Introduction to risksetROC: An R Package for
Riskset-ROC (Incident/Dynamic) Calculation

P. Saha,! P. J. Heagerty,"? and Yingye Zheng?
! Department of Biostatistics, University of Washington
Seattle, Washington 98195, USA

2 Division of Public Health Sciences, Fred Hutchison Cancer Research Center
Seattle, Washington 98109, USA

1 Introduction

ROC curves are a popular method for displaying sensitivity and specificity of a continuous diagnostic
marker, say, M, for a binary disease variable, say, D. But many disease outcomes are time dependent,
D(t) rather than D, and ROC curves that vary as a function of time may be more appropriate. A
common example of this time-dependent disease status would be a patient’s vital status, where D(¢) =1
if a patient has died prior to time ¢ and zero otherwise. A method was proposed by [Heagerty et all (2000)
to summarize the discrimination potential of a marker X, measured at baseline (¢ = 0) by calculating
ROC curves for cumulative disease or death incidence by time ¢ based on cumulative/dynamic definition
of time-varying sensitivity and specificity. Another definition, namely, the incident/dynamic definition
of time-varying sensitivity and specificity was defined in [Heagerty and Zheng (2004). This definition is
based on dividing the riskset at each time ¢ into cases and controls and hence is a natural companion
of hazard models. Based on the incident sensitivity and dynamic specificity, ROC curve can be defined,
AUC (Area Under Curve) can be obtained and a global concordance summary can also be estimated.
This version of time-dependent accuracy measures have some advantages which we will discuss later. We
here introduce an R/S-plus package risksetROC which is able to handle the computations as discussed
in the paper and produce an ROC curve at a specified time or AUC up to a given time and obtain global
concordance measure. To that end, we start by briefly revisiting some necessary concepts and exhibit the
utility of the functions in this package. The paper is organized as follows: in the next section we discuss
some basic concepts and notations, in the Methods section, we talk briefly about the underlying model
and estimation along with a detailed discussion of various functions of the risksetROC package and an
illustration of how to apply these methods to the real data using two well known data sets: Mayo PBC
data and VA lung cancer data.

2 Notation and Basic concepts

2.1 Notation

We introduce the following notations:

M denotes the diagnostic test or marker. By convention, higher values of M are more indicative of the
disease.

T denotes the failure time.
C denotes the censoring time.
X = min(T,C) is the follow-up time.

A is a censoring indicator with A=1if T <Cand A=0if T > C.

We use the counting process D(t) = 1 if T <t and D(t) = 0if T > t to denote failure (disease) status at
any time ¢ with D(¢) = 1 indicating that event occurred prior to time ¢.

The survival time T can also be represented through the counting process, N*(¢) = 1(T; < t), or the
corresponding increment, dN*(t) = N*(t) — N*(t—). Note that we focus on the counting process N*(t)
which is defined solely in terms of the survival time 7' rather than the more common notation N(t) =
1(X <t,A =1), which depends on the censoring time. Let R(t) = 1(X > t) denote the at-risk indicator.
We use subscript i to denote the variable(s) for a subject ¢ and also assume that for each subject we have
a collection of time-invariant covariates, Z; = (Zi1, Zi2, . . ., Zip)-

We now define the incident/dynamic version of sensitivity and specificity. At each time-point ¢, the
riskset or the patients still at risk of an event or failure is divided into two mutually exclusive groups:
cases and controls. Among the riskset patients, the cases are those who experienced an event at time ¢
while controls are those who did not. Thus, at any given time ¢ and a given cut-off value ¢, we define:

sensitivity'(c,t) : Pr{M >c|T =t} =Pr{M >c|dN*(t) =1}
specificity”(c,t) : Pr{M <c¢|T >t} =Pr{M <c| N*(t) =0}

Using the above definitions, we can define the corresponding ROC curve ROC(t) at any time ¢.

Using this approach a subject, say 4, can play the role of a control for an early time, t < 7T; , but then
play the role of case when ¢t = T;. This dynamic status parallels the multiple contributions that a subject
can make to the partial likelihood function. Here sensitivity measures the expected fraction of subjects
with a marker greater than ¢ among the subpopulation of individuals who die at time ¢, while specificity
measures the fraction of subjects with a marker less than or equal to ¢ among those who survive beyond
time ¢. Incident sensitivity and dynamic specificity are defined by dichotomizing the risk set at time ¢
into those observed to die (cases) and those observed to survive (controls).

2.2 Time-Dependent ROC Curves

After defining the incident sensitivity and dynamic specificity, ROC curves can be computed. In this
article we focus on incident/dynamic (I/D) ROC curves defined as the function ROCE/ (p), where p
denotes the dynamic false-positive rate (1-specificity), and ROCE/ D (p) denotes the corresponding incident
true-positive rate. Specifically, let ¢ be defined as the threshold that yields a false-positive rate of
p: P(M; > ¢?|T; > t) = 1 — specificity” (¢?,t) = p. The true-positive rate, ROCE/ D(p), is the sensitivity
that is obtained using this threshold, or ROCE/ P(p) = sensitivity'(c?, t) = P(M; > ¢?|T; = t) . Using the
true and false-positive rate functions TP} (c) = sensitivity'(c, t) and FPP(c) = 1 — specificity” (¢, t) allows
the ROC curve to be written as the composition of T'P}(c) and the inverse function [FPP]~!(p) = cP:

ROC,”(p) = TPH{[FPP|'(p)}

for p € [0,1]. We use the notation AUC(¢) = fol ROCE/D(p)dp to denote the area under the I/D ROC
curve for time t.

2.3 Time-Dependent AUC and Concordance

In the previous subsection we discussed how ROC methods can be used to characterize the ability of
a marker to distinguish cases at time t from controls at time ¢. However, in many applications no a
priori time ¢ is identified, and a global accuracy summary is desired. In this subsection we discuss how

time-dependent ROC curves are related to a standard “concordance” summary. The global summary we
adopt is

CZP[M] > M, | Tj <Tk],

which indicates the probability that the subject who died at the earlier time has a larger value of the
marker. This is not the usual form (i.e., P[M; > My, | T; > Ty]), but reflects the conventions for ROC
analysis.

In order to understand the relationship between this discrimination summary and ROC curves we assume
independence of observations (M, T;) and (M, T}), and assume that T; is continuous such that P(T}, =
T;) = 0. We use P(z) to denote probability or density depending on the context. These assumptions
imply that the concordance summary C is a weighted average of the area under time-specific ROC curves,

P[Mj > My, | Tj <Tk]
- 2/P[{Mj > My} | {T; =t} 0 {t < T}
x P{T; =t} N {t < Ty }]dt

= /AUC(t) x w(t)dt
= Erp[AUC(T) x 2 x S(T)]

with w(t) = 2 x f(t) x S(¢). In this notation AUC(t) is based on the I/D definition of sensitivity and
specificity, AUC(t) = P(M; > My, | T; = t, Ty, > t).

In practice we would typically restrict attention to a fixed follow-up period (0,7). The concordance
summary can be modified to account for finite follow-up:

cT o= / AUC(t) x w™ (t)dt 1)

0
where w (t) =2 x f(t) x S(t)/W7™, W™ = [2 x f(t) x S(t)dt = 1 — S*(7). The restricted concordance
summary remains a weighted average of the time-specific AUCs with the weights rescaled such that they
integrate to 1.0 over the range (0,7). The interpretation of C7 is a slight modification of the original
concordance, where C™ = P[M; > My, | T; < Ty, T; < 7]. Thus C7 is the probability that the predictions
for a random pair of subjects are concordant with their outcomes, given that the smaller event time
occurs in (0, 7).

3 Methods

In this section, we will discuss about the package risksetROC and the functions therein. The function
to create ROC curve at a given time point is also called risksetROC() while risksetAUC() creates
AUC up to a specified time-point and integrates the AUC values to estimate concordance index. These
two functions are build upon the basic functions: SchoenSmooth(), 11CoxReg(), CoxWeights() and
IntegrateAUC(). The first two functions estimates the time-varying coefficients of a Cox model using
different methods. The time-varying or time-invariant hazard estimates are used by CoxWeights () func-
tion to estimates ROC at a specified time-point while the last one integrates the AUC values based on
different time-points to obtain an estimate of concordance index. The set of utility functions also includes
riskset (), weightedKM() and KM.plot(). Among these functions, KM.plot () is a easier version of the
generic plot () function for plotting Kaplan-Meier survival curve and weightedKM() estimates survival
S(t) when sampling weights are permitted. The riskset() function creates riskset at unique failure
times. The details are provided later. We note here that the functions can accommodate both right
censored and left truncated data.

3.1

The risksetROC() function

This function creates ROC curve at a given time from a survival dataset.

> library(risksetROC)
> args(risksetR0OC)
function (Stime, entry = NULL, status, marker, predict.time, method =

NULL

"Cox", span = NULL, order = 1, window = "asymmetric", prop = 0.5,
plot = TRUE, type = "1", xlab = "FP", ylab = "TP", ...)

The arguments and their details are as follows:

(¢]

Stime: For right censored data, this is the follow up time. For left truncated data, this is the ending
time for the interval.

entry: For left truncated data, this is the entry time of the interval. The default is set to NULL
for right censored data.

status: survival status, 1 if had an event and 0 otherwise.

marker: marker value. We want to see how good the marker is to distinguish between cases (incident
cases) and controls. This can either be a linear predictor from a Cox model or a raw marker vector.

predict.time: time point of interest. For example, if survival time is given in days and if we want
to see how well the marker predicts those who would die at the end of first month, i.e., 30 days,
then predict.time would be 30. Note that Stime and predict.time has the same unit.

method: either of "Cox", "LocalCox", "Schoenfeld", default is "Cox". method = "Cox" is based
on the assumption that the survival model has a proportional hazard in marker. The other two
methods assumes that the proportional hazard does not hold. For estimation of time-varying
coefficient, either of two methods ("LocalCox" or "Schoenfeld") can be used. These two variations
of non-proportional hazard differs in that how the smoothing is handled. In case of method =
"Schoenfeld", Schoenfeld residuals are used to estimate the time varying hazard coefficient. method
= "LocalCox" uses the method of |Cai and Sur (2003) to estimate the time-varying coefficients.
Note that method = "LocalCox" uses the function 11CoxReg() and the method = "Schoenfeld"
uses the function SchoenSmooth(). We will discuss these functions in detail later in this section.

span: bandwidth parameter that controls the size of a local neighborhood, needed for method =
"LocalCox" or method = "Schoenfeld".

order: Qor 1, if order = 0, time-varying coeflicient is estimated by a local mean within a window
and is approximated by a local linear function if order = 1. This argument is needed for method
= "Schoenfeld" and the default value is 1.

window: either of "asymmetric" or "symmetric", default is "asymmetric, needed for method =
"LocalCox". This argument handles how the observations near a given event time are considered.
If window = "symmetric" then a symmetric window is considered around a given event time.
Otherwise an asymmetric window is considered.

prop: This denotes what proportion of the length of time-interval to cover when doing a local Cox
fitting at predict.time, needed for method="LocalCox", and the default is 0.5. If prop = 1.0,
then time-varying hazard is estimated at all the event times and the hazard estimate at or close to
predict.time is used for further estimation of (FP, TP) values. Otherwise, a subset of event times
covering predict.time is selected to estimate the time-varying hazard at predict.time. Thus,
specifying prop to be less than 1 allows to run the subroutine (11CoxReg() call) on a subset of the
data and hence is much faster.

o

plot: TRUE or FALSE, default is TRUE. If plot = TRUE then ROC curve is plotted.

o

type: This and the remaining options are for plotting the ROC curve. This is the same type option
from plot () function. Default is "1", can be either of "p" for points, "1" for line, "b" for both.

xlab: label for x-axis. Default is "FP".

o

o ylab: label for y-axis. Default is "TP".

o ...: additional plot arguments.

This function accepts a marker based on any model. Then if a PH model is assumed, then method =
"Cox" can be used, which takes the marker values, estimate the hazard ratio (in case the marker is already
optimized using a Cox model the estimated HR would be 1) and uses Equation (1) and Equation (2)
of [Heagerty and Zheng (2005) to find true positive (TP) and false positive (FP) values corresponding to
different threshold values of the marker. In case, PH assumption is violated, method = "LocalCox" or
method = "Schoenfeld" can be used. These two methods allow for a time-varying hazard in marker
and differs in how the estimation is handled. In case of method = "Schoenfeld" options, function
SchoenSmooth() is used which in turn uses the residuals from a coxph() function (from R-package
survival) to estimate the time-varying hazard. On the other hand, method = "LocalCox" uses locally
weighted partial likelihood methods (function 11CoxReg()) of ICai and Surl (2003) to estimate the time-
varying coefficient. The original or the modified markers are then used to estimate the (FP, TP) for
different thresholds.

The function returns a list with the following items: marker denoting unique marker values for calculation
of true and false positives, TP denoting the True Positive values corresponding to unique marker values,
FP the False Positive values and AUC denoting the Area Under (ROC) Curve at predict.time.

3.2 The risksetAUC() function

This function estimates AUC at unique failure times and integrates AUC with weights to find concordance
index up to a given time point.

> args(risksetAUC)

function (Stime, entry = NULL, status, marker, method = "Cox", span = NULL,
order = 1, window = "asymmetric", tmax, weight = "rescale",
plot = TRUE, type = "1", xlab = "Time", ylab = "AUC", ...)

NULL

The arguments are similar to the argument of risksetROC(). The additional arguments are discussed
below.

o tmax: maximum time to be considered for estimation of concordance index. Concordance index
is defined as the probability that the markers values from two patients are ordered given that the
their event times are ordered. It is assumed that smaller of the two event time is less than tmax.

Note that tmax is 7 in the

o weight: This indicates how the weights for estimation of concordance index the weights should be
handled. If weight = ‘‘rescale’’, then the weights are rescaled such that their sum is unity. The
rescaled weight is really w7 (¢) in If weight = ““conditional”, concordance index is
estimated conditional on the fact that both the event times are less than tmax.

This function is similar to the risksetR0OC() function. It creates ROC curve at each unique failure times
(till tmax) and uses the AUC values to estimate the concordance index (Equation 1). In particular it uses
weightedKM() to estimate the survival probabilities at unique failure times. Modified or original marker
values (depending on the method choice) are then used to find (FP, TP) values at unique failure times.
AUC values at these failure times is also estimated. Finally it uses function IntegrateAUC() to find an
estimate of concordance index. The return list therefore includes utimes denoting ordered unique failure
times, St denoting Kaplan-Meier survival probabilities at utimes, AUC at utimes and Cindex denoting
an estimate of concordance index.

3.3 Utility Functions
3.3.1 The riskset() function

The riskset () function creates riskset at each unique failure time from a right censored or both right
censored and left truncated survival dataset.

> args(riskset)
function (dat, entry = FALSE)
NULL

The argument dat is a survival dataset with at least three variables: survival times, survival status and
marker x, in that order. Note that the name of these columns are not important, but their order is. The
survival data set may have additional variables. The additional argument entry denotes whether the
data is right censored or left truncated. The default is entry = FALSE indicating right censored data. If
entry = TRUE, then at least four variables are expected. These are: entry time, exit time (survival time
or censoring time), status at exit time and marker.

This function first identifies the unique failure times from the dataset. If an event happened at baseline
i.e., at time t = 0, then the event time is reassigned to time ¢ = 0.0001. In case of left truncated data if
entry time and exit time are the same and the subject experienced an event at the exit time, then also
0.0001 is added to the exit time. The entire time-length is then subdivided into smaller intervals. Thus, if
0 <t; <ty <...<ty denotes the unique failure times after reassignment of any event time that may have
happened at time ¢ = 0, then the smaller time-intervals to be considered are (to,t1], (t1,%2], ..., (tk—1, tx],
where tg is 0 if right censored data is considered and is minimum of the entry times when left truncated
data is considered. Note that in case of left truncated data, if a subject enter into the study in between
two consecutive event times, say t; and ¢;41, he is considered to be present in the risk set at time ¢;1,
and hence considered to be present in the riskset (¢;,¢;4+1]. For the first interval (o, 1], all the patients
are at risk of an event. This set of patients is then subdivided into two groups: cases and controls. Cases
are those who experienced an event at ¢; and all the rest are controls. The cases are assigned a new
status value of 1 to indicate that they have an event at time ;. The new status value for controls in this
time interval is 0. We then drop the cases from the previous interval from consideration as they are no
longer at risk of an event later on and move over to the next time interval. The subjects who had an
event at time ¢, are now cases and are assigned a new status of 1 to indicate that they have an event at
time ¢2. The rest of the patients who did not have an event till time ¢> are considered as controls and
moved on to the next riskset. We repeat this procedure till the event time ¢5. The new dataset that is
created after riskset () call have one more column than the original dataset if entry = FALSE and have
the same number of columns if entry = TRUE. The first two columns of the new dataset are called start
and finish indicating the endpoints of the time intervals considered. The third column is the newStatus
column which takes value 1 if the subject had an event between (start, finish] and 0 otherwise. The rest
of the columns are the remaining columns of the original dataset (marker and other variables).

3.3.2 The 11CoxReg() function

This function estimates time-varying hazard using the method of |Cai and Sunl (2003).

> args(11CoxReg)
function (Stime, entry = NULL, status, marker, span = 0.4, p = 1, window = "asymmetric")
NULL

Here p is 1 if the time-varying coeflicient is of interest and 2 if the derivative of time-varying coefficient
is also of interest, default is 1. Both risksetROC() and risksetAUC() uses p = 1 when method =
"LocalCox" is used. The rest of the arguments are the same as the arguments of risksetROC(). This
function returns a list of the following items:

o time: unique failure times.

o beta: estimate of time-varying hazard at the unique failure times.

3.3.3 The SchoenSmooth() function

Just like the 11CoxReg() function, this function also estimate time-varying hazard using Schoenfeld
residuals from a coxph() model fit.

> args(SchoenSmooth)
function (fit, Stime, status, span = 0.4, order = 0, entry = NULL)
NULL

Other than the usual arguments, this function uses fit which is the result of fitting a Cox regression
model, using the coxph() function. When left truncated data is considered, Stime denotes the survival
times and entry now denotes the entry times for subjects. The return items are the same as 11CoxReg(),
except, it returns (multiple) failure times and time-varying hazard at those times. So if three subjects
have an event time of 100 days, then it will return the hazard at ¢ = 100 three times.

3.3.4 The weightedkKM() function

This function returns estimated Kaplan-Meier survival probability at unique failure times and also allows
for weights to be introduced in the estimation.

> args(weightedKM)
function (Stime, status, wt = NULL, entry = NULL)

Here wt denotes the weights. By default, all observations are given equal weight and all the subjects are
assumed to enter at the same time (right censored data). In that case, Stime denotes the survival time
for subjects. When left truncated data is considered, Stime again denotes the survival times as before
and entry now denotes the entry times for subjects. The return list includes time denoting the unique
event times and survival denoting the estimated survival probabilities.

3.3.5 The KM.plot() function
As stated earlier, this is an easier version of the plot () function to create Kaplan-Meier survival plot.

> args(KM.plot)
function (Stime, survival, max.T = NULL, 1ty = NULL, all = TRUE,
L)

The arguments have the usual meaning and ... denotes the additional plotting arguments to be passed
on. In case all = TRUE, a new plot would be created with time and corresponding survival probability,
otherwise, the KM survival probability would be added to an existing plot.

3.3.6 The CoxWeights() function

This function estimates of TP and FP based on a Cox model as discussed in [Heagerty and Zheng (2004),
for incident/dynamic ROC curve. TP is estimated as Equation (1) and FP is estimated as Equation (2)
of the paper. The arguments are as follows:

> args(CoxWeights)
function (marker, Stime, status, predict.time, entry = NULL)
NULL

Here marker denotes the marker (modified to reflect time-varying hazard or used as it is to reflect PH)
while predict.time is the time point of interest. Note that, predict.time, Stime and entry should
have the same units. The return list includes marker denoting the ordered marker values of the subjects
in the riskset at predict.time, TP denoting true positives and FP denoting false positives at these marker
values and AUC denoting the AUC at predict.time.

3.3.7 The IntegrateAUC() function

This function accepts AUC at unique failure times and Kaplan-Meier survival probability to find an

estimate of C' in

> args(IntegrateAUC)
function (AUC, utimes, St, tmax, weight = "rescale")
NULL

The tmax and weight arguments have the same interpretation of the tmax and weight argument from
risksetAUC() function and other arguments have the usual meaning.

3.4 Illustration: Mayo PBC data and Veterans’ Administration Lung Cancer
data

We demonstrate the methods discussed above with two well-known datasets. Note that Veterans’ Ad-
ministration Lung Cancer data (or VA from here onwards) is used as it is from the library MASS while
Mayo PBC data is obtained from http://1lib.stat.cmu.edu/datasets/pbc. This has the same set
of variables and observations as the pbc data from library survival, but the variables are arranged
differently.

> data(pbc)

> str(pbc)

’data.frame’: 418 obs. of 20 variables:

$ id :int 12345678910 ...

$ fudays : int 400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...
$ status : int 2022120222 ...

$ drug :int 1111222212 ...

$ age : int 21464 20617 25594 19994 13918 24201 20284 19379 15526 25772 ...
$ sex :int 1101111111

$ ascites : int 1000000001 ...

$ hepatom : int 1101111000 ...

$ spiders : int 1101100011 ..

$ edema :num 100.50.5000001

http://lib.stat.cmu.edu/datasets/pbc

bili :num 14.51.1 1.4 1.8 3.40.81 0.3 3.2 12.6 ...

chol : int 261 302 176 244 279 248 322 280 562 200 ...
albumin : num 2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...
copper : int 156 54 210 64 143 50 52 52 79 140 ...

alkphos : num 1718 7395 516 6122 671 ...

sgot : num 137.9 113.5 96.1 60.6 113.2 ...

trig : int 172 88 55 92 72 63 213 189 88 143 ...

platelet: int 190 221 151 183 136 NA 204 373 251 302 ...
protime : num 12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...
stage :int 4344333324 ...

S P P P P P P PP LS

Note that the first 312 are the randomized patients. We start by using a marker based on five covariates:
log(bili), log(protime), edema, albumin and age based on the randomized patients.

considering only randomized patients

pbcl <- pbc[1:312,]

create new censoring variable combine 0,1 as 0, 2 as 1

survival.status <- ifelse(pbcl$status==2, 1, 0)

survival.time <- pbci$fudays

pbci$statusl <- survival.status

fit <- coxph(Surv(fudays,statusl) ~ log(bili) +
log(protime) +
edema +
albumin +
age,

data=pbcl)
eta <- fit$linear.predictors

We will now plot the ROCs at ¢ = 90 using the three method.

nobs <- length(survival.time[survival.status==1])
span <- 1.0%(nobs~(-0.2))

ROC.CC90=risksetROC(Stime=survival.time, status=survival.status,
marker=eta, predict.time=90, method="Cox", main=
"PBC Data: ROC Curve", 1lty=2, col="red")

ROC.SS90=risksetROC(Stime=survival.time, status=survival.status,
marker=eta, predict.time=90, method="Schoenfeld",
plot=FALSE, span=span)

ROC.LL90=risksetROC(Stime=survival.time, status=survival.status,
marker=eta, predict.time=90, method="LocalCox",
plot=FALSE, span=span, prop=1.0)

lines (ROC.SS90$FP, ROC.SS90$TP, 1lty=3, col="darkblue")

lines (ROC.LL90$FP, ROC.LL90$TP, lty=4, col="green")

legend (.6, .25, lty=c(2,3,4), col=c("red", "darkblue", "green"),
legend=c("Cox","Schoenfeld","LocalCox"), bty="n")

Given the (FP, TP), we can plot the ROC curves ROC(t) at time ¢ = 90 days (Figure I)). Note that the
AUCs from these three methods are: 0.88 (Cox), 0.94 (Schoenfeld) and 0.91 (LocalCox).

To show the usage of the risksetAUC function, we will use the VA data.

PBC Data: ROC Curve

o
- _______._—— ﬁﬁﬁﬁ
o | .7
S . ’
. 7
NV
N /
oy
© _] I
°© i
o o
= o
< al
c 7l
Kl
n
a
g = : - - Cox
i Schoenfeld
1 LocalCox
o |}
S -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FP

Figure 1: Estimated ROC curves ROC(t) at t = 90 days

library(MASS)

data(VA)

survival.time=VA$stime

survival.status=VA$status

score <- VA$Karn

cell.type <- factor(VA$cell)

tx <- as.integer(VA$treat==1)

age <- VAS$age

survival.status[survival.time>500] <- 0

survival.time[survival.time>500] <- 500

fit0 <- coxph(Surv(survival.time,survival.status)
~ score + cell.type + tx + age, na.action=na.omit)

eta <- fitO$linear.predictor

tmax=300

AUC.CC=risksetAUC(Stime=survival.time, status=survival.status, marker=eta,
method="Cox", tmax=tmax, col="red", lty=2, main="VA
Lung Cancer Data: AUC Plot");

AUC.SS=risksetAUC(Stime=survival.time, status=survival.status, marker=eta,
method="Schoenfeld", span=0.4, tmax=tmax, plot=FALSE);

AUC.LL=risksetAUC(Stime=survival.time, status=survival.status, marker=eta,
method="LocalCox", span=0.4, tmax=tmax, plot=FALSE);

lines (AUC.SS$utimes, AUC.SS$AUC, 1ty=3, col="darkblue")
lines (AUC.LL$utimes, AUC.LL$AUC, 1lty=4, col="green")

10

legend (250, .5, lty=c(2,3,4), col=c("red", "darkblue", "green"),
legend=c("Cox","Schoenfeld","LocalCox"), bty="n")

Note that the estimated concordance index from the three methods are: 0.703 (Cox), 0.731 (Schoenfeld)
and 0.718 (LocalCox).

VA Lung Cancer Data: AUC Plot

1.0

0.9

0.8

AUC
0.7
1
A
|
|
1
1

0.6
1

0.5

- - Cox
Schoenfeld
LocalCox

T T T T T T T
0 50 100 150 200 250 300

0.4
1

Time

Figure 2: AUC based on VA lung cancer data up to 300 days

We close this section by noting that a comparison of the three methods of estimation can be found in
the original paper (Heagerty and Zheng (2004)). From the point of view of use of the functions, we note
that in case of time-varying coefficient, method = "LocalCox" takes (about 5 times) longer (system CPU
time) to run then the comparable method = "Schoenfeld", for example, method = "Schoenfeld" takes
0.007 units of system CPU time whereas method = "LocalCox" takes 0.033 units of system CPU time.

> system.time(risksetROC(Stime=survival.time, status=survival.status,
marker=eta, predict.time=90, method="Schoenfeld", plot=FALSE,
span=span))

[1] 0.739 0.007 0.746 0.000 0.000

> system.time(risksetROC(Stime=survival.time, status=survival.status,
marker=eta, predict.time=90, method="LocalCox", plot=FALSE,
span=span))

[1] 16.542 0.033 16.581 0.000 0.000

4 Conclusion

ROC curves are useful tool for showing diagnostic potential of continuous marker in the setting of survival
data. Based on the paper by [Heagerty and Zheng (2005), we here introduce and discuss the usage of
a new R/S-plus package risksetROC and the functions therein. These functions are able to estimate

11

the discriminatory potential of a continuous marker by time-dependent ROC curve ROC(t) based on
incident sensitivity and dynamic specificity. We note here that for inference and variance estimation, we
now suggest bootstrapping, however we are in a process of developing the theory and later, software, to
estimate the variance of the AUC(t) and C. We here show the different uses of the package and hope, it
will be helpful to the scientific community.

References

Cai, Z. and Sun, Y. (2003). Local linear estimation for time-dependent coefficient in Cox’s regression
model. Scandinavian Journal of Statistics, 30: 93 — 111.

Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC curves for censored survival
data and a diagnostic marker. Biometrics, 56 : 337—344.

Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics,
61 : 92-105.

12

	Introduction
	Notation and Basic concepts
	Notation
	Time-Dependent ROC Curves
	Time-Dependent AUC and Concordance

	Methods
	The risksetROC() function
	The risksetAUC() function
	Utility Functions
	The riskset() function
	The llCoxReg() function
	The SchoenSmooth() function
	The weightedKM() function
	The KM.plot() function
	The CoxWeights() function
	The IntegrateAUC() function

	Illustration: Mayo PBC data and Veterans' Administration Lung Cancer data

	Conclusion

