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1 Details of Second-Step Estimation

All the estimates from state transitions (θp, θg, θt), ηis, and non-parametric joint distributions of bid at-

tributes are assumed to be known at this point, i.e., consistent estimates of these parameters and distributions

from Step 1 are used.

Throughout we estimate CCPs using weighted nested logits that are flexible functions of {xit, η̂i, si}.
When doing so, we treat ηis as if they were observed by substituting η̂i in their lieu. However, because si is

unobserved, at the each step of the EM algorithm, we weigh the nested logits with current estimates of ρs.

We use flexible logits to estimate CCPs because commonly used non-parametric estimators are infeasible

in our context because we have many continuous state variables and an extremely large state space. With

a sufficiently large sample and an exhaustive set of covariates, CCP estimates from weighted flexible logits

are similar to those obtained using non-parametric estimators (Arcidiacono & Miller 2011, Bajari et. al.,

2010). In our flexible logit, we incorporate all the state variables, their higher order terms, and interactions.

Step 1: Let the number of unobserved types be 2, and the initial guess of population probabilities be π1 =

{π11, π12} = {0.5, 0.5}. Let {α1, β1, δ1, σ1} be the first guess of the structural parameters. We start with

estimates from the model without persistent unobserved heterogeneity and a random αb11.

Step 2: Update the ρs as follows:

ρ2i (k|di, xi;α1, β1, δ1, σ1, π1) =

π1k

Ti∏
t=1

[
Pr(dit|xit, η̂i, si = k, α1, β1, δ1, π1)

]I(dit)
2∑

k=1

π1k

Ti∏
t=1

[Pr(dit|xit, η̂i, si = k, α1, β1, δ1, σ1π1)]I(dit)
∀ k (1)

Then update population probabilities of types as:

π2k =

N∑
n=1

ρ2i (k|di, xi;α1, β1, δ1, σ1, π1)

N
∀ k (2)

Step 3: Update CCPs using weighted flexible logits using estimates of individual weights from the previous

step (ρ2i s) . Denote the CCP of canceling at this step as p2(2|xit, η̂i, si = k, ρ2i ) for type k.

∗Please address all correspondence to: hemay@uw.edu.
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Step 4: To set-up the weighted sum of log-likelihood from Equation (32) using choice probabilities (Equa-

tions 19-21), we need to first numerically evaluate
∫
V ′(xit+1, ηi, si = k)f(xit+1|1, xit, ηi)dxit+1 for each

of the wait options seen in the data, for each k. We do this as follows:

• Step a: For each i, t, such that t 6= T , take one step into the future by generating one complete draw

of a future state, say x̃it+1, as follows:

• Make a draw of bit+1 (say b̃it+1) from the Poisson distribution hp(bit+1|zt+1, θ̂p, η̂i)

• Make b̃it+1 draws of the three bid attributes, bid price, number of bidder ratings, and average bidder

rating, from the joint distribution ψ̂c, where i ∈ c. Denote each of these draws as {b̃pq, b̃nq, b̃rq},
where q ∈ {1, ..., b̃it+1}.
• For each of these draws, generate g̃xiq = {1, I(gi = 1), I(gi = 2), I(gi = 3),mi, I(ni =

0), ln(ni + 1), ri, ln(b̃pq + 1), I(b̃nq = 0), ln(b̃nq + 1), b̃rq}. Now draw a seller region for each of

the q draws using the MNL distribution hg( ˜bgq|g̃xiq, θ̂g).

• Next, let t̃xiq = {1, I(gi = 1), I(gi = 2), I(gi = 3),mi, I(ni = 0), ln(ni + 1), ri, ai, ci, li,

ln(b̃pq + 1), I(b̃nk = 0), ln(b̃nq + 1), b̃rq, b̃r
2
q , I(g̃q = 1), I(g̃q = 2), I(g̃q = 3)}. Now draw

a buyer-seller past interaction indicator for each of the b̃it+1 draws using the logit distribution

ht(b̃tq|t̃xiq, θ̂t).

• Step b: Calculate the CCPs of canceling at t+1 based on the projected state x̃it+1 as p̃2(2|x̃it+1, η̂i, si =

k, ρ2i ).

• Step c: Then, use
[
γ − ln(p̃2(2|x̃it+1, η̂i, si = k, ρ2i ))

]
as the current estimate of

∫
V ′(xit+1, ηi, si =

k)f(xit+1|1, xit, ηi)dxit+1 (see Equation 23). To improve the efficiency of the results, we per-

form Steps a-c 100 times and take the average to obtain the current estimate of
∫
V ′(xit+1, ηi, si =

k)f(xit+1|1, xit, ηi)dxit+1.

Step 5: Plug the current estimates of
∫
V ′(xit+1, ηi, si = k)f(xit+1|1, xit, ηi)dxit+1s into the choice prob-

abilities (Equations 19-21) and update the structural parameters by maximizing:

(α2, β2, δ2) = arg max
α,β,δ

N∑
n=1

Ti∏
t=1

S∑
k=1

ρ2(k|di, xi;α1, β1, δ1, π1) · ln
[
Pr(dit|xit, η̂i, si = k)I(dit)

]
(3)

Using the new estimates {α2, β2, σ2, δ2}, go back to Step 2 and update the ρs. Continue and repeat Steps

2-5 till all the parameters, πks, and the weighted log-likelihood (in Step 5) converge. At which point, we

have consistent estimates of CCPs, population probabilities of unobserved types πks, structural parameters

{α, β, σ}, and the discount factor δ.

2 Identification Proof for CCPs and State Transitions

We present the proof of identification for CCPs and state transitions.

Bids arrive independently. LetA be the number of observable bid attributes and B the maximum number

of bids that an auction can receive. Let T be the maximum time periods for which an auction can remain

active, and letX and S be the total number of observed and unobserved buyer/auction specific state variables

(which remain constant during the auction). Given the structure of our problem (i.e., waiting is the only
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continuation decision), the number of possible sequences of decision and state variables is:

Seq = X
B∑
b=0

(b+ T − 1)!

b!(T − 1)!
Ab − 1 (4)

where (b+T −1)!
b!(T −1)! is the number of ways to distribute b bids among T periods. Without placing any structure,

the number of first step parameters to be estimated include the following number of CCPs, bid arrivals1,

joint distributions of bid attributes, and the initial distributions of unobserved types:

CCP Par = XST
B∑
b=0

(b+ 1)Ab

Initial dist. of types Par = XS − 1

Bid arrival Par = XST

Joint bid dist. Par = X (A− 1)

Hence the total number of parameters is:

Total Par = XST
B∑
b=0

(b+ 1)Ab + XS + XST + X (A− 1)− 1 (5)

For identification, we need:

B∑
b=0

(b+ T − 1)!

b!(T − 1)!
Ab ≥ ST

B∑
b=0

(b+ 1)Ab + S + ST +A− 1

⇒
B∑
b=0

[
(b+ T − 1)!

b!(T − 1)!
− ST (b+ 1)

]
Ab ≥ S + ST +A− 1 (6)

The left hand side terms haveAb, whereA is very large andAb increases exponentially with b. Moreover, the

terms within the bracket is positive for T ≥ 3 and sufficiently large bs. So as long as we have enough time

periods and a large number of potential bids (B), we have more decision-state sequences than parameters.

In our case, we have T = 14 and B = 149, and even the mean number of bids received by buyers is around

10, so the CCPs and state transitions are non-parametrically identified.

Before we proceed though, we do need to ensure that a key corner case is identified. The corner case in

these kinds of identification proofs is always the one where both time and state space dimension are lowest.

In our case, since we use CCPs to calculate continuation values of waiting from period 1, we need all CCPs

from second period forward to be identified. Hence, the corner case we check is t = 2 and one bid. When

a buyer has one bid in the second period, there are only two ways for him to have reached that position – a)

receive no bids in the first period and wait, and receive one bid in the second period, and b) receive one bid
1If bid arrivals were not independent, the number of parameters to be estimated for the bid arrival process would be XST (B − 1)
instead of XST .
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in the first period and wait, and receive no bids in the second period. Thus to calculate terminal CCPs for

the second period in this state (one bid), we only have two equations. With two equations, we can identify

CCPs for at most two unobserved types, but no more. Hence, this corner case establishes that, in this setting,

we can only allow for two unobserved types.

Finally, note that even though the number of sequences is much greater than parameters, first period

termination CCPs (CCPs for cancellation and bid choice) are not identified because there is only one path to

reach a state in the first period and once a buyer terminates the auction, there are no paths out of it. Hence,

these CCPs don’t appear in more than one sequence and cannot be identified. However, we don’t use first

period CCPs in our analysis; only CCPs from the second period and forward are used in continuation value

calculations. Hence the non-identification of first period termination CCPs is not a problem.2

3 Simulation Details: Aggregate Choice Probability Maps

Consider a focal bid j with fixed reputation attributes and price, say {bpj , bnj , brj}. Simulate each auction

i 100 times using the steps described below.

1. For each iteration of auction i, start with t = 1 and simulate each period as follows:

• Draw the number of bid arrivals for this period using the Poisson estimates and η̂i. If the first bid

for this iteration of the auction arrives in this period, treat it as the focal bid with reputation and

price {bpj , bnj , brj}. Then, draw geography and past interaction indicators for it using the logit

models.

• Then draw bid attributes for each non-focal bid that arrives in this period using the estimated

KDEs and logit models.

• If t 6= T , calculate the continuation value and derive the probability of picking the focal bid (if

it exists), picking one of the other bids (if they exist), waiting, or canceling the auction using the

closed form expressions for each unobserved type si = {1, 2}. Then weight the probabilities using

ex post probabilities of belonging to the two unobserved types (i.e., ρis from the last iteration of

the EM algorithm).

• Construct a CDF using the above probabilities, and draw a random number from 0 to 1 to simulate

the outcome for this period.

2. Record the outcome for this period as follows:

• If focal bid was chosen, record this, and terminate this iteration of auction i.

• If another bid was chosen or if auction was canceled, record this, and terminate this iteration of

auction i.

Then, start next iteration for auction i if 100 iterations haven’t been reached, else move on to the next

auction.

• If wait is chosen, proceed to the next time period for this iteration of auction i.

3. When 100 iterations for auction i are completed, calculate the probability of the focal bid winning

auction i as = (number of times it was picked in the 100 iterations)/100.
2Unlike first period termination CCPs, first period wait CCPs are identified because they appear in many decision-state paths.
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4. When all the auctions have been simulated and the average probability of being picked in each auction

has been calculated, sum the probabilities, and divide by the total number of auctions to get the average

success probability for the focal bid in the website.

4 Details of Backward Solution Method used in Counterfactuals

All the estimates from state transitions (θp, θg, θt), ηis, non-parametric joint distributions of bid attributes,

and the structural parameters (α, β, δ, σ, π) are treated as known at this point.

First, split the observed state variables at time t, xit, into auction/buyer specific variables that time

invariant for the duration of the auction, xai, and bidder specific state variables that are denoted as xbit.

Then based on the definition in the paper, write out the inclusive value of the bid nest for buyer i at time

t as: Iit = I(xbit) = ln

[
Bit∑
q=1

e
Yiq(xbit)

σ

]
, where Yij(xbit) is defined in Equation (6) and Bit is the total

number of bids that i has at period t. Next, discretize the state variables, xai, Iit, and ηi by allowing them

to vary from zero to a high enough value, in steps of ∆, such that: xai ∈ {0, xamax}, Iit ∈ {0, Imax}, and

ηi ∈ {0, ηmax}. Using these definitions, specify the continuation value as a function of the time-invariant

observables and the inclusive value at time t as V ′(t, axi, Iit, ηi, si). Now to generate the value functions at

each combination, follow the steps given below:

Step 1: Start at the last time period T . Since waiting is not an option at T , there is no continuation value

in this period. Hence, the conditional choice probability of cancellation at T is simply obtained from the

following equation:

P (2|T, xai, IiT , ηi, si) =
1

1 + e[Wib(xai,si)+σIiT ]
(7)

Now using all the values in the grid of ai and IiT (in {0, xamax} and {0, Imax} in steps of ∆), populate

the cancellation probability matrix. Note that at this point we can simply ignore ηi and si since we are just

calculating the cancellation probabilities at different levels of ai and IiT at T .

Step 2: Next, use the matrix of cancellation probabilities at T to calculate the matrix of continuation values

at each point in the grid of {xai, IiT } using the following equation:

V ′(T, xai, IiT , ηi, si) = γ − ln(P (2|T, xai, IiT , ηi, si)) (8)

Step 3: Now move to period t = T −1 and at each grid point in {ai, IiT , ηi}, take the following steps:

• Step 3a: Follow Step a under Step 4 in §1 of the Technical Appendix in order to simulate one future

draw of bids for period t + 1. Based on the draw of future bids, obtain the new inclusive value

Iit+1 (using both current bids and simulated bids). Then look up the matrix of continuation values

calculated in the previous step and obtain V ′(t+ 1, xai, Iit+1, ηi, si)

• Step 3b: Repeat Step 3a for a large number of times to obtain
∫
V ′(t+1, xai, It+1, ηi, si)f(xit+1|dit, xit, ηi)dxit+1.

• Step 3c: Now plug back this integral into the choice-specific continuation value of waiting at t to

obtain:

v(1, t, xai, Iit, ηi, si) = Wiw(xai) + δ

∫
V ′(t+ 1, xai, Iit+1, ηi, si)f(xit+1|1, xit, ηi)dxit+1
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• Step 3d: Substitute this choice specific value function and the parameter estimates in Equation 20 to

obtain the cancellation choice probability as:

P (2|t, xai, Iit, ηi, si) =
1

1 + e[v(1,t,xai,Iit,ηi,si)] + e[Wib(xai,si)+σIit]
(9)

Performing Steps 3a-3d at all the grid points in {xai, Iit, ηi} should give a matrix of cancellation proba-

bilities at t. Then, as in Step 2, use the matrix of cancellation probabilities at t to calculate the matrix of

continuation values at each point in the grid of {xai, Iit, ηi} using the following equation:

V ′(t, xai, Iit, ηi, si) = γ − ln(P (2|t, xai, Iit, ηi, si)) (10)

Step 4: Repeat Step 3 for all periods till the algorithm reaches t = 1 and obtain the continuation values

V ′(t, xai, Iit, ηi, si) ∀ 1 ≤ t < T .

Step 5: With the matrices of continuation values derived above and the estimated parameters, the system

can now be simulated as many times as necessary to generate the counterfactual outcomes.

5 Additional Tables and Figures

Project Title MaxBid Project Description
Web Site Photo
Gallery Assistance

20 Have code already for a website’s photo gallery. And for the website, I
just need gallery code merged into existing page.

Need Recommenda-
tions for AdSense
placement in our
website

50 Hi, We have placed AdSense Ads in our website, even though we are
getting some revenue from AdSense, we are not getting return on our
investment. So, we would like to try placing AdSense Ads in strategic
places and need recommendations. We need recommendations with size
of Ads, location of Ad placement and any other help that you can give
us to increase our revenue through Ads. Thanks

Wordpress Theme
Modification

80 Hi Guys, I got the “TheCorporation” theme from elegant designs. I
have a PSD ready on how the theme needs to look like. I also have the
original PSD files of the theme. I need you to edit the theme so that it
will look exactly the same as in the PSD that it needs to look like.

Streaming Data Cap-
ture

100 I am looking for somone [sic] who can write me a program that can
store streaming numerical data on a web page to an excel spreadsheet,
or as csv or at least as a text file.

Table 1: Examples of project titles and descriptions
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zt θp std. error
Ind. t = 1 4.4866 0.0445
Ind. t = 2 2.6337 0.0447
Ind. t = 3 1.8599 0.0455
Ind. t = 4 1.3820 0.0468
Ind. t = 5 1.0787 0.0484
Ind. t = 6 0.8096 0.0500
Ind. t = 7 0.6770 0.0512
Ind. t = 8 0.4983 0.0518
Ind. t = 9 0.3739 0.0525
Ind. t = 10 0.3037 0.0550
Ind. t = 11 0.2351 0.0552
Ind. t = 12 0.1358 0.0571
Ind. t = 13 0.0513 0.0572

No. of auctions, auctions×timeperiods = 6076, 28817
Goodness of Fit Measures
RMSE, MAE, ME = 0.9258, 0.4249, 3.59× 10−8

Table 2: Estimates of θp from the fixed effects Poisson model. Standard errors are adjusted for clustering
on auction identity. All the estimates, except the last two, are significant at the 1% level (the parameter
coefficient for Ind. t = 12 is significant at the 10% level).

gxij
Region 1 Region 2 Region 3

θg1 Std. error θg2 Std. error θg3 Std. error
Buyer region = 1 0.2094 0.0426 −0.1800 0.0597 −0.1322 0.0561
Buyer region = 2 −0.0496 0.0288 0.2007 0.0384 −0.0042 0.0365
Buyer region = 3 0.0051 0.0185 0.0382 0.0242 0.0563 0.0226
MaxBid −0.0006 0.0004 −0.0000 0.0005 0.0025 0.0005
Ind. no. of buyer ratings = 0 −0.3433 0.1531 0.7286 0.2137 −0.3328 0.1890
ln(no. of buyer ratings + 1) 0.0236 0.0068 0.0324 0.0087 −0.0260 0.0086
Buyer mean ratings −0.0338 0.0154 0.0660 0.0215 −0.0276 0.0190
ln(bidprice + 1) 0.0654 0.0184 0.1120 0.0236 −0.0861 0.0229
Ind. no. of seller ratings = 0 −1.6200 0.0809 1.1569 0.1232 3.7824 0.1554
ln(no. of seller ratings + 1) −0.0046 0.0067 −0.1334 0.0087 0.0376 0.0082
Seller mean rating −0.1732 0.0085 0.1491 0.0098 0.4270 0.0159
Constant 3.0200 0.1789 −2.4263 0.2535 −3.5782 0.2504

No. of observations = 126927
Log likelihood = −145597.83

Table 3: Estimates of θg1, θg2, θg3 from the Multinomial Logit model. Region 4 is the base outcome.
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txij θt Std. error
Buyer region = 1 −0.0041 0.1277
Buyer region = 2 0.0048 0.0813
Buyer region = 3 −0.0363 0.0616
MaxBid −0.0109 0.0014
No. of uncanceled past auctions 0.0007 0.0001
Cancel ratio −0.8858 0.1050
Buyer tenure on site (in days) −0.0006 0.0000
Ind. no. of buyer ratings = 0 −1.2024 0.4578
ln(no. of buyer ratings + 1) 0.5432 0.0220
Buyer mean ratings −0.0165 0.0513
Seller region = 1 0.1341 0.0638
Seller region = 2 0.3069 0.0777
Seller region = 3 0.0115 0.0258
ln(bidprice + 1) 0.2271 0.0589
I.(no. of seller ratings = 0) = 1 0.1668 0.9083
ln(no. of seller ratings + 1) 0.4639 0.0153
Seller mean rating −0.1491 0.2145
Square of seller mean rating 0.0323 0.0129
Constant −7.4925 1.0504

No. of observations = 126927
Log likelihood = −9671.063

Table 4: Estimate of θt from the Logit model. btij = 0 is the base outcome.
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Figure 1: CDF of estimated Poisson fixed effects (η̂is) for the auctions in our sample. Summary statistics of
the distribution: Mean, Std. Dev, 25th, 50th, 75th percentiles = 0.0952, 0.1068, 0.0246, 0.0563, 0.1238.

8


	Details of Second-Step Estimation
	Identification Proof for CCPs and State Transitions
	Simulation Details: Aggregate Choice Probability Maps
	Details of Backward Solution Method used in Counterfactuals
	Additional Tables and Figures

