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Abstract

This paper reviews the recent developments at the intersection of personalization and
Al in marketing and related fields. We provide a formal definition of personalized policy
and review the methodological approaches available for personalization. We discuss
scalability, generalizability, and counterfactual validity issues and briefly touch upon
advanced methods for online/interactive/dynamic settings. We then summarize the three
evaluation approaches for static policies — the Direct method, the Inverse Propensity
Score estimator, and the Doubly Robust method. Next, we present a summary of
the evaluation approaches for special cases such as continuous actions and dynamic
settings. We then summarize the findings on the returns to personalization across
various domains, including content recommendation, advertising, and promotions.
Next, we discuss the work on the intersection between personalization and welfare. We
focus on four of these welfare notions that have been studied in the literature: (1) search
costs, (2) privacy, (3) fairness, and (4) polarization. We conclude with a discussion of

the remaining challenges and some directions for future research.
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1 Introduction

Effective personalization at scale remains the ultimate holy grail for marketers and has drawn
interest from both academics and practitioners for a long period of time. Nevertheless, until recently,
individual-level personalization at scale was, at best, a theoretical possibility. With advances in
computing power and data storage, combined with the theoretical developments at the intersection
of machine learning and causal inference, we are now closer than ever to achieving this goal. A
growing body of research over the last few years, spanning marketing, computer science, economics,
and statistics, has collectively attacked this problem from various angles and provided us with
solutions that are both theoretically well-founded and practically feasible. Today, these solutions
and ideas have been adopted by firms across various business settings, from news and content
personalization on websites to the personalization of promotions by retailers. These applications, in
turn, have opened our eyes to yet unsolved challenges related to this problem. Further, they have
enabled us to quantify the revenue and business impact of personalization and better understand the
welfare and public policy implications of user-level personalization.

This chapter reviews the recent developments at the intersection of machine learning, artificial
intelligence, and personalization. In §2| we first present a mathematical definition of the personal-
ization problem. This definition will form the foundation on which all the solution concepts will be
built. Next, in §3| we discuss the methods available for personalized policy design. We also explain
the pros and cons of each and discuss how we need to combine ideas from causal inference and
machine learning to effectively design policies that have counterfactual validity. In §4] we present
the approaches available to evaluate personalized policies and cover some best practices. Then, in
§5] we discuss the substantive findings on personalization in a variety of settings. In particular, we
highlight the methods and domains that have seen successful applications of personalized models in
both academic research and practice. An interesting aspect of personalization is that it is closely
linked to many different aspects of consumer and social welfare, such as fairness, privacy, and
polarization. In §6| we discuss these ideas and examine the personalization problem through these
lenses. Finally, §7, we conclude with a discussion of the remaining challenges, unsolved problems,
and some directions for future research.

An important caveat before we proceed: The topic of personalization, by definition, has a
large scope and has been the focus of research across many disciplines. Even within marketing,
personalization has been studied for many years from different angles (e.g., game-theoretic models,
substantive empirical work, and consumer behavior studies). In this review, we restrict our focus
to methods and studies that fall at the intersection of machine learning and personalization. We

mainly discuss the recently developed machine learning methods on this topic and the papers that



employ these methods. We refer interested readers to Murthi and Sarkar| (2003)), Steckel et al.
(2005), |Proserpio et al.| (2020), and |Liaukonyte| (2021) for earlier reviews on personalization from

other perspectives.

2 Problem Definition

We start with a formal definition of personalization. Broadly, we can define personalization as
the opposite of the case where a firm implements a uniform policy for the entire population. For
example, a uniform policy would offer everyone the same discount rate in a promotional context. In
contrast, a personalized discount policy would provide different discount rates to consumers based
on observed features of the consumer. The granularity of personalization can vary, from broad
segments (based on demographics) to highly individualized strategies where each consumer gets a
treatment based on a complex model trained on a high-dimensional set of user-level observables.
Therefore, firms’ ability to personalize is highly dependent on their ability to differentiate
between individuals. We assume that firms can differentiate between individuals based on the
feature vector X;, which denotes the characteristics associated with the user/observation z. This
can include any individual-level features, such as demographics or the behavioral history of the
individual (which can consist of users’ responses to past marketing actions by the firm). Further,
let the firm’s action set V) denote the set of actions that the firm can choose from and let Y; be the
outcome of interest that the firm seeks to optimize. Then the firm’s goal is to select an action W;
for each user 7 such that it maximizes the expected outcome for that user, i.e., £ (Y;|X;, W;). For
example, in the promotion example above, the discount amount can be interpreted as the action,
and the dollar value of the purchase can be the outcome of interest for the firm. We now use this

notation to define a personalized policy or strategy as follows:

Definition 1. Let X denote the set of all the features associated with user characteristics. A
personalized policy T is defined as a mapping from the set of characteristics X to the set of actions

W, such that each X; € X is assigned to only one action, i.e., 7 : X — W.

This definition highlights the difference between a personalized policy and a uniform policy.
In a uniform policy, the policy function 7w only has one output for the entire population, i.e.,
7(X;) = m(X;) Vi and j. In contrast, the goal of a personalized policy is to find the right action
for each observation to maximize a certain objective, which is often characterized by the outcome
of interest Y;. To the extent that there is individual-level heterogeneity in the users’ response to
actions and the supervised learning model used can capture this personalized policy will differ from
a uniform policy. However, identifying heterogeneity at the individual level is often challenging.

While the space of uniform policies is relatively small, the space of personalized policies is very



large. Therefore, learning a personalized policy requires large-scale data sets. In fact, the narrower
we want to target, the larger the scale of data needs to be. Further, to effectively develop personalized
policies from data, we need flexible methods to learn complex patterns from the data. In the next

section, we review methods that can overcome these challenges and personalize effectively.

3 Methodological Approaches to Personalization

In this section, we present an overview of the methods and approaches used to derive a personalized
policy, as described in Definition

In one of the earliest empirical papers on personalization, Rossi et al.| (1996) develop a Bayesian
framework for coupon personalization in a grocery context. They use counterfactual simulations
to document the possibility of substantial gains when coupons are targeted based on customers’
past purchase history. In building their framework, Rossi et al. (1996)) noted the “continued decline
in information processing and storage costs” as the main reason why we can target marketing
activities at the individual level. Indeed, with the growth of Internet firms and the increased ability
to deliver personalized policies, led to a body of work that focused on building personalization
frameworks in other domains, such as movie recommendations (Ansari et al., [2000; Ying et al.,
2006; Chung and Rao, 2012), e-mail personalization (Ansari and Mela, 2003), personalized web
design through browsing behavior (Montgomery et al., 2004), promotion customization (Zhang and
Krishnamurthi, 2004}, and music recommendation (Chung et al., 2009). At a fundamental level,
these approaches focused on outcome modeling and often leveraged the hierarchical Bayes model
or flexible regressions to capture user-level heterogeneity.

This early empirical work on personalization, in conjunction with the practical industry-level
challenges, opened up avenues for further methodological research that are: (1) scalable, (2)
generalizable and robust to confounding, (3) adaptive in real-time, and (4) dynamic or forward-
looking. In the following sections, we discuss the methodological approaches along these four

dimensions.
3.1 Scalability

Greater personalization often requires more data. Naturally, it is impossible to deliver an effective
fine-grained personalized policy with limited data. Further, most platforms that use personalization
collect data at a massive scale. As a result, personalization methods need to be scalable. This section
focuses on two broad sets of approaches proposed in the literature: (1) dimensionality reduction
methods and (2) scalable supervised learning algorithms.

The first set of papers focuses on reducing the dimensionality of the problem. The canonical

example of such an approach is the well-known collaborative filtering problem, where the problem



in Definition (1| is formulated by a preference matrix where users are represented by rows and
actions by columns, and the value is the outcome of interest (Goldberg et al., 1992} Sarwar et al.,
2001). While these methods represent each user in a row, they do not use the attributes X;. The
explicit structural assumption in these models is the low-rank structure of the preference matrix.
As such, the preference for each user is represented as a composite of factors in this low-rank
representation. Intuitively, this approach uses the similarities in user preferences to complete the
preference matrix. Low-rank methods have been widely used in recommender systems in the
industry (Linden et al., 2003)) and motivated a series of theoretical papers given their interesting
statistical properties (Candes and Recht, [2009; Candes and Tao, 2010; |[Recht, |2011). Recent work
in this domain extends this work to more specific application domains, when side information is
available (Farias and L1, 2019), dynamic assortment personalization where online exploration is
necessary (Kallus and Udell, 2020), and cases where online exploration can result in customer
disengagement (Bastani et al., 2021b)).

Another common approach to dimensionality reduction is to use probabilistic topic models
that map a high-dimensional space to a low-dimensional set of topics (Blei et al., [2003). While
the typical application of topic models is in text mining, marketing scholars have also applied
these methods to purchase history data to predict consumers’ behavior, i.e., what would they buy
next, and thus achieving greater personalization ability (Jacobs et al.,|2016, 2021). Recent work in
this domain combines probabilistic topic models with matrix factorization approaches to develop
scalable personalization algorithms (Ansari et al., 2018). A key advantage of these newer approaches
is that, unlike most common matrix factorization models, these approaches take all the information
in X into account.

The second set of papers in this domain addresses the scalability problem using flexible super-
vised learning algorithms, such as Deep Neural Networks, XGBoost, and Random ForestsE] As
such, these methods feed the high-dimensional set of characteristics X; and actions W; as inputs to
a supervised learning algorithm to learn a flexible function f that estimates the outcome Y; with
high predictive accuracy. These approaches are increasingly more feasible with the advances in
high-performance computing. This has motivated practitioners to move to this kind of approach
for a variety of problems, such as CTR prediction problems for personalized ad recommendation
(McMahan et al., 2013; He et al., |2014; |Chapelle et al.,|2015), movie recommendation (L1 et al.,
2015), and news recommendation (Wang et al., 2017a). Please see Singhal et al. (2017) for a

summary of the use of deep learning in modern recommender systems. One of the key reasons

! Another set of scalable approaches include Bayesian methods such as distributed MCMC and stochastic variational
inference. These methods are generally used when quantifying uncertainty in our predictions is a top priority. Please
see|Angelino et al.[(2016)) for an excellent summary of this stream of methodological work.



for the popularity of these methods is their ability to leverage high-dimensional data, such as the
visual content of ads or the text of news articles, for the task of prediction. While these approaches
avoid information loss by avoiding low-rank assumptions, they often lack theoretical guarantees
on generalizability. In particular, in contexts without enough randomization, these models give

sub-optimal policies due to the confoundedness of actions seen in the data.
3.2 Generalizability and Counterfactual Validity

While supervised learning algorithms can learn complex patterns from data, they are only generaliz-
able to instances with the same joint distribution as the data used for training them. Suppose an
action-covariate pair (W;—X;) had zero probability of being observed in the training data. In that
case, there is no guarantee that these methods provide an accurate estimate of the outcome for that
action-covariate pair. This is particularly problematic because developing a personalized policy
requires evaluating all possible actions for any given X; and selecting the action that maximizes
some outcome interest (in expectation). Further, the primary purpose of a personalized policy is
to change the current policy, thereby shifting the current data distribution. Thus, personalization
algorithms need to predict counterfactual scenarios accurately.

This challenge motivated a growing body of work that brought insights from the causal inference
literature to increase the counterfactual validity of personalization algorithms. The fundamental
requirement in this stream of work is a degree of randomization in actions implemented in the
training data that satisfies two key assumptions: (1) overlap, and (2) unconfoundedness. Overlap
assumption states that we can consistently predict the outcome for an instance if and only if the
action had a non-zero propensity score of occurring in that instance in the data. Unconfoundedness
assumption requires the action to be exogenously chosen conditional on observed variables. Re-
search in this domain has used three different approaches to increase the counterfactual validity of
the personalization algorithm:

e One approach is to use outcome modeling in fully randomized environments (Hill, 2011}
Ascarza, 2018)), or with explicit controls for potential confounding factors and propensity scores
(Rafielan and Yoganarasimhan, |2021)). This approach is akin to early work on personalization
and supervised learning methods that aim to estimate the outcome through a function, i.e.,
Y; = f(X;,W;). Note that any supervised learning model can be used to learn f(X, W) — it
can be something as simple as a linear regression or an ensemble of different state-of-the-art
machine learning methods. As long as the function f can output an action based on X;, we can
use it generate a personalized policy; usually by picking the policy that maximizes expected
reward R(m,Y) = L [Zfi Y (X, W;f)] .

e The second approach is to directly learn the optimal personalized policy from data using the



propensity scores (Swaminathan and Joachims, 2015} |[Kitagawa and Tetenov, 2018; Kallus and
/hou, 2021a; |Athey and Wager, 2021)). These approaches often develop an unbiased estimator
of the outcome under a policy and search in the full space of policies to find the optimal policy.
e The third approach is to identify the causal effect of any given action for each instance in
the data through estimating the conditional average treatment effect (CATE), using different
machine learning methods, such as decision trees (Rzepakowski and Jaroszewicz, 2012; Athey
and Imbens, 2016), random forests (Guelman et al., 2015; Wager and Athey, 2018} Athey
et al., 2019), deep learning (Shalit et al.,|2017). Some of the papers in this domain provide a
framework that works for any generic machine learning method (Chernozhukov et al., 2018;
Hitsch and Misra, [2018};|Nie and Wager, 2021). The fundamental idea in this literature is to use
two techniques: (1) orthogonalization to exploit the randomization in the assignment to actions
and make estimation robust to confounding, and (2) cross-fitting to prevent machine learning

methods from overfitting.
3.3 Online and Interactive Methods

As discussed earlier, personalization algorithms generally require large-scale data. Further, platforms
that implement personalized policies often face a fast-paced environment, where the set of actions
changes regularly (e.g., entry of new ads, a daily update of news articles). These challenges led to
the development of interactive frameworks that actively explore the action space and efficiently find
the optimal personalized policy by finding the right balance between exploration and exploitation.
To capture the exploration-exploitation trade-off, we can model this problem as a multi-armed bandit
with information about the context through the set of characteristics X; that allows the algorithm
to make personalized decisions given the context (Auer, |2002)). This problem is referred to as
“contextual bandit,” and the goal is often to minimize some notion of regret over time (Langford and
Zhang, |2007): if the true optimal (oracle) personalized policy is 7* and the contextual bandit policy
is 7, we can define regret as the difference between reward under the true optimal policy and the
contextual bandit policy.

Contextual bandits have been applied in a variety of domains such as news personalization
(L1 et al., 2010), website and banner advertising morphing based on consumers’ cognitive styles
(Hauser et al., 2009; |Urban et al., [2014), mobile health (Tewari and Murphy, [2017), and content
recommendation (Agarwal et al., 2016)). These papers aim to develop algorithms for the specific
problem at hand and establish the empirical gains from using these algorithms. Another stream
of work in the domain of contextual bandits has mainly focused on the theoretical aspects of the
problem, such as regret bounds, complexity, and exploration (Foster and Rakhlinl 2020; Bastani and
Bayati, 2020; Simchi-Levi and Xu, 2021} |Bastani et al.,|2021al). Despite this growth on practical



and theoretical fronts, many questions remain unanswered in this literature, and there are many
avenues for future research. Please see Bietti et al.[|(2021) for an excellent summary of the recent

work in this literature and the remaining challenges.
3.4 Dynamic Methods

The vast majority of personalization algorithms are designed for static cases with a greedy objective
function, where the firm only focuses on immediate rewards. This has led to the criticism that
personalization algorithms only help achieve short-term rewards. To the extent that the short- and
long-term rewards conflict, static personalization algorithms can generate sub-optimal long-term
outcomes. For example, personalized policies can increase immediate engagement but result in
higher churn among the users on a platform. To address this issue, an emerging stream of work
has focused on developing a forward-looking objective for decision-making that accounts for the
interdependence between the actions over time. This is usually done by formulating the problem as
a Markov Decision Process that captures both immediate rewards and expected future rewards.

A series of papers have taken this forward-looking approach and designed dynamic personalized
policies to optimize long-term value in a variety of setting, e.g., personalized ad recommendations
(Theocharous et al., 2015), optimizing user engagement by sequencing ads and capturing dynamic
ad effects (Rafieian, 2022), website design (Liberali and Ferecatu, 2022), investment strategies in
robo-advising (Capponi et al.,|2021)), long-term impact of mobile health interventions (Liao et al.,

2021)), and educational outcomes in games (Mandel et al.,|[2014).

4 Evaluation

Once we develop a personalized policy, we need to evaluate this policy to assess its performance
before adopting it. Evaluation is a critical step in any study on personalization.

There are two main approaches to evaluation: (1) field experimentation and (2) counterfactual
policy evaluation. Field experimentation is the ideal gold standard, and it allows us to test the
personalized policy against a series of benchmark policies and estimate the total rewards and
average treatment effect (ATE) of the personalized policy. This is generally what happens before a
personalized policy gets implemented in online platforms through A/B testing (Kohavi et al., [2020).
However, field experiments are not always feasible because designing and running a large-scale
experiment is costly in time and money. Therefore, we need methods that reliably evaluate the
performance of a personalized policy based on existing data before considering a field testE] This is

where counterfactual policy evaluation comes in — we want to answer what would happen if the

Further, in some settings, even a field experiment will not give us consistent estimates of the gains from a specific
policy; see|Goli et al.| (2022)) for example.



Outcome | Covariates | Observed Action Prescribed Action | Personalized Policy Implemented
Y; X; w; (X;) Z;=1(w; = n(X;y))
Action 1 X Action 2 0
Action 3 X Action 1 0
Action 1 ) Action 1 1
Action 2 X Action 3 0
Action 4 ) Action 4 1

Figure 1: An overview of matching personalized policy with the one observed in the data. Green
arrows indicate a case where the actions match between data and the personalized policy, and red
crosses indicate otherwise.

personalized policy were to be adoptedE]

We review methods for counterfactual policy evaluation that exploit randomization in the actions
observed in the data and build on the statistical properties of a randomized field experiment to
consistently estimate total rewards and ATE under counterfactual regimes. The key intuition behind
these methods is that under some level of randomization, the personalized policy is implemented in
some observations in the data just due to randomness. As such, like the fully randomized experiment,
some observations received the personalized policy, and some did not. The difference with a fully
randomized experiment is that the assignment is not necessarily exogenous. Therefore, if we have
the propensity scores for the actions observed in the data, we can consistently estimate the reward
under the personalized policy and the ATE. Figure|(l|illustrates this point clearly. In this section, we
first review three such methods to evaluate counterfactual policies as laid out by Dudik et al.| (2011},

and then discuss alternatives used in the literature and the challenges therein.
4.1 Direct Method

This method estimates the reward from a proposed policy by predicting the expected outcome and
directly plugging in the predicted values. This can be formally written as:

N

Row(m,¥) = 12 30V (X, 7(X0), ()

=1

where Y (X;, 7(X;)) is our model-based prediction of the outcome for observation ¢ when she is
given the policy-prescribed action 7(X;). This method is known as the Direct Method since it
directly uses model predictions in the evaluation formula.

The performance of this estimator depends on the predictive accuracy and counterfactual validity

3This problem is also referred to as off-policy policy evaluation in the computer science literature.



of Y. In general, this method will work well if: (1) the model used to predict Y was sufficiently
flexible (e.g., XGBoost, deep learning methods), and (2) Y was estimated on a data set with
sufficient randomization that satisfies the overlap and unconfoundedness assumptions. The second
condition is generally satisfied if the propensity scores for all actions prescribed by the policy are
non-zero and known. However, suppose an action prescribed by the personalized policy has zero
propensity score (i.e., it could have never been implemented in the data). In that case, there is no
guarantee that a predictive model can accurately estimate this action’s outcome. Thus, settings
where Y was learnt using flexible machine learning models with inherent randomization in actions
are ideal use-cases for this estimator. Rafieian and Yoganarasimhan (2021), whose setting satisfies
these two requirements perform an empirical exercise where they compare the estimated gains from
a model-based approach and show that it is very similar to the estimates from a model-free IPS

approach (see below).
4.2 Inverse Propensity Score Estimator

In contrast to the direct method, whose performance is based on the model, the Inverse Propensity
Score (IPS) estimator is a model-free approach to evaluation. It is based on the idea of importance
sampling by |Horvitz and Thompson| (1952), and is now increasingly used in marketing papers
on personalized policy evaluation (Simester et al., 2020a}; Rafieian and Yoganarasimhan, 2021}
Yoganarasimhan et al., 2022; Goli et al., 2021). For any given policy 7, this estimator takes all
the observations where the user received the policy-prescribed treatment and scales them up by
their propensity to receive the treatment. This gives us a pseudo-population that received the
policy-prescribed treatment. Thus, the average outcome for this pseudo-population is an unbiased
estimate of the reward for the full population if we were to implement the proposed policy in the
field. Formally:

Rips(m,Y) = %X_; i ;(VV()X o @)
where Y] is the observed outcome for observation ¢, and é(1/;) is the propensity score for action
W; to be implemented in observation 7. Again, in settings where the propensities are non-zero and
known for the prescribed policy, we can directly use propensity scores to evaluate the performance.
The main advantage of this approach over the direct method is that it does not require any predictive
model to evaluate the outcome. Instead, it uses actual outcomes observed in the data. However,
this approach works well only if propensity scores é(W;) are correct. Further, even if propensities
are known but small, the variance of the IPS estimator can be high, which can preclude us from

drawing any reliable inference on the performance of comparable policies.
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4.3 Doubly Robust Method

The two approaches described earlier require either outcome estimates or propensity scores to be
accurate. The problem is, in many cases, we do not which one would be accurate ex-ante. This is
where the Doubly Robust (DR) estimator comes in by combining the strengths of both the direct
method and the IPS method (Dudik et al., 2011) and guaranteeing consistency and unbiasedness if

either outcome estimates or propensity scores are accurate. DR estimator is defined as follows:

RDR(W7 Y) = A

+Y (X5, 7(Xy)) | 3)

This estimator is ideal in most situations. It is especially powerful in observational settings where
propensities are not given (and need to be estimated from data, and hence can be noisy). That said,
like the direct method and IPS estimator, if the setting fails to achieve overlap or unconfoundedness
assumptions, there is no guarantee that the DR method works. In these settings, the requirement of
either accurate outcome estimation or accurate propensity score estimation fails. More recent work

has aimed at improving these estimators; see Wang et al.|(2017b)) as an example.
4.4 Extensions to Special Settings

Much of the discussion in earlier sections primarily focused on a case where there is a discrete and
finite action set, and the goal is to deliver a single personalized action at a time in a static setting.
However, many cases depart from this setting, imposing challenges to the estimators we discussed.
We now discuss these extensions:

e Continuous actions: When the action set is continuous (e.g., pricing), it is not clear how IPS
and DR methods can be applied since it is not possible to achieve non-zero propensities over the
entire action space. For these cases, we can still use the direct method in Equation [I} when there
is randomization in actions. Recent work extend doubly robust evaluation methods to cases with
continuous treatments (Chernozhukov et al., [2016; Athey and Wager, 2021)).

e Dynamic settings: Another departure from cases that we already considered is when we want
to evaluate a dynamic policy as defined in In these cases, propensities are defined not for a
single action but for a trajectory of actions. The extension of the direct method is straightforward:
we only need to use Equation[I]| such that it simulates state transitions (Rafieian| 2022)). The
extension of both IPS and doubly robust have also been studied in the recent literature on
reinforcement learning (Theocharous et al.,|2015; Jiang and Li, 2016} Thomas and Brunskill,
2016). The main practical challenge in this approach is that propensity scores capture the

propensity for the entire trajectory, which is the product of propensity scores for a single action.
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Hence, the overall propensity for a trajectory can become very small, making propensity-based
approaches impractical. Please see Kallus and Uehara (2020) for a complete survey of different

evaluation methods and a solution under some Markovian simplification.
4.5 Alternative Approaches

We now discuss alternative approaches used for policy evaluation, as well as the challenges and

problems involved in using them:

e Metric-based evaluation: Since outcome prediction is part of developing personalized policies,
some approaches rely on standard goodness-of-fit approaches that measure the out-of-sample
predictive accuracy of the model, such as Mean Average Error (MAE), Area Under the Curve
(AUC), Entropy, Relative Information Gain (RIG) (Herlocker et al., [2004). While a high
predictive accuracy is often necessary for developing an optimal personalized policy, it does
not guarantee higher gains from personalization. For example, suppose that a variable like age
fully determines consumers’ response to ads. Even if everyone prefers ad A to ad B, we will
have high predictive accuracy because age helps predict the outcome. However, there is no gain
from personalization in this case. |Yoganarasimhan et al. (2022]) empirically demonstrate that
policies based on models with lower predictive accuracy often do better than policies based on
more accurate models and discuss the reasons for such patterns. Overall, it is essential not to
confuse evaluation in terms of predictive accuracy with counterfactual policy evaluation. Most
researchers have moved away from metric-based evaluation to counterfactual policy evaluation
based on the methods discussed earlier.

e Structural models: The problem of counterfactual policy evaluation has long been studied in
marketing and economics. The traditional approach to this problem is to build a structural model
to estimate a set of model primitives. These primitives can then be used to simulate data under
a counterfactual regime. This approach has been used in different contexts in the marketing
literature to evaluate the performance of personalized policies (Yao and Mela, 2011} Jiang et al.,
2021} Morozov et al.,[2021). However, it is important to notice that the nature of identification is
not necessarily based on the randomization in actions but rather on the assumptions made on the
data-generating process by the structural model. To the extent that these assumptions are correct,
the counterfactual policy evaluation delivered by structural models will be valid. However, if
these assumptions are incorrect, there is no theoretical guarantee that this approach consistently
estimates the rewards under the personalized policy. Thus, these methods should only be used
when there is no randomization in actions in the data, and the structural assumptions are mostly

harmless.
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In sum, we have various methods available for evaluation, and researchers must perform a
comprehensive offline evaluation of any personalized policy before considering field implementation.
Further, even after the policy has been implemented on the entire population, it is important to
compare the performance of the personalized policy against the right control group. For example,
Farahat and Bailey|(2012) run a targeted advertising campaign and show that if we do not control for
the selection bias in the targeted group (i.e., targeted users are more likely to purchase), then simply
comparing the response of the targeted users and the untargeted users can significantly overestimate

the effects of targeting.

5 Returns to Personalization

One of the major success stories of personalization is the Netflix recommendation algorithm. In
2009-2010, Netflix launched a million-dollar challenge where they asked amateurs to increase the
accuracy of their in-house algorithm by 10%. This led to significant interest and investment in
personalized recommendations. The Netflix personalized recommendation system is reputed to save
the firm over one billion dollars a year and is cited as one of the main reasons for the low churn rate
at Netflix (Gomez-Uribe and Hunt, 2015; [Kasula, 2020). Similar product recommendation systems
are now commonly used by many other content providers such as YouTube, Hulu, Prime Video, and
Disney. In this section, we go beyond the industry reports and review the findings of the academic
work on the returns to personalization across a variety of domains.

The returns from personalization depend both the action that was personalized (I, which can
represent marketing actions such pricing, or promotion) as well as the reward or the outcome of
interest that was optimized (Y, which can represent clicks, user engagement, subscription, profit,
revenue). The overall effectiveness of any personalized policy thus depends on the extent to which
we can move Y by optimizing IV as a function of X. In the rest of this section, we categorize the
discussion based on the marketing action that was personalized (and provide details on the outcome
that was optimized in the respective studies).

e Content recommendation is an area where many platforms employ personalized policies, inspired
by the Netflix example highlighted above. In this domain, Li et al.| (2010) proposed a contextual
bandit framework for personalize news recommendation. The explore-exploit paradigm provides
a natural solution to the cold start problem in this setting because new articles, whose valuation
and fit we need to learn about, are added regularly, while older articles need less exploration.
Based on field experiments and deployment on Yahoo!, Li et al.| (2010) document a 10% lift
in CTR using their contextual bandit model, compared to a naive e-greedy policy. Similarly,

experiments at MSN showed a 25-30% increase in CTR with news personalization compared
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to the editorial ordering (Agarwal et al.,[2016)). As a result, contextual bandits are now used
by other leading news organizations (e.g., New York Times) for news personalization (Coenen)
2019).

e Advertising is another area that motivated a vast body of work on personalization (He et al.,
2014; McMahan et al., 2013};|[Rafieian and Yoganarasimhan, | 2021} Rafieian, 2022). In particular,
Rafieian and Yoganarasimhan|(2021) used both the direct method and IPS approach to counter-
factual policy evaluation in a context where both overlap and unconfoundedness assumptions
are satisfied and documented a 65-67% increase in CTR over the ad allocation policy under a
quasi-proportional auction used by the in-app advertising platform. |[Rafieian|(2022)) studied a
dynamic personalization policy by sequencing ads and showed an over 80% improvement in the
total number of clicks over the baseline that randomly allocates ads.

e Pricing is another domain where researchers documented positive returns to personalization.
Kallus and Zhou| (2021b) present an excellent characterization of the different types of price
personalization and provide well-grounded notions of fairness and welfare under personalized
pricing. They consider two empirical case studies in the domains of elective vaccine and
micro-finance lending. They show that personalized pricing (based on covariates) can increase
both profits and parity among different sub-groups because personalization can increase take-up.
A recent study by Dubé and Misra| (2021) echoes these findings (using data from Ziprecruiter).
Further, recent work suggests that even when firms cannot personalize prices directly, they
can personalize implicit prices. For example, using data from large-scale field experiments at
Pandora, |Goli et al.| (2021) shows that ad-supported platforms can increase subscription revenues
by personalizing the ad load received by users (i.e., the number of ads seen by the user and their
intrusiveness). Extending this research to account for the additional challenges specific to price
personalization would be an excellent next step, e.g., firms may need to employ obfuscation
strategies (Allender et al.,[2021]) and also account for strategic response from consumers.

e Promotion is a domain where personalized policies have long been implemented. We discuss
the studies on the efficacy of personalization of promotional activities based on large-scale field
experiments. |Simester et al.| (2020a)) and |Simester et al.| (2020b) consider the personalization
of promotions (e.g., discounted membership and 120-day free trials) to maximize profits,
in the context of catalog marketer. Similarly, Yoganarasimhan et al. (2022) consider the
personalization of the length of free trials for a software product to maximize subscriptions
and revenue. One common finding in this literature is that personalization does not always
work and that the efficacy of personalization depends on the exact method used. Policies

based on lasso and XGBoost typically do well. However, policies based on many commonly
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used outcome estimators, classification methods, and heterogeneous treatment effect estimators
(e.g., regressions, k-nearest neighbors, random forests, causal tree, and generalized random
forests) are shown to perform worse than a simple uniform policy based on Average Treatment
Effect. This is because even the main effects of promotions are often small, which makes the
signal-to-noise ratio needed for model learning in these cases high. Thus, a key takeaway is that
personalizing promotions is not only tricky but may also lead to no significant improvement in

profits.

6 Personalization and Welfare

As discussed in the previous section, personalization can sometimes lead to substantial gains for
firms that employ such strategies. However, since firms optimize their outcome of interests, it is not
clear whether personalization also improves consumer and social welfare. In principle, to the extent
that the firm’s outcome of interest is aligned with a welfare outcome, we can expect personalization
to help increase that particular welfare outcome. However, in many cases, these two objectives are
not aligned. For example, while personalized ad recommendation can help consumers find an ad
that matches their interests, it comes at the expense of consumers’ privacy. Further, the utilitarian
analysis of welfare is complicated by the fact that these objectives (e.g., privacy and fairness) often
have different units of measurement and are subjective by definition. As such, they are hard to
measure and quantify. Therefore, research studies on the welfare implications of personalization
often focus on a specific notion of welfare and view the problem through that specific lens.

In this section, we focus on four of these welfare notions that have been extensively studied
in the literature: (1) search costs, (2) privacy, (3) fairness, and (4) polarization. We provide an
overview of the research on how personalization interacts with each of these notions of welfare

notions.
6.1 Search Cost

Reduction in consumers’ search costs is a means through which personalization algorithms can
enhance consumer welfare because better product recommendations make consumers spend less time
searching for the options. Moreover, lab studies showed that personalization can shift consumers
to search in a “choice mode”, thereby resulting in an earlier stopping in the search process and
lower search costs (Dellaert and Haubl, 2012). With the availability of search data, a series of
studies further demonstrated the positive impact of personalized rankings on consumer welfare
(Yoganarasimhan, 2020), and more broadly, the alignment between the firm’s objective and consumer
welfare (Ghose et al., 2012, 2014; Jeziorski and Segal, 2015; Donnelly et al., 2021). That is,

personalized rankings derived by maximizing one objective (consumer welfare vs. firm’s revenue)
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can improve the other objective. This alignment in the firm’s objective and consumer welfare is an

important piece in policy debates about personalization.
6.2 Privacy

While personalization algorithms help consumers find the right matches at a lower search cost, this
increase in welfare often comes at the expense of consumer privacy. Personalization algorithms
often require large-scale consumer-level data that are collected through tracking users online. The
use of fine-grained user-level data, in turn, has heightened privacy concerns among consumers and
privacy advocates. Prior research has documented these concerns in a variety of contexts through
consumers’ negative reaction to cases where the intrusiveness of targeting practices become more
salient to them (Goldfarb and Tucker, 201 1a; Acquisti et al., 2012), and their positive reaction when
there is an increase in privacy controls and transparency within personalized policies (Tucker, [2014;
Kim et al., 2019). Yet, there still remains a large gap between consumers’ privacy concerns and
actions, with only a tiny fraction of users opting out of behavioral targeting (Johnson et al., 2020).
Nevertheless, a series of initiatives have led to significant limits to user tracking and behavioral
targeting over the last few years. Prominent examples include GDPR by the European Union, which
was enacted in 2018 (that requires firms to actively ask for permission before tracking users for
advertising purposes, among other limits), and Apple’s new 10S 14.5 that went into effect in 2021
(which blocks user tracking through device IDs in mobile devices). These initiatives have led to
questions on the costs and benefits of preserving user privacy and who will bear the costs (if any) of
these changes.

In particular, these measures have led to a renewed focus on the debate about the impact of
privacy regulations on personalization and its value for Internet publishers. Goldfarb and Tucker
(2011b)) examined the impact of privacy regulations on Internet websites that monetize based on
advertising and documented the negative of privacy regulations on these businesses. In particular,
they show that this law most profoundly affects general content publishers such as new websites
that rely more heavily on behavioral targeting. Rafieian and Yoganarasimhan| (2021)) study the
interplay between personalization and privacy from the point-of-view of a platform that controls
the level of targeting and focuses on the platform’s incentives to protect consumers’ privacy. They
combine machine learning methods for personalization with the economic models of advertising
auctions and show that too much targeting can soften the competition, thereby hurting the platform’s
revenues. This finding implies that the market mechanism creates some level of alignment between
the platform’s objective and that of consumers with respect to their privacy, thereby suggesting that
self-regulation in the advertising marketplace may be possible.

Overall, one of the key takeaways from the literature on the interplay between personalization
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and privacy is that there is an inherent trade-off: privacy protection comes at the expense of the
overall efficiency in the market. Finding the right balance is often challenging and requires a
complete understanding of the marketplace and the incentives of different parties involved in
this marketplace. Thus, it is essential to use a multi-method approach that combines the insights
from market design literature with the Al machinery to understand the right balance between

personalization and privacy from a welfare standpoint.
6.3 Fairness

Any deviation from a uniform policy for the entire population, by definition, begs the question of
fairness: is it fair that different consumers receive different treatments? One of the earliest studies
that brought this issue to attention was |Sweeney| (2013), who showed that ads for arrest records are
more likely to show up in Google searches for black-sounding names compared to searches for
white-sounding names. Anecdotes like these have led to significant interest and academic research
on algorithmic fairness, which falls into three broad categories: (1) identification of disparities and
discrimination, (2) potential explanation for such disparities, and (3) solutions to increase fairness
in personalization.

The first stream of work focuses on identifying and quantifying the problem by defining context-
relevant metrics (Barocas et al., |2019), developing algorithms to identify disparate impacts of
personalized policies (Kallus and Zhou, 2019), and context-specific methods to audit for algorithmic
discrimination (Imana et al., 2021). While the first stream of research identifies the problem, the
second stream focuses on explaining why such disparities by examining the sources of the problem,
such as data collection (Chen et al., 2018)) or the market mechanism. For example, [Lambrecht
and Tucker| (2019) studies the disparities in the likelihood of receiving STEM ads across men and
women and identify the reason to be the higher cost of women’s impressions in the advertising
auctions. The third stream of this literature adopts an engineering lens to view the problem. It
attempts to provide solutions for the problem through a variety of approaches, such as performing
a constrained optimization subject to fairness constraints (Dwork et al., 2012), de-biasing data
(Feldman et al., 2015), and only capturing heterogeneity that is unrelated to the protected classes in
the learning stage (Ascarza and Israeli, [2021)). Like privacy, fairness often comes at the expense
of efficiency. The trade-off between efficiency and fairness has long been part of policy debates
in many domains, some as unrelated to personalization as taxation. As such, an important area
of research is to measure and quantify the price of fairness empirically (Bertsimas et al., 2011}
Mehrotra et al.| [2018; [Kallus and Zhoul, 2021Db).
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6.4 Polarization

The fact that the rise of political polarization in the US happened around the same time as the
increase in personalized content delivery through online platforms has led to speculations about the
causal impact of personalization on polarization (Pariser, 2011). The argument is that polarized
content creates echo chambers where consumers only see the information that confirms their prior
beliefs, thereby amplifying the political polarization. Early theoretical studies further suggested that
personalization can contribute to polarization in a network context (Dandekar et al., 2013). These
ideas and speculations motivated further research on the interaction between personalization and
polarization with twin goals of: (1) empirically identifying the link in different contexts and (2)
providing an algorithmic solution to the problem.

At a high level, empirical evidence does not paint a unified picture. The greatest increase in
polarization in the US happened among demographic groups that are least likely to use the Internet
(Boxell et al., 2017). Similarly, studies on users’ browsing histories show that social media and
the Internet increase users’ exposure to opposing views, even though these channels are associated
with greater ideological distance between users (Flaxman et al., 2016). Platform-level studies on
the relationship between personalization and polarization also provide mixed evidence. Indeed,
research on Facebook’s news feed algorithm, Google’s search personalization, and YouTube found
little evidence for content partisanship that is attributable to personalization Bakshy et al. (2015);
Robertson et al.| (2018); Ribeiro et al. (2020); Hosseinmardi et al.|(2021). Nevertheless, given the
theoretical possibility of personalization leading to higher polarization and the growing anecdotal
evidence on this topic, a growing body of work has focused on the re-design of personalization
algorithms to actively control polarization (Celis et al., 2019), and guarantee the reachability of
content (Dean et al., [2020).

7 Conclusion and Directions for Future Research

A fundamental goal shared by many businesses is to personalize all aspects of their products and
interactions with users (e.g., marketing mix variables, user experiences). While this goal was
largely aspirational in the past, the last decade saw significant advances in the practical feasibility
of real-time and large-scale personalization. These advances have been made possible by two key
factors: (1) the big leaps in computing power and data storage, which led to the development of
powerful machine learning tools that can be used to personalize at scale, in real-time, and (2) the
concurrent development of theoretical and statistical foundations of the algorithms and methods
used for personalization.

This chapter reviewed the methods available for personalization, the correct way to evaluate
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personalized policies, examples of personalization across a series of contexts, and the welfare
and policy issues that are often interwoven with personalization goals. That said, many difficult
challenges remain, and effective personalization in the field remains elusive in many settings. We,
therefore, conclude with a summary of these challenges and provide some directions for future

research.
7.1 Signal-to-Noise Ratio

Even with all the advances in the machinery available, effective personalization and reliable
evaluation of personalized policies remain a challenge in practice. One of the main reasons for this
is the inherent noise in the data or outcomes, e.g., clicks and purchases are inherently stochastic.
Prior researchers have hypothesized that this natural variability can create a “magic barrier” that
may prevent us from both designing effective policies and getting accurate measures of the reward
from a policy (Herlocker et al., 2004). For example, in an early paper Hill et al.| (1995) showed
that users provide inconsistent ratings when asked to rate the same movie at different times. They
argue that an algorithm cannot be more accurate than the inherent variance in a user’s ratings for
the same item. This issue, also known as the low signal-to-noise problem in supervised learning,
implies that the inherent noise in the data can make inference really challenging. As demonstrated
in|Yoganarasimhan et al.| (2022)), this can lead to situations where a personalized model can learn
spurious patterns heterogeneity from the training data, which in turn can lead to an unreliable
performance in a different data sample. Thus, future research will need to focus on robust methods

immune to these noise problems.
7.2  Multiple Objectives and Long-term Outcomes

Typically, personalization models maximize an objective function that maximizes one outcome of
interest (e.g., user engagement, revenue, clicks). However, in reality, most firms are interested in
many different objectives, which may not all be aligned. For example, a social media firm may want
to personalize a recommendation system that maximizes various consumer engagement metrics
(e.g., posting new content, engaging with peers’ content by liking the content, responding to older
content). Further, these objectives can be differentially important for different customers. As of
now, we lack good paradigms to build personalization models that can automatically accommodate
multiple objectives.

A specific case of the multiple metrics problem is the short- vs. long-term metrics issue. In
practice, many firms use short-term surrogates for personalization, even though their goal is often
optimization of metrics based on a longer horizon. For example, Yoganarasimhan et al.| (2022)

consider a situation where the firm wants to personalize promotions (length of free trials). The
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outcome data available in the short-run for this task is subscriptions, even though the firm may care
more about long-term metrics such as overall revenue or retention (which are only available after
a year or two after the promotion). In principle, these two metrics can be highly misaligned. For
example, a policy that increases subscriptions among students (who get a significant educational
discount and hence pay lower prices) and/or users who subscribe to lower-end products/bundles (at
low prices) at the expense of high-end users can lead to higher subscriptions but lower revenues.
While they show that these objectives are largely aligned in their setting, these findings are not
universally applicable. As such, we need more theory-driven models that allow us to draw a tighter
link between long and short-term metrics. See|Yang et al.| (2021)) for some recent developments in

this area.
7.3 Time Drifts

Another challenge that is relevant in practical settings is time drift. For example, users’ preferences
can change with time, and/or the same actions/treatments can become stale over time. This can
cause issues since almost all personalization models assume some constant response for any given
action (for some user-level covariates). For example, typical bandit models assume that the rewards
from a given arm are constant over time, which is often not true in practice. Sweeney et al.| (2020)
presents an excellent analysis of the effects of such model misspecifications for Bayesian bandits.
Similarly, |Stmester et al.|(2020b) provides some guidance on the supervised learning methods that
are more robust to such drifts. Nevertheless, more research is necessary to develop algorithms

robust to such drifts.
7.4 Strategic Behavior and Equilibrium Analysis

A series of early works on personalization and targeting formulated the problem in a strategic
environment where the adoption and monetization of personalization are key decisions by the
agents, without focusing on the details of the personalization algorithm (Shatfer and Zhang) [1995;
Acquisti and Varianl, 2005; Pancras and Sudhir, [2007; Zhang, 2011). On the other hand, much of the
methodological literature on personalization focused on situations where a single firm personalizes
actions in an environment where the other agents are non-strategic. This is unlikely to be true
in most settings, especially on multi-sided platforms. A fruitful avenue for future research is to
combine game-theoretical frameworks and personalization algorithms to generate strategy-proof
policies.

In the context of advertising, Rafieian and Yoganarasimhan (2021) and Rafieian| (2020) account
for the presence of strategic bidding by advertisers when considering a platform’s personalization

decisions. For example, Rafieian and Yoganarasimhan| (2021)) shows that ad networks can benefit
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significantly from behavioral tracking and personalization if advertisers are non-strategic. However,
if advertisers can strategically alter their bids, the ad network prefers lower levels of user-tracking
and behavioral targeting. Thus, the platform’s incentives are completely different, depending on
whether the environment is strategic. In another work related to advertising auctions, Golrezaei
et al.[ (2019) studies a dynamic case where a platform learns to set personalized reserve prices to
optimize the auction revenues. However, they incorporate the fact that advertisers would have an
incentive to shade their bids knowing that the platform would use them to set optimal reserve prices,
thereby shrinking advertisers’ surplus. Therefore, they focus on an incentive-aware algorithm that
personalizes reserve prices while taking into account the strategic behavior of buyers.

We expect incentive-aware personalization that takes the equilibrium concept into account to be
one of the most important areas of future research. Indeed, research on this topic has the potential
to bring together ideas from all the main paradigms in marketing science — game theory, empirical
structural models, machine learning, and causal inference — and provide answers to some of the

most challenging marketing questions with broader policy implications.
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