted-
tree algorithm performs automatic variable selection
and infers both the optimal functional form (allowing
for all types of interaction effects and nonlinearities) as
well as the parameters of the model. It is not hampered
by the large number of parameters and variables be-
cause it performs optimization efficiently in gradient
space using a greedy algorithm. The third module
focuses on scalability and efficiency; it consists of a
wrapper algorithm that wraps around the Lambda-
MART step to derive the set of optimal features that
maximize search quality with minimal loss in accu-
racy. The wrapper, thus, identifies the most efficient
model that scales well.
We apply our framework to a large-scale data set

from Yandex. It is the fourth largest search engine in
the world with more than 60%market share in Russia
and Eastern Europe (Clayton 2013, Pavliva 2013) and
more than $300 million U.S. dollars in quarterly rev-
enues (Kaggle 2013, Yandex 2016).2 The data consists
of information on anonymized user identifiers, queries,
query terms, URLs, URL domains, and clicks. The data
spans onemonth, consists of 5.7million users, 21million
unique queries, 34 million search sessions, and more
than 64 million clicks.
Because all three modules in our framework are

memory- and computing-intensive, we estimate the
model on the fastest servers available on Amazon
EC2 with 32 cores and 256 GB of memory.
We evaluate our algorithm on the test data and

present the following main findings:
1. We show that search personalization can be

effective in the field. Search quality, as quantified by
the average error in the rank of a click (AERC), im-
proves by 9.43% with personalization. AERC is a
position-based click metric similar in spirit to the
metrics used in the recommendation-systems litera-
ture (Ricci et al. 2011). Further, personalization leads
to a substantial increase in click-through rates (CTRs)
at the top positions (more than 3.5% for the first posi-
tion), which is a leading measure of user satisfaction.

2. Next, we quantify the value of the different at-
tributes of the data or features. User-specific features
generate more than 50% of the improvement from
personalization (as measured by the optimization
metric NDCG), click-related features generate more
than 28% of the improvement, and domain- and URL-
specific features contribute more than 10% each. In-
terestingly, session-specific features are not very useful;
they contribute only 4% of the gain. Thus, across-session
personalization based on user-level data is more valu-
able than within-session personalization. Thus, the
low returns from within-session personalization may
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not be sufficient towarrant the computing costs of real-
time personalization.

3. We show that there is significant heterogeneity in
the returns to personalization depending on the length
of user history and the type of query used. Specifically,

• The quality of personalized results increases
monotonicallywith the length of a user’s search history.
If we restrict the data to users with at least 50 past
queries, AERC improves by more than 11%, and this
number increases to 12.5% when we focus on users
with at least 100 past queries. Given that storing long
personal histories has privacy and storage costs, the
firm can use our estimates to decide the optimal length
of history to store.

• Queries that receive clicks to many URLs
(across all users) benefit more from personalization.
We expect the number of unique URLs clicked to be
indicative of query type; navigational queries are
likely to have low to no variety in the URLs clicked,
and transactional and informational (e.g., java) queries
are likely see a high variety in the URLs clicked. Our
findings, thus, suggest that transactional and informa-
tional queries are more likely to benefit from personal-
ization compared with navigational queries.

• Queries benefit differentially based on their
past performance with poorly performing queries
benefiting much more from personalization. Queries
whose prior clicks, on average, occurred at positions
six or lower gain more than 22% in AERC compared
with the baseline.

4. We demonstrate the scalability of our method to
large data sets. Going from 20% of the data to the full
data set leads to a 2.38 times increase in computing
time for feature generation, 20.8 times increase for
training, and 11.6 times increase for testing/deployment
of the final model. Thus, training and testing costs in-
crease superlinearly, whereas feature-generation costs
increase sublinearly. Crucially, none of the speed in-
creases are exponential, and all of them provide sub-
stantial improvements in search quality.

5. Finally, to increase our framework’s efficiency,
we provide a forward-selection wrapper, which de-
rives the optimal set of features that maximize search
quality with minimal loss in accuracy. Of the 293
features provided by the feature-generation module,
we optimally select 47 that provide 95% of the im-
provement in NDCG with significantly lower com-
puting costs and speed. We find that training the
pruned model takes only 15% of the time taken to
train the unpruned model. Similarly, we find that
deploying the prunedmodel is only 50% as expensive
as deploying the full model.

Finally, we do caution that our results are to be
interpreted cautiously because we have not evaluated
our algorithm in the field. The gains can be lower if
consumers react adversely to personalization. (Indeed

they could also be higher if they react favorably to
personalized search.)
In sum, our paper makes three main contributions

to themarketing literature on personalization. First, it
presents a comprehensive machine-learning frame-
work to help researchers and managers improve per-
sonalizedmarketing decisions using data on consumers’
past behavior. Second, it presents empirical evidence
in support of the returns to personalization in the
online search context. Third, it demonstrates how large-
scale data can be leveraged to improve marketing out-
comes without compromising the speed or real-time
performance of digital applications.

2. Related Literature
Our paper relates to streams of literature inmarketing
and computer science.
First, it relates to the empirical literature on per-

sonalization in marketing. In an influential paper,
Rossi et al. (1996) quantify the benefits of one-to-one
pricing using purchase history data and find that
personalization improves profits by 7.6%. Similarly,
Ansari and Mela (2003) find that content-targeted
emails can increase the click-throughs up to 62%,
and Arora and Henderson (2007) find that custom-
ized promotions in the form of “embedded pre-
miums” or social causes associated with the product
can improve profits. On the other hand, a series of
recent papers question the returns to personalization
in a variety of contexts, ranging from advertising to
ranking of hotels in travel sites (Zhang and Wedel
2009, Lambrecht and Tucker 2013, Ghose et al. 2014).
There are two main dimensions on which our paper
differs from these: scalability and predictive perfor-
mance. These earlier papers are applied to small(er)
data sets, and the approaches used (e.g., Markov chain
MonteCarlo) are limited in scalability andare not built to
maximize predictive performance. In contrast, our ap-
proach leverages techniques, such as automatic feature
selection, and is scalable to extremely large data sets
without compromising performance or speed.
Our paper also relates to the computer science

literature on personalization of search engine rank-
ings. Qiu and Cho (2006) infer user interests from
browsing history using experimental data on 10
subjects. Teevan et al. (2008) and Eickhoff et al. (2013)
show that there could be returns to personalization
for some specific types of searches involving am-
biguous queries and atypical search sessions. Bennett
et al. (2012) find that long-term history is useful early
in the session, whereas short-term history is later in
the session. There are three main differences between
these papers and ours. First, from a data perspective,
unlike thepreviouspapers,we suffer from the limitation
of not knowing the context (i.e., information on the
URLs and domains of the web pages, the hyperlink
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structure between them, and the queries used in the
search process). This data limitation makes our task
significantly more challenging because we are not
able to exploit ideas such as topic similarities across
queries in our algorithm. Second, the previous papers
work with much smaller data sets, which helps them
avoid the scalability issues that we face. Third, we
provide a new set of substantive results on the het-
erogeneity in the returns to personalization. Specifi-
cally, none of the previous papers establish the returns
to personalization as a function of the length of user
history, the prior performance of the query, or the
user intent associated with the query (as discussed
in Section 1.3 earlier).

Our paper leverages the machine-learning techniques
related to boosting and regression trees. Boostingwas
first introduced in the 1990s by Schapire and Freund,
who theoretically proved it is possible to generate a
strong learner using a combination of weak learners
(Schapire 1990, Freund 1995, Freund and Schapire
1996). In an important paper, Breiman (1998) showed
that boosting can be interpreted as gradient descent in
function space, a viewpoint that was expanded by
Friedman (2001), who showed how boosting can be
applied to a large set of loss functions using any
underlying weak learner (e.g., CART, logistic func-
tions, regressions). Since then, boosted regression trees
have been used to solve a variety of prediction prob-
lems. In themarketing literature, Lemmens andCroux
(2006) were the first to use boosted regression trees
for a prediction task, and they showed that boosting
significantly improves churn prediction. Neslin et al.
(2006) conducted a meta-analysis of submissions to
the Teradata challenge to identify methods that
perform well and found that tree-based methods are
good at predicting churn. Indeed, the winning entry in
the competition used boosted regression trees.

More broadly, our paper is relevant to the growing lit-
erature on machine-learning methodologies for learning-
to-rank methods. Many information-retrieval problems
in business settings often boil down to ranking. Hence,
ranking methods have been studied in many contexts,
such as collaborative filtering (Harrington 2003), ques-
tion answering (Surdeanu et al. 2008, Banerjee et al.
2009), text mining (Metzler and Kanungo 2008), and
digital advertising (Ciaramita et al. 2008). We refer
interested readers to Liu (2011) for details.

Our paper also contributes to the small but growing
literature on machine-learning applications in marketing.
Please see Dzyabura and Hauser (2011), Netzer et al.
(2012), and Huang and Luo (2015) for some recent ap-
plications of machine learning in marketing and Toubia
et al. (2007), Dzyabura and Yoganarasimhan (2018)
for an overview of machine learning applications in
marketing.

3. Data
3.1. Data Description
We use the publicly available anonymized data set
released by Yandex for its personalization challenge
(Kaggle 2013). The data set is from 2011 (exact dates
are not disclosed) and represents 27 days of search
activity. The queries and users are sampled from a
large city in Eastern Europe. The data are processed
such that two types of sessions are removed: those
containing queries with commercial intent (as detected
by Yandex’s proprietary classifier) and those con-
taining one or more of the top-Kmost popular queries
(where K is not disclosed). This minimizes risks of
reverse engineering of user identities and business
interests. The current rankings shown in the data
are based on Yandex’s proprietary nonpersonalized
algorithm.
Table 1 shows an example of a session from the

data. The data contains information on the following
anonymized variables:
• User: A user, indexed by i, is an agent who uses

the search engine for information retrieval. Users are
tracked over time through a combination of cookies,
IP addresses, and logged-in accounts. There are 5,659,229
unique users in the data.
• Query: A query is composed of one or more

words, in response to which the search engine returns
a page of results. Queries are indexed by q. There are
a total of 65,172,853 queries in the data, of which
20,588,928 are unique.3 Figure 2 shows the distribu-
tion of queries in the data, which follows a long-tail
pattern: 1% of queries account for 47% of the searches
and 5% for 60%.
• Term: Each query consists of one ormore terms, and

terms are indexed by l. For example, the query “pic-
tures of richard armitage” has three terms: “pictures,”
“richard,” and“armitage.”There are 4,701,603 unique
terms in the data, and we present the distribution of
the number of terms in all the queries seen in the data
in Table 2.4

• Session: A search session, indexed by j, is a
continuous block of time during which a user is re-
peatedly issuing queries, browsing, and clicking on re-
sults to obtain information on a topic. Search engines
use proprietary algorithms to detect session bound-
aries (Göker and He 2000), and the exact method used
by Yandex is not publicly revealed. According to Yan-
dex, there are 34,573,630 sessions in the data.
• URL: After a user issues a query, the search

engine returns a set of 10 results in the first page.
These results are URLs of web pages relevant to the
query. There are 69,134,718 unique URLs in the data,
and URLs are indexed by u. Yandex only provides
data for the first search engine results page (SERP) for
a given query because a vast majority of users never
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go beyond the first page, and click data for sub-
sequent pages is very sparse. So, from an imple-
mentation perspective, it is difficult to personalize
later SERPs, and from a managerial perspective, the
returns to personalizing them is low because most
users never see them.

• URLdomain: This is the domain towhich a given
URL belongs. For example, www.imdb.com is a do-
main, and http://www.imdb.com/name/nm0035514/
and http://www.imdb.com/name/nm0185819/ are
URLs or web pages hosted at this domain. There are
5,199,927 unique domains in the data.
• Click: After issuing a query, users can click on

one or all the results on the SERP. Clicking a URL is an
indication of user interest. We observe 64,693,054
clicks in the data. So, on average, a user clicks 1.007
times following a query (including repeat clicks to the
same result). Table 3 shows the probability of click by
position or rank of the result. Note the steep drop off
in click probability with position: the first document is
clicked 44.51% of times, whereas the fifth one is clicked
a mere 5.56% of times.
• Time: Yandex gives us the timeline of each session.

However, to preserve anonymity, it does not disclose
how many milliseconds are in one unit of time. Each
action in a session comes with a time stamp that tells us
how long into the session the action took place. Using
these time stamps, Yandex calculates “dwell time” for
each click, which is the time between a click and the
next click or the next query. Dwell time is informative
of how much time a user spent with a document.

Table 1. Example of a Session

20 M 6 5

20 0 Q 0 6716819 2635270,4603267 70100440,5165392 17705992,1877254 41393646,3685579
46243617,3959876 26213624,2597528 29601078,2867232
53702486,4362178 11708750,1163891 53485090,4357824
4643491,616472

20 13 C 0 70100440
20 495 C 0 29601078

Notes. The data are in a log format describing a stream of user actions with each line representing a
session, query, or a click. In all lines, the first column represents the session (SessionID � 20 in this
example). The first row from a session contains the session-level metadata and is indicated by the letter
“M.” It has information on the day the session happened (6) and the UserID (5). Rowswith the letter “Q”
denote a query, and those with C denote a click. The user submitted the query with QueryID 6716819,
which contains terms with TermIDs 2635270, 4603267. The URL with URLID 70100440 and DomainID
5165392 is the top result on a results page. The rest of the nine results follow similarly. Thirteen units of
time into the session, the user clicked on the result with URLID 70100440 (ranked first in the list), and
495 units of time into the session, the user clicked on the result with URLID 29601078.

Figure 2. (Color online) Cumulative Distribution Function
of the Number of Unique Queries: The Fraction of Overall
Searches Corresponding to Unique Queries, Sorted by
Popularity

Table 2. Distribution of Number of Terms in a Query

Number of terms per query Percentage of queries

1 22.32
2 24.85
3 20.63
4 14.12
5 8.18
6 4.67
7 2.38
8 1.27
9 0.64
10 or more 1.27

Note. (Min, max) = (1, 82).

Table 3. Click Probability Based on Position

Position Probability of click

1 0.4451
2 0.1659
3 0.1067
4 0.0748
5 0.0556
6 0.0419
7 0.0320
8 0.0258
9 0.0221
10 0.0206
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• Relevance: A result is relevant to a user if the
user finds it useful and irrelevant otherwise. Search
engines attribute relevance scores to search results
based on user behavior: clicks and dwell time. It is
well known that dwell time is correlated with the
probability that the user satisfied the user’s infor-
mation needswith the clicked document. The labeling
is done automatically and, hence, different for each
query issued by the user. Yandex uses three grades of
relevance:

• Irrelevant: r � 0. A result gets an irrelevant
grade if it doesn’t get a click or if it receives a click
with dwell time strictly less than 50 units of time.

• Relevant: r � 1. Results with dwell times be-
tween 50 and 399 time units receive a relevant grade.

• Highly relevant: r � 2. Highly relevant is given
to two types of documents: (a) those that received
clicks with a dwell time of 400 units or more and (b) if
the document was clicked and the click was the last
action of the session (irrespective of dwell time). The
last click of a session is considered to be highly
relvevant because a user is unlikely to have ter-
minated the search if the user is not satisfied.

• In cases in which a document is clicked multiple
times after a query, the maximum dwell time is used
to calculate the document’s relevance.

3.2. Model-Free Analysis
For personalization to be effective,we need to observe
three types of patterns in the data. First, we need
sufficient data on user history to provide personal-
ized results. Second, there has to be significant het-
erogeneity in users’ preferences. Third, users have to
exhibit some persistence in their behavior. We ex-
amine the extent to which search and click patterns
satisfy these criteria.

First, consider user history metrics. We find that
60% of the sessions have only one query (Figure 3).
This implies thatwithin-session personalization is not

possible for such sessions. However, 20% of sessions
have two or more queries, making them amenable to
within-session personalization. Next, we examine the
feasibility of across-session personalization for users
observed in days 26 and 27 by considering the number
of queries they have issued in the past.5 We find that
the median user has issued 16 queries, and more
than 25% of the users have issued at least 32 queries
(Figure 4). Together, these patterns suggest that both
short- and long-term personalization are feasible in
this context.
Figure 5 presents the distribution of the average

number of clicks per query for the users in the data. As
we can see, there is considerable heterogeneity in
users’ propensity to click. For example, more than
15% of users don’t click at all, whereas 20% of them
click on 1.5 results or more for each query they issue.
To ensure that these patterns are not driven by one-
time or infrequent users, we present the same anal-
ysis for users who have issued at least 10 queries in
Figure 6, which shows similar click patterns. Together,
these two figures establish the presence of significant
user-specific heterogeneity in clicking behavior.

Figure 3. (Color online) Cumulative Distribution Function
of the Number of Queries in a Session

Note. Min, max = 1, 280.

Figure 4. (Color online) Cumulative Distribution Function
of Number of Queries per User

Notes. Observed in days 26, 27. Min, max = 1, 260.

Figure 5. (Color online) Cumulative Distribution Function
of Average Number of Clicks per Query for a Given User
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Next, we examine whether there is variation or
entropy in the URLs that are clicked for a given query.
Figure 7 presents the cumulative distribution of the
number of unique URLs clicked for a given query
through the time period of the data. Specifically, 37%
of queries receive no clicks at all, and close to another
37% receive a click to only one unique URL. These are
likely to be navigational queries; for example, almost
everyone who searches for “cnn” will click on www
.cnn.com. However, close to 30% of queries receive
clicks on two or more URLs. This suggests that users
are clicking on multiple results. This could be either
the result of heterogeneity in users’ preferences for
different results or because the results themselves
change a lot for the query during the observation
period (high churn in the results is likely for news-
related queries, such as “earthquake”). To examine if
the last explanation drives all the variation in Figure 7,
we plot the number of unique URLs and domains we
see for a given query through the course of the data in
Figure 8. We find that more than 90% of queries have
no churn in the URLs shown in the results page.
Hence, it is unlikely that the entropy in clicked URLs
is driven by churn in search engine results. Rather, it
is more likely to be driven by heterogeneity in users’
tastes.

In sum, the data patterns point to significant het-
erogeneity in users’ preferences and persistence in
users’ clicking behavior, both of which hint at the
possibility of positive returns to personalization.

3.3. Data Sets: Training, Validation, and Testing
Supervised machine learning algorithms typically re-
quire three data sets: training, validation, and testing.
The training data set is a set of preclassified data used
for learning/estimating the model and inferring the
model parameters. However, if we simply optimize
the model on the training data set, we end up picking
a model with great in-sample performance but poor

out-of-sample performance. Validation data help avoid
this problem. At each step of the optimization (which is
done on the training data), the model’s performance is
evaluated on the validation data. In our analysis, we
optimize the model on the training data and stop the
optimization only when we see no improvement in
its performance on the validation data for at least 100
steps. Then we go back and pick the model that of-
fered the best performance on the validation data.
Because both the training and validation data sets are
used in model selection, we need a new data set for
testing the predictive accuracy of the model. This sep-
arate holdout sample is labeled as the test data. The
results from the final model on the test data are con-
sidered the final predictive accuracy achieved by our
framework.6

Before constructing the three data sets (training,
validation, and test) described, we clean the data to
accommodate the test objective. Testing whether per-
sonalization is effective or not is only possible if
there is at least one click. So following Yandex’s
recommendation, we filter the data sets in two ways.
First, for each user observed in days 26–27, we only

Figure 6. (Color online) Cumulative Distribution Function
of Average Clicks per Query for Users Who Have Issued 10
or More Queries

Figure 7. (Color online) Cumulative Distribution Function
ofNumber of UniqueURLs Clicked for aGivenQuery in the
27-Day Period

Figure 8. (Color online) Cumulative Distribution Function
of Number of Unique URLs and Domains Shown for a
Given Query in the 27-Day Period
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include all the user’s queries from the test period with
at least one click with a dwell time of 50 units or more
(so that there is at least one relevant or highly relevant
document). Second, if a query in this period does not
have any short-term context (i.e., it is the first one in
the session) and the user is new (i.e., the user has no
search sessions in the training period), then we do not
consider the query because it has no information for
personalization.

The features described in Section 4.1 can be broadly
categorized into two sets: (a) global features, which
are common to all the users in the data, and (b) user-
specific features that are specific to a user (could be
within- or across-session features). In real business
settings, managers typically have data on both global
and user-level features at any given point in time.
Global features are constructed by aggregating the
behavior of all the users in the system. An example of
a global feature is the average click-through rate for a
URL u for query q across all users. (See Section 4.1 for
details.) Because this feature requires aggregation
over millions of users and data stored across multiple
servers and geographies, it is not feasible to keep this
up to date on a real-time basis. So firms usually up-
date this data on a regular (weekly or biweekly) ba-
sis. Further, global data are useful only when they
have been aggregated over a sufficiently long period
of time. In our setting, we cannot generate reli-
able global features for the first few days of obser-
vation because of insufficient history. In contrast,
user-specific features have to be generated on a real-
time basis and need to include all the past activity of
the user, including earlier activity in the same session.
This is necessary to make personalized recommen-
dations for each user. An example of a user-specific
feature is the average click-through rate for a URL u
shown in response to query q for user iuntil this search
instance. Given these constraints and considerations,
we now explain howwe partition the data and generate
these features.

Recall that we have a snapshot of 27 days of data
from Yandex. Figure 9 presents a schema of how the
three data sets (training, validation, test) are gener-
ated from the 27 days of data. First, using the entire
data set from the first 25 days, we generate the global
features for all three data sets. These are features that
represent aggregate or population-level information
(see Section 4.2 for details).

Next, we split all the users observed in the last two
days (days 26–27) into three random samples (train-
ing, validation, and testing).7 Then, for each obser-
vation of a user, all the data up until that observation
is used to generate the user/session level features.
For example, sessions A1, A2, B1, B2, and C1 are used
to generate global features for all three data sets. Thus,
the global features for all three data sets do not

include information from sessions in days 26–27
(sessions A3, C2, and C3). Next, for user A in the
training data, the user-level features at any given
point in Session A3 are calculated based on the user’s
entire history starting from session A1 (when the user
is first observed) until the user’s last observed action
in session A3. User B is not observed in the last two
days. So user B’s sessions are only used to generate
aggregate global features; that is, the user does not
appear at the user-level in the training, validation, or
test data sets. For user C, the user-level features at any
given point in sessions C2 or C3 are calculated based
on user C’s entire history starting from session C1.

4. Feature Generation
Wenowpresent the firstmodule of our three-pronged
empirical strategy: feature generation. In thismodule,
we conceptualize and define an exhaustive feature set
that captures both global and individual-level attri-
butes that help predict the relevancy of a document
for a specific search. The framework is general enough
to be extrapolated to other personalization problems.
Our framework consists of a series of functions that

can be used to generate a large and varied set of
features succinctly. The functions typically are of the
form F(θ1, θ2, θ3), where the three inputs are associ-
ated with (1) search input (query, terms in query),
(2) search results (URL, domain), and (3) the extent of
personalization (global, user, user-session).
• θ1 ∈ {q, l1, l2, l3, l4, ∅} contains information on the

keywords used by the user in the search and can take six
possible values: (1) q, the query used in the search;
(2) l1, l2, l3, l4, the first, second, third, and fourth terms
of the query used in the search;8 (3) ∅, which implies
that the function is aggregated over all possible queries.
• θ2 ∈ {u, d} refers to the URL/domain of a search

result. θ2 � u implies that the function is specified
over URL u, and θ2 � d implies that it is specified over
the domain d.
• θ3 � {g, it, ijt} captures the granularity atwhich the

feature is computed.θ3 � g denotes that the function is
calculated over the global data (i.e., aggregated over
all the data in days 1–25; see Figure 9), and the
resulting feature is a global feature. When θ3 � it, the
function is calculated for user i up until the point in
time t, resulting in a user-specific, real-time feature.
For θ3 � ijt, function is calculated for the jth session
of user i using information up until time t. This gives
rise to a user-session feature that can be updated in
real time.

4.1. Functions for Feature Generation
We now present a series of functions that are used to
compute features. The full list of features generated
using these functions are listed in Table A.1 in the
online appendix.
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1. Listings(θ1, θ2, θ3): This function captures the
number of times a result appears in a specific slice of
the data. We give a few examples of the different
invocations of this function.

• Listings(q,u, ijt) calculates the number of times
a URL u appeared in a SERP for searches issued by a
user i for a query q in session j before a given time t.

• The same function, when invoked for θ3 � g,
Listings(q,u, g), computes the number of occurrences
of URL u in a SERP for query q in global data g.

• If we supply the term l1 as the input for θ1
instead of a query, then the invocation Listings(l1,u, ijt)
counts the number of times URL u appeared in a SERP
for searches issued by a user iwhen the user used l1 as
the first term in the query in session j before a given
time t.

• Listings(∅,u, g) counts the number of times
URL u appears in the SERP in the global data g irre-
spective of the query or search term used.

• If we supply domain d as the input to θ2, then
Listings(q, d, g) counts the number of times results
from domain d appeared in the SERP in searches for
query q in global data g.

These are just a few examples of the possible features
that the function Listings(θ1, θ2, θ3) can generate. In total,
based on the number of combinations of different inputs,
we can generate Dim(θ1) ×Dim(θ2) ×Dim(θ3) � 6 × 2 ×
3 � 36 features.

We now list seven more features that take the same (or
similar) inputs. To avoid repetition, we do not provide
detailed examples of possible features for each of these
functions. Instead, we refer readers to Table A.1 for the
complete list of features.

2. AvgPosn(θ1, θ2, θ3): This function calculates
the average rank of a result within SERPs that list it
for a given θ1, θ2, θ3. For example, AvgPosn(q,u, ijt)
denotes the average rank of URL u in response to
searches for query q by user i in session j before time t.
It provides information over and above the Listings

function as it characterizes the average ranking of the
result as opposed to simply noting its presence in the
SERP.

3. Clicks(θ1, θ2, θ3): This function calculates the
number of times a click occurred for a given θ1, θ2, θ3.
For example,Clicks(q,u, ijt)counts the number of times
user i clicked on URL u after seeing it on a SERP
provided in response to searches for query q by user i
in session j before time t. Clicks can be used in con-
junction with Listings to compute CTRs as follows:

CTR(θ1, θ2, θ3) � Clicks(θ1, θ2, θ3)
Listings(θ1, θ2, θ3) . (1)

4. HDClicks (θ1, θ2, θ3): This function calculates
the number of times a high-duration click occurred for
thegiven inputs.HDClicks can then be used to compute
high-duration click-through rates as follows:

HDCTR(θ1, θ2, θ3) � HDClicks(θ1, θ2, θ3)
Listings(θ1, θ2, θ3) . (2)

HDClicks and HDCTR have information over and
beyond Clicks and CTR because they consider clicks
of high relevance.

5. WClicks(θ1, θ2, θ3): When consumers click on
multiple documents with a SERP, then there is in-
formation in the order of the clicks because docu-
ments clicked earlier tend to be more relevant.
WClicks(θ1, θ2, θ3) is the weighted count of all clicks
for this set of inputs, and the weight associated with
a click is the reciprocal of the click order for the
SERP. That is, the weight is one if it was the first
click, 1/2 if it was the second, 1/3 if it was the third,
and so on. WClicks is used to compute weighted
CTRs (WCTRs) as follows:

WCTR(θ1, θ2, θ3) � WClicks(θ1, θ2, θ3)
Listings(θ1, θ2, θ3) . (3)

Figure 9. Data-Generation Framework
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If URL u is always clicked first when it is displayed,
WCTR(θ1,u, θ3) = CTR(θ1,u, θ3); if, instead, it is always
clicked second, thenWCTR (θ1,u, θ3) = 1

2 CTR(θ1,u, θ3).
6. Dwells(θ1, θ2, θ3): This function calculates the

average dwell time for a search result for a set of
inputs. Dwells can be used to compute the average
dwell time (ADT), which has additional information
on the relevance of URL u over and above CTR.

ADT(θ1, θ2, θ3) � Dwells(θ1, θ2, θ3)
Clicks(θ1, θ2, θ3) . (4)

7. Skips(θ1, θ2, θ3): Previous research suggests that
users usually go over the list of results in a SERP se-
quentially from top to bottom (Craswell et al. 2008).
Thus, if the user skips a top URL and clicks on one in a
lower position, it is significant because the decision to
skip the top URL is a conscious decision. Thus, if a
user clicks on position 2 after skipping position 1, the
implications for the URLs in positions 1 and 3 are dif-
ferent. The URL in position 1 has been examined and
deemed irrelevant, whereas the URL in position 3 may
not have been clicked because the user never reached it.
Thus, the lack of a click is more damning for the skipped
URL in position 1 compared with the one in position 3.

The function Skips captures the number of times a
URL/domain has been skipped. For instance, consider a
case in which a user clicks on the URL in position 5 fol-
lowed by that in position 3. ThenURLs in positions 1 and 2
were skipped twice, the URLs in positions 3 and 4 were
skipped once, and those in positions 6–10 were skipped
zero times.

Using Skips, we can compute SkipRate as follows:

SkipRate(θ1, θ2, θ3) � Skips(θ1, θ2, θ3)
Listings(θ1, θ2, θ3) . (5)

8. PosnClicks(θ1, θ2, θ3, p). The fourth input vari-
able p refers to the position of the URL/domain in the
SERP. Then

PosnClicks(θ1, θ2, θ3, p) � p
10

× Clicks(θ1, θ2, θ3). (6)

If a URL in a low position gets clicked, it is likely to be
more relevant than one that is in a high position and
gets clicked. This stems from the idea that users
usually go through the list of URLs from top to bottom
and that they only click on URLs in lower positions if
they are especially relevant. Using this, we can cal-
culate the position-weighted CTR as follows:

PosnCTR(θ1, θ2, θ3, p) � PosnClicks(θ1, θ2, θ3, p)
Listings(θ1, θ2, θ3) . (7)

As in the case of Listings, all these functions can be
invoked for different combinations of {θ1, θ2, θ3} giving
us 36 features each for functions 1–6. For the seventh

function, SkipRate, we did not find domain-specific
skip features to be useful. So we only have 18 URL-
specific Skip features.

In addition, we also include Listings, CTR,HDCTR, and
ADT at the user level and user-session level, aggregated
over all URLs and domains as follows:

9. AggListings(θ3)
10. AggCTR(θ3)
11. AggHDCTR(θ3)
12. AggADT(θ3).

Here θ3 � {it, ijt}. This gives us another eight features that
capture information on individual user behavior across
and within a session. See features 271–278 in Table A.1.

Finally, we also use the following functions to generate
a few additional stand-alone features.

13. QueryTerms (q) is the total number of terms in a
given query.

14. Day(i, j) is the day of the week (Monday, Tuesday,
etc.) in which user i conducts the search session j.

15. ClickProb(i, p, t) is the probability that a user i
clicks on a search result that appears at position pwithin
a SERP before a given instance of time t. This function
captures the heterogeneity in users’ preferences for
clicking on results appearing at different positions.

16. NumSearchResults(q, t) is the number of unique
search results appearing on any SERP associatedwith
query q from day 1 until time t. It is an entropy metric
on the extent to which search results associatedwith a
query vary over time.

17. NumClickedURLs(q, t) is the total number of uni-
que URLs clicked on any SERP associated with q be-
fore time t. It is a measure of the heterogeneity in
users’ tastes for information/results within a query.
For instance, for navigational queries, this number is
likely to be very low, whereas for do-know queries, it
is likely to be higher.

18. SERPRank(q,u, i, j, k): Finally, we include the
position/rank of a result for the kth search in session j
by user i for query q based on Yandex’s algorithm
(which did not take personalized history into ac-
count). SERPRank is the same as the position p of
the URL in the results page for this specific search.
However, we define it as a separate feature because
the position of a URL can vary across observations.
Recall that many aspects of the query, URL, and

context are not visible to us because of anonymiza-
tion. Such features play an important role in ranking
algorithms, and not having information on them is a
drawback (Qin et al. 2010). By using SERPRank as one
of the features, we are able to fold in this information
into a personalized ranking algorithm. Although this
is not perfect (because there is information loss as a
result of discretization and because we cannot in-
teract the underlying features with the user-specific
ones generated here), it is the best data we have.
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All the features generated from these functions are
listed in Table A.1 in the online appendix.

4.2. Categorization of Features
The total number of features that we generate from
these functions is large (293 to be specific). To aid
exposition and experiment with the impact of includ-
ing or excluding certain sets of features, we group the
set of features based on the three inputs used to gen-
erate them, {θ1, θ2, θ3}, which are associated with
(a) search input (query, terms in query), (b) search
results (URL, domain), and (c) the extent of person-
alization (global, user, user-session). This gives us the
following classifications:

1. Query features FQ: based on the query used for
the search; that is, θ1 � q.

2. Term features FT: based on the terms in the
search query; that is, θ1 � {l1, l2, l3, l4}.

3. URL features FU : based on the URL of the search
result; that is, θ2 � u.

4. Domain features FD: based on the domain name
of the search result; that is, θ2 � d.

5. Global features FG: features that use global data;
that is, θ3 � g.

6. User features FP: calculated at the person or user
level (but not session level); that is, θ3 � it.

7. Session features FS: features that are calculated
at the user-session level; that is, θ3 � ijt.

The third column of Table A.1 in the online appendix
provides a mapping from features to feature classes.

5. Ranking Methodology
We now present the second module of our empirical
framework, which consists of a methodology for reran-
king the top P results for a given query by a given user
at a given point in time. The goal of reranking is to
promote URLs that are more likely to be relevant to
the user and demote those that are less likely to be
relevant. Relevance is data-driven and defined based
on clicks and dwell times.

5.1. The Reranking Problem
Wenowpresent the general structure of the reranking
problem. Let rquijk denote the relevance of a URL u for
the kth search in the jth session of user i in response to
query q. Note that the relevance labels for the same
documents/URLs can vary with queries, users, and
across and within the session, hence the superscripting
by q and subscripting by i, j, and k.

Let L (P, i, j, k, q) be a list of P documents shown in
response to a query q for the kth search in the jth
session of a user i. Let the position of a document u in
list L (P, i, j, k, q) be p(u,L (P, i, j, k, q)).
Definition 1 (Reranking Problem). Consider a list of P
documents L (P, i, j, k, q). The optimal reranking of this

set of documents is a list L ∗(P, i, j, k, q) such that the
relevance of ordering of documents is nonincreasing.
That is, for two documents m and n in L ∗(P, i, j, k, q), if
rqmijk > rqnijk , then the position of m < position of n; that is,
p(m,L ∗(P, i, j, k, q))< p(n,L ∗(P, i, j, k, q)).
When a list is optimally reranked, a more relevant

document is never displayed below a less relevant
document. Note that this implies that we are in-
different between the rank-orderings of two equally
relevant documents. For example, if two documentsm
and n both have relevance scores of two, then we are
indifferent whetherm is ranked above n or vice versa.
Thus, the reranking problem has more than one so-
lution whenwe have duplicate relevance scores in the
list. This is certainly be the case when the number of
positions is greater than the number of relevance
scores (such as our case, inwhichwe have 10 positions
and three relevance scores).
Our goal is to come up with a reranking algorithm

that takes as inputs a set of features and a current
ordering of documents L and generates a new rank-
ordering of documents that is as close as possible to
the optimal list, L ∗, as the output.

5.2. Optimization Metric
To evaluate whether a specific reranking algorithm
improves the rank-ordering of the results or not, we
first need to define a metric on which to optimize.
First, consider a strawman metric: number of clicks

until position p or C@p (or when averaged over many
searches, CTR@p). In a reranking problem with 10
positions, C@10 is a constant for all possible orderings
of documents in a list and, hence, cannot be optimized
on. This is because the total number of clicks observed
across all documents is the same irrespective of how
we reorder them. Next, consider the total number of
clicks at top k positions, say, C@3. This is problematic
for a number of reasons. First, it is indifferent to the
actual position of the click in the top three positions;
for example, clicks to positions 1 and 2 ≡ clicks to
positions 2 and 3 although the former is prefera-
ble from a user’s perspective. Second, it ignores the
ranking of relevant documents after the third posi-
tion; for example, it is indifferent between clicks to
positions 4 and 10 even though the former is better.
Thus, the information from the lower positions is
completely ignored. Third, it treats all clicks as the
same and, thus, ignores the extra information on the
relative relevance of clicks (high-relevance clicks with
r � 2 and low-relevance clicks with r � 1). For these
reasons, clicks or CTR is never used directly as an
optimization metric in the information-retrieval lit-
erature. Nevertheless, changes in clicks to the top p
positions can still be used as an outcome measure
of interest after we optimize the model on more
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appropriate metrics. In Section 6.1.2, we present re-
sults on this dimension.

A good optimization metric for reranking a list
should ideally satisfy the following two properties
(Liu 2009). First, it should be evaluated over a “list” of
documents, such that it penalizes mistakes at the top
of the list more heavily than those at the bottom. This
mimics the response of human responders (Cao et al.
2007). Second, it should be able to handle multiple
levels of relevance and not just binary relevance levels
(in our case, r ∈ {0, 1, 2}).

A metric that satisfies both these properties is
NDCG, a list-level, graded relevance metric. NDCG is
both theoretically well grounded and practically popu-
lar. It is used extensively by search engines (including
Yandex) andis themetricof choice in the recommendation-
system literature (Wang et al. 2013). Intuitively, NDCG
measures the usefulness, or gain, of a document based
on its position in the result list.

We start by defining the simpler metric, discounted
cumulative gain, DCG (Järvelin and Kekäläinen 2000,
2002). DCG at truncation position P is defined as

DCGP � ∑P
p�1

2rp − 1
log2(p + 1) , (8)

where rp is the relevance rating of the document (or
URL) in position p. A problem with DCG is that the
contribution of each query to the overall DCG score of
the data varies. For example, a search that retrieves
four ordered documentswith relevance scores 2, 2, 1, 1
will have higher DCG scores compared with a dif-
ferent search that retrieves four ordered documents
with relevance scores 1, 1, 0, 0. This is problematic,
especially for reranking algorithms, with which we
only care about the relative ordering of documents.

To address this issue, a normalized version of DCG
is used:

NDCGP � DCGP

IDCGP
, (9)

where IDCGP is the ideal DCG at truncation posi-
tion P. The IDCGP for a list is obtained by rank-
ordering all the documents in the list in decreasing
order of relevance. NDCG always takes values between
zero and one. Because NDCG is computed for each
search in the training data and then averaged over all
queries in the training set, no matter how poorly the
documents associated with a particular query are
ranked, it will not dominate the evaluation process
because each query contributes equally to the average
measure. In our analysis, we use NDCG10, that is,
NDCGat position 10 (henceforth referred to asNDCG
for notational simplicity) as our optimization metric.

In Online Appendix C, we present model compari-
sons with other optimization metrics and in Online

Appendix C.3, we consider truncation values other
than 10 for P in NDCGP.

5.3. The Learning-to-Rank Algorithm
We nowdescribe the learning-to-rank algorithm used
to optimize NDCG. To fix ideas and aid exposition,
we first start by describing a much simpler problem:
that of optimizing the ranking of pairs of documents.

5.3.1. Pairwise Learning. In pairwise evaluation, let
U

qm
ijk 6 U

qn
ijk denote the event that URL m should be

ranked higher than n for query q for user i in the kth
search of the jth session. For example, if m has been
labeled highly relevant (rqmijk � 2) and n has been la-

beled irrelevant (rqnijk � 0), thenU qm
ijk 6 U

qn
ijk. Let x

qu
ijk ∈ RF

denote a set of F features for document/URL u in
response to query q for the kth search in the jth session
of user i. The function f (·)maps the feature vector to a
score squijk such that squijk � f (xquijk;w), where w is a set of
parameters that define the function f (·). squijk can be
interpreted as the gain or value associated with
document u for query q for user i in the kth search in
the jth session.
Given two documents m and n associated with a

search, we can write out the probability that docu-
ment m is more relevant than n using a logistic func-
tion as follows:

Pqmn
ijk � P(U qm

ijk 6 U
qn
ijk) �

1

1 + e−σ(s
qm
ijk −sqnijk)

, (10)

where σ determines the shape of this sigmoid func-
tion. Using these probabilities, we can define the log-
likelihood of observing the data or the cross entropy
cost function, C , as follows. This is interpreted as the
penalty imposed for deviations of model-predicted
probabilities from the desired probabilities.

C
qmn
ijk � −P̄qmn

ijk log(Pqmn
ijk ) − (1 − P̄qmn

ijk ) log(1 − Pqmn
ijk ),

(11)
C � ∑

i

∑
j

∑
k

∑
∀m,n

C
qmn
ijk , (12)

where P̄qmn
ijk is the observed probability (in data) thatm

is more relevant than n; that is, U qm
ijk 6 U

qn
ijk or r

qm
ijk > rqnijk.

The summation in Equation (12) is taken in this order:
first, over all pairs of URLs ({m,n}) in the consider-
ation set for the kth search in session j for user i, and
next, over all the searches within session j, then over
all the sessions for user i, and finally over all users.
If the function f (·) is assumed to be known, the cost

C can be minimized using commonly available op-
timizers such as Newton–Raphson or BFGS for the
assumed functional form. This approach can be inter-
preted as the traditional pairwise maximum likelihood
used in themarketing literature. It works well when the
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researcher has a good model of consumers’ behavior
and the goal is causal inference. However, assuming
the functional form f (·) is detrimental when the goal
is prediction because it is impossible to a priori de-
termine the correct functional form of f (·) for complex
decision processes. Manual experimentation to arrive
at an optimal functional form becomes exponentially
difficult as the number of features expands. For ex-
ample, with 293 features, we can have a total of 2293 − 1
possible interactions, and these would expand even
more if we want to allow for nonlinearities for each
feature. To address these challenges, we turn to solu-
tions from the machine-learning literature that infer
both the optimal parameters w and function f (·) from
the data.9

In the context of pairwise evaluation, Burges et al.
(2005) suggest a gradient descent formulation to
minimize the cross-entropy cost function defined
in Equations (11) and (12) as follows.10 Let Sqmn

ijk ∈
{0, 1,−1}, whereSqmn

ijk � 1 ifm ismore relevant than n, –1
if n is more relevant than m, and zero if they are
equally relevant. Thus, we have P̄qmn

ijk � 1
2 (1 + Sqmn

ijk ),
and we can rewrite C

qmn
ijk as

C
qmn
ijk � 1

2
(1 − Sqmn

ijk )σ(sqmijk − sqnijk) + log(1 + e−σ(s
qm
ijk −sqnijk)).

(13)

Note that cross-entropy function is symmetric; it is
invariant to swappingm and n and flipping the sign of
Sqmn
ijk .11 Further, we have

C
qmn
ijk � log(1 + e−σ(s

qm
ijk −sqnijk ) if Sqmn

ijk � 1

C
qmn
ijk � log(1 + e−σ(s

qn
ijk−sqmijk ) if Sqmn

ijk � −1
C

qmn
ijk � 1

2
σ(sqmijk − sqnijk) + log(1 + e−σ(s

qm
ijk −sqnijk)) if Sqmn

ijk � 0.

(14)

The gradient of the cross-entropy cost function is

∂C
qmn
ijk

∂sqmijk
� − ∂C

qnm
ijk

∂sqnijk
� σ

1
2
(1 − Sqmn

ijk ) − 1

1 + e−σ(s
qm
ijk −sqnijk)

( )
.

(15)

Wecannowemployastochasticgradientdescentalgorithm
to update the parameters, w, of the model, as follows:

w → w − η
∂C

qmn
ijk

∂w
� w − η

∂C
qmn
ijk

∂sqmijk

∂sqmijk
∂w

+ ∂C
qnm
ijk

∂sqnijk

∂sqnijk
∂w

( )
,

(16)

where η is a learning rate specified by the researcher.
The advantage of splitting the gradient as shown in
Equation (16) instead of working with ∂C

qmn
ijk /∂w is

that it speeds up the gradient calculation by allowing

us to use the analytical formulations for the compo-
nent partial derivatives.
In addition, factorization can be used to improve

speed as follows:

∂C
qmn
ijk

∂w
� λ

qmn
ijk

∂sqmijk
∂w

− ∂sqnijk
∂w

( )
, (17)

where

λ
qmn
ijk � ∂C

qmn
ijk

∂sqmijk
� σ

1
2
(1 − Sqmn

ijk ) − 1

1 + e−σ(s
qm
ijk −sqnijk)

( )
. (18)

Given this cost and gradient formulation, we can use
any machine-learning model (regression trees, neural
networks) to minimize the cost function and infer
both the optimal f (·) and w parameters.

5.3.2. LambdaRank: Optimizing for NDCG. Now we
explain how this method can be extended to a more
complex optimization metric: NDCG. Unlike the
continuous cross-entropy cost function described in
Equation (12), NDCG is discrete. This makes its op-
timization challenging. For instance, if wewere to use
an optimizer that uses continuous scores on NDCG,
then we would find that the relative positions of
two documents (based on NDCG) would not change
unless there are significant changes in their rank
scores. Sowe could obtain the same rank orderings for
multiple parameter values of the model. The Lamb-
daRank algorithm addresses this challenge (Burges
et al. 2006, Wu et al. 2010).
The speed and versatility of the pairwise learner

comes from its gradient descent formulation, which
requires the loss or cost function to be twice differ-
entiable in model parameters. Ideally, we would like
to preserve the gradient descent formulation because
of its attractive convergence properties while modi-
fying it to work for a discrete optimization metric
(such as NDCG).12 The main insight of LambdaRank
is that we can directly train amodel without explicitly
specifying a cost function as long as we have gradi-
ents of the cost and these gradients are consistentwith
the cost function that we wish to minimize.
The gradient functions,λqmn

ijk s in Equation (18), can be
interpreted as directional forces that pull documents
in the direction of increasing relevance. If a document
m is more relevant than n, thenm gets an upward pull
of magnitude |λqmn

ijk |, and n gets a downward pull of
the same magnitude. LambdaRank expands this idea
of gradients functioning as directional forces by
weighing them with the change in NDCG caused by
swapping the positions of m and n as follows:

λ
qmn
ijk � −σ

1 + e−σ(s
qm
ijk −sqnijk)

|ΔNDCGqmn
ijk |. (19)
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Note thatΔNDCGqmn
ijk � ΔNDCGqmn

ijk � 0whenm and n

have the same relevance, so λ
qmn
ijk � 0 in those cases.

(This is the reason why the term σ
2 (1 − Sqmn

ijk ) drops
out.) Thus, the algorithm does not spend effort swap-
ping two documents of the same relevance.

Given that we want to maximize NDCG, suppose
that there exists a utility or gain function C

qmn
ijk that

satisfies the preceding gradient equation. (We refer to
C

qmn
ijk as a gain function in this context as opposed to a

cost function because we are looking to maximize
NDCG.) Then, we can continue to use gradient de-
scent to update our parameter vector w as follows:

w → w + η
∂C

qmn
ijk

∂w
. (20)

Using Poincare’s lemma and a series of empirical re-
sults, Yue and Burges (2007) and Donmez et al. (2009)
have shown that the gradient functions defined in
Equation (19) correspond to a gain function that maxi-
mizes NDCG. Thus, we can use these gradient formu-
lations and follow the same set of steps as we did for
pairwise learner to maximize NDCG (or mean average
precision [MAP]andotherdiscrete optimizationmetrics).

LambdaRank can be used in conjunction with any
machine-learning algorithm (e.g., neural nets, CART,
gradient-boosted regression trees). The most success-
ful implementation of LambdaRank uses stochastic
gradient-boosted trees as the learning algorithm and
is referred to asLambdaMART (Wu et al. 2010, Chapelle
and Chang 2011).13 Stochastic gradient boosting with
trees is a machine-learning algorithm that models a
dependent or output variable as a linear combination
of a set of shallow regression trees (a process known
as boosting). Gradient-boosted trees have many good
properties. They are insensitive to monotone trans-
forms in input variables, robust to outliers and missing
data, and perform automatic variable selection (Breiman
et al. 1984, Elith et al. 2008, Murphy 2012). They have
been empirically shown to be the best classifier avail-
able (Caruana and Niculescu-Mizil 2006, Hastie et al.
2009). Please see Online Appendix B for a detailed
discussion of the method.

5.4. Model Training and Tuning
The performance of machine-learning models depends
on a set of tunable parameters. In the case of Lambda-
MART, the researcher has control over the number of
regression trees used, the number of leaves in a given
tree, and the type of normalization employed on the
features, etc. It is important to ensure that the tuning
parameters lead to a robust model. A nonrobust model
usually leads to overfitting; that is, it leads to higher
improvement in the training data (in-sample fit) but
lower improvements in validation and test data sets

(out-of-sample fits). We take two key steps to ensure
that the final model is robust. First, we normalize the
features using their z-scores to make the feature scales
comparable. Second, we experimented with a large
number of specifications for the number of trees and
leaves in a tree and found that 1,000 trees and 20 leaves
per tree was the most robust combination.
In our analysis, we use the RankLib implementation

of LambdaMART (Dang 2011). RankLib is well par-
allelized and offers an exhaustive set of evaluation
metrics and learning to rank algorithms,which allows
usperformmodel comparisons. Thesepropertiesmake it
ideal for our purpose. In future, researchersmaywant to
also consider newer implementations of boosted re-
gression trees, such as XGBoost, which implements
a version of Newton boosting instead of stochastic
gradient boosting (Chen and Guestrin 2016). Please
see Rafieian and Yoganarasimhan (2019) for a mar-
keting application that uses XGBoost.

6. Returns to Personalization
We apply our framework to data from Yandex and pre-
sent a series of main results. In Section 6.1, we evaluate
the returns from personalization on three metrics of
search quality. Then in Section 6.2, we quantify the value
of different feature classes. In Section 6.3, we demon-
strate the robustness of our findings using a series of
tests and present results on the scalability of our approach.

6.1. Evaluation of Gains
There are two broad ways to evaluate the gains from
personalization. First, we could simply consider the
improvement in model fit based on the optimization
metric (NDCG) used to estimate themodel. However,
optimization metrics (e.g., NDCG, log-likelihood, and
others that we consider in Section 6.3.1) are somewhat
opaque when it comes to evaluating the substantive
improvements in search experience from the perspec-
tive of a marketing manager. Therefore, in addition to
NDCG, we also consider two managerially relevant
evaluation metrics: (1) AERC and (2) change in click
through rates by position (ΔCTR@p and ΔHDCTR@p).

6.1.1. Average Error in the Rank of a Click. Intuitively,
in a well-optimized list, clicks occur higher up in the list,
whereas in a poorly optimized list (which ranks relevant
documents lower down) clicks occur lower in the list.
Thus, measures based on the position of clicks within a
list are often used to evaluate the performance of ranking
algorithms in the recommendation-systems literature
(Ricci et al. 2011). We define a similar metric for our
context: AERC. This metric captures the extent of error
we see in the ranking of clicked documents.
First, we define the “error in rank” or ERC for a

clicked document u in list L (P, i, j, k, q) of P docu-
ments, which is generated in response to the kth search
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in the jth session by user iwhen the user uses query q.
ERC for u is the absolute difference between u’s current
position in list L (P, i, j, k, q) and its position in a com-
pletely optimized list L ∗(P, i, j, k, q). Mathematically,

ERC(u,L (P, i, j, k, q)) � Ind(rquijk 	� 0) · |p(u,L (P, i, j, k, q))
− p(u,L ∗(P, i, j, k, q)|,

(21)

where Ind(rquijk 	� 0) is an indicator for whether docu-
ment u was clicked or not, that is, whether it had
relevance greater than zero. Then,AERC for a listL of
results in a SERP is the average of ERCs for all the
clicked documents observed in that list. That is,

AERC(L (P, i, j, k, q)) �
∑
u∈L

ERC(u,L (P, i, j, k, q))∑
u∈L

Ind(rquijk 	� 0) .

(22)

An illustration of AERC for two lists is shown in
Figure 10. The AERC for the entire data are the average
of AERC(L ) over all the lists observed in the data.

Improvement in AERC: With personalization, we
find thatAERC improves by 9.43% comparedwith the
baseline. This is a significant gain and highlights the
effectiveness of our personalization algorithm. It sug-
gests that the positions of clicks migrate upward when
ranking is personalized and that the average error in
how documents are ranked reduces by a good amount.

These improvements are significant in the search
industry. Recall that the baseline ranking captures a
large number of factors, including the relevance of
page content, page rank, and the link structure of
the web pages, which are not available to us. It is,

therefore, notable that we are able to further improve
on the ranking accuracy by incorporating personalized
user-/session-specific features.

6.1.2. Change in Click-Through Rate by Position. Next,
we consider another metric that is important from the
firm’s perspective: change in click-through rates. User
satisfaction depends on the search engine’s ability to
serve relevant results at the top of a SERP. So an al-
gorithm that increases CTRs for top positions is
valuable. We, therefore, examine how position-based
CTRs are expected to change with personalization
compared with the current nonpersonalized ranking.
We consider two types of metrics within this con-

text: (1) ΔCTR@p, change in CTR at position p, and (2)
ΔHDCTR@p, change in high-relevance CTR (i.e., clicks
with r � 2) at position p. Because we are solving a
“reranking” or reordering problem, the total CTR or
HDCTR for the entire list remains constant, and the
sum of the changes in CTRs across all positions is
zero (i.e.,

∑10
p�1 ΔCTR@p � 0 and

∑10
p�1 ΔHDCTR@p � 0).

However, with a better ranking algorithm, we should
expect the documents to be reordered such that more
relevant documents are displayed higher up. Thus, the
CTRs for the topmost position should increase at the
expense of lower positions.
Improvement in CTR andHDCTR: Figures 11 and 12

summarize our findings. The y-axis depicts the dif-
ference in CTRs (in percentage) after and before per-
sonalization, and the x-axis depicts the position. When
we consider all clicks, CTR for position 1 increases by
3.5%, which is substantial. This increase mainly comes
from positions 3 and 10. The patterns are similar for
HDCTR with position 1 seeing an increase of more
than 3.2%.

Figure 10. Example of AERC for Two Lists with the Same Set of Documents

Notes. The list on the left is unoptimized andhasAERC� 1.5,whereas the right list is optimized (the documents are listed in the order of nonincreasing
relevance) and has AERC � 0. For both lists, on the left, we show the current position of clicked documents and the optimal position on the right.
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Overall, we find that deploying a personalization al-
gorithm would lead to an increase in clicks for higher
positions, thereby reducing the need for consumers to
scroll further down the SERP for relevant results. This, in
turn, can lead to higher user satisfaction and reduce
switching, both ofwhich are valuable outcomes from the
search engine’s perspective.

6.1.3. Change in NDCG. Model fit, as measured by our
optimization metric NDCG, also improves with per-
sonalization. The baseline NDCG for the data is 0.7937.
With personalized ranking, NDCG improves to 0.8121,
which represents a 2.32% improvement over the base-
line. Note that NDCG uses a log scale, which masks the
full scale of improvement in rankings (which were more
evident in the two metrics earlier).

Our overall improvement in NDCG is higher than
that achieved by winning teams from the Kaggle con-
test (Kaggle 2014). This is in spite of the fact that
the contestants used a longer data set for training their
model.14 We conjecture that this is due to our use of a
comprehensive set of personalized features in con-
junction with the parallelized LambdaMART algorithm
that allows us to exploit the complete scale of the data.
We refer interested readers to Masurel et al. (2014),
Song (2014), and Volkovs (2014), the technical reports
by the top three winning teams, which discuss their
respective methodologies.

In sum, we find that personalization leads to a
“better” ranking of documents—both on manageri-
ally relevant metrics, such as AERC, ΔCTR@p, and
ΔHDCTR@p, and on optimization/model-fit mea-
sures, such as NDCG. Nevertheless, an important
caveat here is that, if users react adversely to per-
sonalization (say because of privacy concerns) and
reduce the extent to which they use the search engine

and/or click on search results, the gains in the field
can be lower than those documented in the paper.
Of course, if users particularly like personalization and,
therefore, choose to click more on the top results, the
gains can be more positive than what we present here.

6.2. Value of Feature Classes
Next, we examine the source of the improvements
discussed. Using a comparative analysis, we quantify
the value of different types of features in improving
search results. We start with the full model, then remove
a specific category of features and evaluate the loss in
NDCG prediction accuracy as a consequence of the re-
moval. The percentage loss is defined as

PercentageLoss � NDCGfull −NDCGcurrent

NDCGfull −NDCGbase
× 100. (23)

The results from this experiment are presented in
Table 4. Thefirst two rows show theNDCG for the full
model and the baseline model.
We first discuss the value of the feature sets de-

scribed in Section 4.2. Eliminating global features (FG)
results in a loss of 33.15% of the improvement that we
gain from using the full feature set. This suggests that
the interaction effects between global and personal-
ized features plays an important role in improving the
accuracy of our algorithm. Next, we find that elimi-
nating user-level features results in a loss of 53.26%.
Thus, more than 50% of the improvement comes from
the personalized user history. In contrast, eliminating
within session–level features while retaining across-
session user-level features results in a loss of only
3.81%. This implies that across-session features are
more valuable than within-session features and that
user behavior is stable over longer time periods. Thus,
search engines can forgo real-time, session-level

Figure 11. (Color online) Change in CTR as a Function of
Position

Note. CTRs are expressed in percentages; therefore, ΔCTRs are also
expressed in percentages.

Figure 12. (Color online) Change in HDCTR as a Function
of Position

Note. HDCTRs are expressed in percentages; therefore, ΔHDCTRs
are also expressed in percentages.
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personalization (which is costly in computing time
and deployment) without too much loss in prediction
accuracy.

The elimination of features based on the domain
name and URL also results in a significant loss in
prediction accuracy. This is because users prefer search
results from domains and URLs that they trust. Search
engines can, thus, track user preferences over domains
and use this information to optimize search ranking.
Query-specific features are also quite informative (8.15%
loss in accuracy).

Next, in the last five rows of Table 4, we examine
the value of feature sets based on the function used
to generate them. Here, we find click features are
the most valuable; there is a 28.8% loss in accuracy
when we exclude them. Click features constitute all
features derived from the functions CTR, HDCTR,
WCTR, PosnCTR, ClickProb, NumSearchResults, and
NumClickedURLs. Click features provide information
on the users’ past clicking and dwelling behavior. The
high loss from excluding them suggests that users
exhibit persistence in clicking behavior—across both
positions (some users may only click on the first two
positions, and others may click on multiple positions)
as well as URLs and domains. (For a given query,
some users may exhibit persistent preference for
clicking on certain URLs; e.g., some users might be
using a query for navigational purposes, and others
might be using it to get information/news.) Overall,
this suggests that history on past clicking behavior
can inform us of these proclivities and help us im-
prove the results shown to different users.

Within click features, dwell features, computed
based on the dwell times associated with user clicks,
HDCTR and ADT are the most effective (leading to a
loss of 4.89% in NDCG when dropped). Position
features (computed from functions PosnCTR and
AvgPosn) aremarginally useful. Finally, skip features,

computed using the function SkipRate, and click
features computed based on position and/or order of
click (using functions WCTR and PosnCTR) are the
least effective.
In sum, these findings give us insight into the rel-

ative value of different types of features. This can help
businesses decide which types of information to in-
corporate into their search algorithms and which types
of information to store for longer periods of time.

6.3. Robustness Checks and Scalability
6.3.1. Robustness Checks. We perform a series of
tests and analyses to confirm the robustness of our
findings. We discuss them briefly here and refer readers
to Online Appendix C for details.
First, we consider the robustness of our results to

the optimization metric used. We consider four other
commonly used metrics in the learning to rank lit-
erature: DCG, MAP, reciprocal rank, and expected
reciprocal rank. Online Appendix C.1 discusses these
metrics in detail, and Table C.1 shows the percentage
improvement in both AERC and NDCG on the test
data compared with the baseline for models using
each of these metrics. The reason we include AERC is
that one could argue that models that didn’t opti-
mize NDCG will perform poorly when evaluated on
NDCG. However, AERC is a substantive metric that
none of the models directly optimizes and is, there-
fore, a more objective evaluation criterion. Overall,
we find that the model using NDCG offers the best
improvement. The other metrics, however, come close,
suggesting that our substantive results are not driven by
the choice of the metric.
Second, we examine whether other learning algo-

rithms offer better performance compared with Lambda-
MART. We consider both standard econometric
methods as well as other machine-learning models.
We consider seven other methods: (1) a logit model
that optimizes the pairwise maximum likelihood;
(2) Ranknet, a pairwise algorithm that uses neural
networks for training; (3) RankBoost, a pairwise algo-
rithm that uses boosted regression trees; (4) AdaRank
and (5) coordinate ascent, two other commonly used
learning-to-rankalgorithms; (6) LambdaRankwithCART;
and (7) LambdaRank with random forests. The last two
use the same LambdaRank algorithm that we use, but
the former uses only one tree, whereas the latter uses
random forests to learn the underlying f (·). We find that
LambdaMART offers the best performance compared
with all these models when compared on percentage
gains in AERC andNDCG (see Table C.3 in the online
appendix).
Third, we examine what happens if we assume that

consumers only look at the top P positions, where
P< 10. We train and test the model on positions P �
3, 5, 8 in addition to P � 10 and present the results in

Table 4. Loss in Prediction Accuracy When Different
Feature Sets Are Removed from the Full Model

NDCG % loss

Full set (all features) 0.8121
All features except SERP 0.7937 100
Global features (FG) 0.8060 33.15
User features (FP) 0.8023 53.26
Session features (FS) 0.8114 3.80
URL features (FU) 0.8101 10.87
Domain features (FD) 0.8098 12.50
Query features (FQ) 0.8106 8.15
Term features (FT) 0.8119 1.09
Click features 0.8068 28.80
Dwell features 0.8112 4.89
Position features 0.8116 2.72
Skip features 0.8118 1.63
Posn-order-click features 0.8120 0.54
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Table C.4 in Online Appendix C.3. At a high level, we
find that there are positive returns to personalization
even if we constrain our analysis to only the top few
positions. However, the extent of improvement is
monotonically increasing in P because of two reasons.
First, when we train only on the top P positions,
we throw away the data (and information) in posi-
tions below P. Second, recall that personalization
increases the CTR for position 1 by drawing from
lower positions (see Figure 11). When we ignore po-
sitions below P, we forgo the possibility of migrat-
ing relevant documents from positions below P to
the top P positions, which, in turn, reduces the re-
turns to personalization. We refer readers to Online
Appendix C.3 for a more detailed discussion.

6.3.2. Scalability. Finally, we consider the scalability
of our framework. For the full data set, feature gener-
ation takes about 83 minutes on a single-core computer,
training takes more than 11 days, and testing takes only
35 minutes. These numbers suggest that training is the
primary bottleneck in implementing the algorithm, espe-
cially if the search engine wants to update the trained
model on a regular basis. So we parallelize the training
module over a 32-core Amazon EC2 server. This reduces
the training time to about 8.7 hours. Overall, with suf-
ficient parallelization, we find that the framework can
be scaled to large data sets in reasonable time frames.
Please see Online Appendix D for a detailed discussion.
In Section 8, we focus on improving the scalability
further using feature selection.

7. Heterogeneity in Returns
to Personalization

We now examine the role of two types of heteroge-
neity in returns to personalization:

• User-level heterogeneity: In Section 7.1, we ex-
amine how the returns to personalization vary as a
function of user history.

• Query-level heterogeneity: In Section 7.2, we
examine how the returns to personalization vary with
the type of the query used.

In both these sections, we quantify the returns to
personalization as the percentage change in AERC,
the substantive metric used to evaluate search quality
defined in Section 6.1.1. The qualitative results remain
the same if we instead show the results in terms of
NDCG improvements.

7.1. Value of Users’ Search History
What is the value of user history data in improving
search quality? Firms are struggling with the decision
of how much history to store, especially because
storage of massive personal data sets can be quite
costly. Moreover, there are privacy costs associated
with storing and using user-level data. Although

these are less tangible, they are nevertheless impor-
tant to the firm’s long-run relationship with its cus-
tomers. By quantifying the improvement in search
results for each additional piece of past history, we
can provide firms with tools to decide whether the
costs associated with storing longer histories are
offset by the improvements in consumer experience.
Even though we have less than 26 days of history,

on average, the median query (by a user) in the test
data set has 49 prior queries, and the 75th percentile
has 100 prior queries.15 We find that this accumulated
history pays significant dividends in improving
search quality. In Figure 13, when we set the lower
bound for past queries to zero, we get the standard
9.43% improvement over the baseline as shown by
the point on the y-axis. When we restrict the test data
to only contain queries for which the user has issued
at least 50 past queries (which is close to the median),
we find that the AERC improves by more than 11%.
Whenwe increase the lower bound to 100 queries (the
75th percentile for our data), we see an even larger
improvement inAERC (nearly12.5%over the baseline).
In Figure 14, we present a similar analysis with

upper bounds on the length of prior user history.
When we set the upper bound on the number of past
queries to 10, personalization leads to a 6.68% in-
crease in AERC. This suggests that even small his-
tories lead to significant improvements in personalized
search quality. Whenwe increase the upper bound to 50
queries, AERC improves by nearly 8%. Thus, similar to
the lower-bound analysis, there is a monotonic increase
inAERCasa functionof the lengthof searchhistory. This
reaffirms the value of storing and using personalized
browsing histories to improve users’ search experience.

7.2. Query-Level Heterogeneity and Returns
to Personalization

We consider two types of query-level heterogeneity:
(1) heterogeneity in the intent of the query (as quantified

Figure 13. (Color online) Percentage Improvement in
AERC for Different Lower Bounds on the Number of Prior
Searches by the User
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by the number of unique URLs clicked for a query) and
(2) heterogeneity in the past performance of the query.

7.2.1. Impact ofQuery Intent onPersonalization. Queries
can be classified based on the number of unique URLs
that are clicked on in response to a query. For ex-
ample, if all users who search for “cnn” always click
on cnn.com, then the number of unique URL clicks for
this query would be one. Instead, if we observe clicks
to cnn.com and as well the Wikipedia page on
CNN, then the number of unique URLs clickedwould
be two. We now examine whether the returns to
personalization vary across queries with different
numbers of unique URLs clicked. For each search
query in the test data, we first calculate the number of
unique URL clicks that it received in the global data
(from days 1–25). We then classify queries based on
“number of unique prior clicks” and plot the gains in
AERC for queries by this metric in Figure 15.

Wefindqueries that have a larger number of unique
URLs clicked on benefit more from personalization.
When we restrict the data to queries that received
clicks to at least one URL in the past, AERC improves
by more than 14%.16 As we increase the lower bound
on the number of unique prior URL clicks, AERC
increases monotonically, suggesting personalization.
In fact, queries that receive clicks to 10 ormore unique
URLs see more than 18% increase in AERC. These
findings are particularly interesting because the number
of unique URL clicks metric reveals useful information
about the type of query as described.

Search queries can be classified into three groups
based on user intent: transactional, informational,
and navigational (Jansen et al. 2008). In transactional
queries, the user is looking to do something (e.g., “buy
tea”); in informational queries, the user is looking to
find information on a topic (e.g., “tea-growing re-
gions”); and in navigational queries, the user is using
the search engine to navigate to a website instead of

typing in the URL directly (e.g., “numi tea”). In-
formally, this classification system is known as do-
know-go. Because queries are anonymized in our
data, we cannot directly classify them semantically.
However, the number of unique URL clicks received
metric can be interpreted as a measure of the extent
to which a query is navigational, transactional, or
informational—queries that receive clicks to just one
unique URL or a few unique URLs are more likely to
be navigational (e.g., “cnn”), transactional queries are
likely to have a slightly larger set of unique URL
clicks, and informational queries are likely to have the
highest number of unique URLs clicked because users
are often looking for different types of information
even if they use the same keywords (as in the “java”
example).
We, thus, find that navigational queries benefit the

least from personalization, whereas informational
queries benefit the most. More broadly, our results
suggest that the search engine may want to weigh the
costs and benefits of personalization through the lens
of user intent.17

7.2.2. Impact of Query’s Past Performance on Person-
alization. Queries can also be categorized based on
their prior performance. For instance, queries that, on
average, receive clicks to top-ranked documents can
be interpreted as well-performing queries, whereas
queries that receive clicks to lower-ranked documents
are notwell optimized. In this section,we examine the
returns to personalization as a function of the query’s
past performance.
For each search query in the test data, we define the

prior average click position as the average position of
its clicks in the global data (from days 1 to 25). For
example, if “buy tea” was searched for twice in the
global data and it received two clicks at positions 1
and 2, respectively, this metric is 1.5. This metric
quantifies the prior performance of the query.

Figure 14. (Color online) Percentage Improvement in
AERC for Different Upper Bounds on the Number of Prior
Searches by the User

Figure 15. (Color online) Percentage Improvement in
AERC for Different Lower Bounds on the Number of Prior
Unique URL Clicks (in the Global Data) for the Query Used
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We find that the value of personalization as a
function of the query’s past performance is initially
increasing and then constant (see Figure 16).Whenwe
set the lower bound on the prior average click position
to one, we find that AERC improves by more than
14%.18 This number continues to increase until the
prior average click position reaches six, atwhich point
the AERC improvement is a substantial 22%. After that,
for queries with a prior average click position of six or
lower, the AERC improvement hovers around 22%.

In sum, we find that personalization, although
generally useful, has considerable value for a subset
of queries: informational queries and queries that are
currently performing poorly. Therefore, even if per-
sonalization is too costly to apply broadly, the search
engine can benefit by selectively personalizing certain
subsets of searches.

8. Feature Selection
We now discuss the third and final step of our machine-
learning approach. As discussed in Section 6.3.2, even
when parallelized on 32-core servers, personalization
algorithms can be very computing-intensive. There-
fore, we now examine feature selection, by which we
optimally choose a subset of features that maximize
the predictive accuracy of the algorithm with minimal
loss in accuracy. We start by describing the back-
ground literature and frameworks for feature selec-
tion and then discuss its application to our context,
followed by the results.

Automatic feature selection is often used in su-
pervised learning models because of two reasons
(Guyon and Elisseeff 2003). First, it can provide a
faster and cost-effective, or a more efficient, model by
eliminating less-relevant features with minimal loss
in accuracy. Efficiency is particularly relevant when
training large data sets such as ours. Second, it provides
more comprehensible models that offer a better un-
derstandingof theunderlyingdata-generatingprocess.19

The goal of feature selection is to find the smallest
set of features that can provide a fixed predictive accu-
racy. In principle, this is a straightforward problem be-
cause it simply involves an exhaustive search of the
feature space. However, even with a moderately large
number of features, this is practically impossible. With F
features, an exhaustive search requires 2F runs of the
algorithm, which is exponentially increasing in F. In
fact, this problem is known to be NP-hard (Amaldi
and Kann 1998).

8.1. Wrapper Approach
Thewrappermethod addresses this problem by using
a greedy algorithm. We describe it briefly here and
refer interested readers to Kohavi and John (1997) for
a detailed review. Wrappers can be categorized into
two types: forward selection and backward elimination.

In forward selection, features are progressively added
until a desired prediction accuracy is reached or until
the incremental improvement is very small. In contrast,
a backward-elimination wrapper starts with all the
features and sequentially eliminates the least valuable
features. Both these wrappers are greedy in the sense
that they do not revisit former decisions to include
(in forward selection) or exclude features (in back-
ward elimination). In our implementation, we employ
a forward-selection wrapper.
To enable a wrapper algorithm, we also need to

specify a selection as well as a stopping rule. We use
the robust best-first selection rule (Ginsberg 1993),
wherein the most promising node is selected at every
decision point. For example, in a forward-selection
algorithm with 10 features, at the first node, this al-
gorithm considers 10 versions of themodel (eachwith
one of the features added) and then picks the feature
whose addition offers the highest prediction accuracy.
Further, we use the following stopping rule, which is
quite conservative. Let NDCGbase be the NDCG from
the base model currently used by Yandex, which only
uses SERPRank. Similarly, let NDCGcurrent be the im-
proved NDCG at the current iteration and NDCGfull
be the improvement that can be obtained from using
a model with all the 293 features. Then our stopping
rule is

PercentageLoss � NDCGcurrent −NDCGbase

NDCGfull −NDCGbase
> 0.95.

(24)

According to this stopping rule, the wrapper algo-
rithm stops adding features when it achieves 95% of
the improvement offered by the full model.
Wrappers offer many advantages. First, they are

agnostic to the underlying learning algorithm and
the accuracy metric used for evaluating the predictor.
Second, greedy wrappers have been shown to be

Figure 16. (Color online) Percentage Improvement in
AERC for Different Lower Bounds on Prior Average Click
Position (in the Global Data) of the Query Used
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computationally advantageous and robust against
overfitting (Reunanen 2003).

Wrappers are greedy algorithms that offer computa-
tional advantages. They reduce the number of runs of
the training algorithm from 2F to F(F+1)

2 . Although this is
significantly less than 2F, it is still prohibitively expen-
sive for large feature sets. For instance, in our case, this
would amount to 42,778 runs of the training algorithm,
which is not feasible. Hence, we use a coarse wrapper
that runs on sets or classes of features as opposed to
individual features. We use domain-specific knowledge
to identify groups of features and perform the search pro-
cess on these groups of features as opposed to individual
ones. This allows us to limit the number of iterations
required for the search process to a reasonable number.

8.2. Feature Classes for Wrapper
Recall that we have 293 features. We classify these
into 39 classes as follows:

First, we use the 36 classes of features generated by
the functional inputs θ1, θ2, and θ3. (Recall that
Dim(θ1) × Dim(θ2) × Dim(θ3) � 6 × 2 × 3 � 36.) The
seven functions—Listings, AvgPosn, CTR, HDCTR,
WCTR, PosnCTR, and ADT—generate 7 × 36 � 252
features, and SkipRate contributes 18 features (be-
cause it is only specified at the URL level). Thus, 36
classes cover thefirst 270 features listed in TableA.1 in
the online appendix.

Next, we classify features 271–278, which consist of
AggListings, AggCTR, AggHDCTR, and AggADT at
user and session levels, aggregated over all URLs and
domains, into the 37th class. The 38th class consists of
user-specific click probabilities for all 10 positions,
aggregated over the user history (features 279–288 in
Table A.1 in the online appendix). The remaining fea-
tures 289–292 form the 39th class. Note that SERPRank
is not classified under any class because it is included in
all models by default.

8.3. Results: Feature Selection
We use a search process that starts with a minimal
singleton feature set that comprises just the SERPRank
feature. This produces the baseline NDCG of 0.7937.
Thenwe sequentially explore the feature classes using

the first-best selection rule. Table 5 shows the results
of this exploration process along with the class of
features added in each iteration. We stop at iteration
six (by which time, we have run the model 219 times),
when the improvement in NDCG satisfies the con-
dition laid out in Equation (24). The improvement in
NDCG at each iteration is also shown in Figure 17
along with the maximum NDCG obtainable with a
model that includes all the features. Although the
condition for the stopping rule is satisfied at iteration
6, we show the results until iteration 11 in Figure 17 to
demonstrate the fact that the improvement in NDCG
after iteration 6 is minimal. Note that at iteration six,
the pruned model with 47 features produces an
NDCG of 0.8112, which equals 95% of the improve-
ment offered by the full model. This small loss in
accuracy brings a huge benefit in scalability as shown
in Figures 18 and 19. When using the entire data set,
the training time for the pruned model is ≈15% of the
time it takes to train the full model. Moreover, the
pruned model scales to larger data sets much better
than the full model. For instance, the difference in
training times for the full and pruned models is small
when performed on 20% of the data set. However, as
the data size grows, the training time for the full
model increasesmore steeply than that for the pruned
model. Although training time is themain time sink in
this application, training is only done once. In con-
trast, testing runtimes have more consequences for
the model’s applicability because testing/prediction
has to be done in real time for most applications. As
with training times, we find that the pruned model
runs significantly faster on the full data set (≈ 50%) as
well as scaling better with larger data sets. Recall that
we have 800,167 data points in the test data and the
testing time for the full data is slightly more than 1,000
seconds. So, from an individual consumer’s perspective,
personalization leads to a mere 1.2-millisecond delay
in seeing search results. This attests to the real-time
scalability of our personalization framework.
Together, these findings suggest that feature se-

lection is a valuable and important step in reducing
runtimes andmaking personalization implementable
in real-time applications for large data sets.

Table 5. Set of Features Added at Each Iteration of the Wrapper Algorithm and the
Corresponding NDCGs

Iteration number Number of features Feature class added at iteration NDCG

0 1 SERPRank 0.7937
1 9 User–Query–URL 0.8033
2 17 Global–Query–URL 0.8070
3 24 User–Null–Domain 0.8094
4 32 Global–Null–URL 0.8104
5 40 User-session–Null–URL 0.8108
6 47 Global–Null–Domain 0.8112
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9. Conclusion and Future Research
Personalization of digital services remains the holy grail
of marketing. In this paper, we study an important per-
sonalization problem: that of search rankings in the
context of online search.

We present a three-pronged machine-learning frame-
work that improves the ranking of search results by in-
corporating a users’ personal search history. We apply
our framework to data from the premier Eastern
European search engine, Yandex, and provide evi-
dence of substantial improvements in search quality
using personalization. We quantify the heterogeneity
in returns to personalization as function of user his-
tory, query type (do-know-go), and query past per-
formance. We also show that our framework can
perform efficiently at scale, making it suitable for real-
time deployment.

Our paper makes five key contributions to the mar-
keting literature. First, it presents a general machine-
learning framework that marketers can use to rank
recommendations using personalized data in many
settings. Second, it presents empirical evidence in

support of the returns to personalization in the online
search context. Third, it provides managerial in-
sights on the role of heterogeneity in user history and
query type on the returns to personalization. Fourth, it
demonstrates how Big Data can be leveraged to im-
prove marketing outcomes without compromising
the speed or real-time performance of digital appli-
cations. Finally, it provides insights on howmachine-
learning methods can be adapted to solve important
marketing problems that have been technically un-
solvable so far (using traditional econometric or an-
alytical models).
Nevertheless, our paper overlooks a bunch of issues

that serve as excellent avenues for future research.
First, the use of individual-level user data (albeit
anonymized) raises questions regarding privacy. It
is not clear how users trade off the loss in privacy
with the gains from an improved search experience.
Experimental or conjoint research that measures user
preferences over these experiences can helpmanagers
decide the implications of deploying personaliza-
tion algorithms. Second, our model’s predictions are
predicated on the assumption that consumers’ click
and search behaviors will continue to be the same
even after we deploy personalized algorithms. How-
ever, this may not be the case. For example, Goldfarb
and Tucker (2011) show that consumers alter their
response rates when advertisements are perceived
to intrude on privacy. Third, because we have not
deployed the algorithm in the field, we cannot com-
ment on long-term consumer satisfaction metrics and
switching behavior. These limitations can be addressed
by running a large-scale field experiment that shows
personalized results to a sample of users and compares
their behavior with that of users who are shown non-
personalized results.Webelieve that such a studywould
be of immense value to the field. More broadly, we hope
ourworkwill spur research on the application ofmachine-
learning methods to not only personalization-related
issues, but also on a broad array of marketing issues.

Figure 18. (Color online) Runtimes for Training the Full and
Pruned Models on Different Percentages of the Data

Figure 19. (Color online) Runtimes for Testing the Full and
Pruned Models on Different Percentages of the Data

Figure 17. (Color online) Improvement in NDCG at Each
Iteration of the Wrapper Algorithm

Note. The tick marks in the solid line refer to the iteration number,
and the dotted line depicts themaximumNDCGobtainedwith all the
features included.
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Endnotes
1Google launched personalized search a few years back, customizing
results based on a user’s IP address and cookies (individual-level
search and click data), using up to 180 days of history (Google Official
Blog 2009). Bing and Yandex have also experimented with person-
alization (Sullivan 2011, Yandex 2013).
2The exact dollar amount can vary with the exchange rate. Yandex
reported a 05.5 million revenue for Q3 in 2016 based on the exchange
rates from October 27th 2016.
3Queries are not the same as keywords, which is another term used
frequently in connection with search engines. Please see Gabbert (2011)
for a simple explanation of the difference between the two phrases.
4 Search engines typically ignore common keywords and preposi-
tions, such as “of’,” “a,” “in,” used in searches because they tend to be
uninformative. Such words are called “stop words.”
5As explained in Section 3.3, users observed early in the data have
no/very little past history because we have a data snapshot for fixed
time period (27 days) and not a fixed history for each user. Hence,
following Yandex’s suggestion, we run the personalization algorithm
for users observed in the last two days. In practice, of course, firms
don’t have to work with snapshots of data; rather, they are likely to
have longer histories stored at the user level.
6K-fold cross-validation is another method to split data and perform
model selection. (See Steckel and Vanhonacker (1993) for an example
in marketing.) However, it suffers from two key drawbacks. First, as
K increases, it becomes very computationally expensive. Second,
because a given data point is used for both training and testing, the
risk of overfitting is high.When a cross-validatedmodel is tested on a
completely new sample, it usually underperforms. So a three-way
split is the right approach in data-rich situations, whereas K-fold
cross-validation is better when the data are moderate/small. Because
our data set is very large, we use the first-best approach of the three-
way split. We refer interested readers to chapter 7 in Hastie et al.
(2009) for a detailed discussion of this issue.
7We observe a total of 1,174,096 users in days 26–27, who participate
in 2,327,766 sessions. Thus, each data set (training, validation, and
testing) has approximately one third of these users and sessions in it.
8Although it is possible to consider a larger number of terms, we stop
with four for a few reasons. First, more than 81.59% of the queries
have four or fewer terms. So the first four terms are sufficient to
capture most term-specific information in the data (see Table 2).
Second, this allows us to keep the size of the feature set reasonable.
Third, and most importantly, when we experimented with higher-order
terms, we did not find any improvement in the model fit or results.
9 In standard marketing models, ws are treated as structural pa-
rameters that define the utility associated with an option. So their
directionality and magnitude are of interest to researchers. However,
in this case, there is no structural interpretation of w. In fact, with
complex trainers, such as boosted regression trees, the number of
parameters is large and difficult to interpret.

10Versions of RankNet are used by commercial search engines, such
as Bing (Liu 2011).
11Asymptotically, Cqmn

ijk becomes linear if the scores give the wrong
ranking and zero if they give the correct ranking.
12This issue also exists for other discrete optimizationmetrics, such as
DCG and MAP that we consider in Online Appendix C.1.
13MART (multiple additive regression trees) is a trademarked imple-
mentation of stochastic gradient-boosted trees by Salford Systems.
However, the acronym is often used loosely to refer to any imple-
mentation of gradient-boosted trees as in the case of LambdaMART.
14The contestants used all the data from days 1–27 for building their
models and had their models tested by Yandex on an unmarked data
set (with no information on clicks made by users) from days 28–30. In
contrast, we had to resort to using the data set fromdays 1–27 for both
model building and testing. So the amount of past historywe have for
each user in the test data are smaller, putting us at a relative dis-
advantage (especially because we find that longer histories lead to
higher NDCGs). Thus, it is noteworthy that our improvement is
higher than that achieved by the winning teams.
15The number of past queries for a median query (50) is a different
metric than the one discussed earlier, median of the number of
queries per user (shown in Figure 4 as 16), for two reasons. First, this
number is calculated only for queries that have one or more prior
queries. Second, not all users submit the same number of queries.
Indeed, a small subset of users account for most queries. So the
average query has a larger median history than the average user.
16This number is different from 9.43% for the entire test data because
it excludes queries that received no clicks in the global data and those
that are new to the test data and, therefore, have zero unique prior
URL clicks by default.
17We do not find any significant correlation between the query-level
metrics that we consider: prior average click position and prior
unique URLs clicked.Whenwe regress the improvement in AERC on
the two query-level metrics, both of them continue to have a sig-
nificant and positive impact.
18This is different from 9.43% for the entire test data because it ex-
cludes queries that received no clicks in the global data and those that
are new to the test data and, therefore, have been assigned a prior
average click position of zero by default.
19 In cases in which the data sets are small and the number of features
large, feature selection can actually improve the predictive accuracy
of the model by eliminating irrelevant features whose inclusion often
results in overfitting. Many machine-learning algorithms, including
neural networks, decision trees, CART, and naive Bayes learners have
been shown to have significantly worse accuracy when trained on
small data sets with superfluous features (Duda and Hart 1973,
Breiman et al. 1984, Aha et al. 1991, Quinlan 1993). In our setting, we
have an extremely large data set, which prevents the algorithm from
making spurious inferences in the first place. So feature selection is
not accuracy improving in our case; however, it leads to significantly
lower computing times.
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