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1 Introduction

Marginalized transition models are a general parametric class of serial dependence models
that permit likelihood based marginal regression analysis of binary response data. The
marginalized transition model may be used with data where subjects have variable lengths
of follow-up, permitting likelihood analysis in settings where data may be missing at ran-
dom (MAR). The methods developed in Heagerty (2002), are a natural extension of the
first-order Markov models of Azzalini (1994).

Marginalized transition models are a convenient modeling choice in situations where
the marginal mean regression structure is the primary target of inference and we would like
to allow a general dependence structure for longitudinal binary outcome measures. While
in Heagerty (2002) a general pth-order dependence structure was developed for a broad
and flexible class of marginalized transition models, the mtm R library provides functions
for modeling a dependence structure up to 2nd-order. This document is intended to serve
as a supplementary, more detailed resource to the mtm library R help files.

2 General Framework and Notation

We restrict our focus to serial binary response data Yi = (Yi1,. . . , Yini) observed on subjects
i = 1,. . . ,N at times t = 1, . . . ,ni. We also assume that there are associated exogenous
but possibly time-varying covariates Xit = (Xit,1, . . . , Xit,r) recorded for each subject
at each occasion and our statistical objective is to obtain estimates for the regression of
Yit on Xit. We assume that the regression model properly specifies the full covariate
conditional mean defined as µM

it = E(Yit | Xit) = E(Yit | Xi1, . . . , Xini). This condition
assumes that stochastic time-varying covariates are properly modeled through Xit and
that the current values of the response vector are not good predictors of future covariates.
Finally, the marginal generalized linear model specifies g(µM

it ) = Xit β, where g( ) is a
link function and β measures the influence of covariates on the average response. In the
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next sections, we describe the additional assumptions regarding the dependence among the
response variables.

2.1 First Order Marginalized Transition Model

A binary Markov chain model was introduced in Azzalini (1994) to accommodate serial de-
pendence commonly observed in longitudinal data. Given the immediate previous response
in a first-order Markov model, the current response variable is assumed to be conditionally
independent of any previous outcome variables, E( Yit | Yij , j < t ) = E( Yit | Yit−1). The
probabilities that define the first order Markov process are given by pit,0 = E(Yit | Yit−1 =
0) and pit,1 = E( Yit | Yit−1 = 1).

The first-order marginalized transition model is specified by assuming a regression
structure for the marginal mean µM

it = E(Yit | Xit) using a generalized linear model

g(µM
it ) = Xitβ (1)

The marginal mean regression model is constrained by the transition probabilities to satisfy:

µM
it = pit,1µ

M
it−1 + pit,0

(
1− µM

it−1

)
(2)

Serial dependence is then modeled using

µC
it = E(Yit | Xit, Yij = yij , j < t) (3)

logit
(
µC

it

)
= ∆it + γityit−1 (4)

where ∆it = logit(pit,0) and γit = log Ψit is the log odds ratio associated with the first-order
transition probabilities

Ψit =
pit,1/(1− pit,1)
pit,0/(1− pit,0)

(5)

Lastly, the serial dependence of Yit on Yit−1, given by the log odds ratio γit,1, is allowed to
vary as a function of covariates Zit,1 through

γit,1 = Zit,1α1 (6)

To summarize the above equations, the first-order marginalized transition model sepa-
rates the specification of the regression model for outcome Yit on covariates Xit from the
dependence of Yit on the previous outcome Yit−1 (autocorrelation). We are then inter-
ested in drawing inference on the parameters β and α1, the marginal association between
outcome and covariates and how serial dependence is influenced by covariates.
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2.2 Second Order Marginalized Transition Model

In Heagerty (2002), the natural extension of marginalized transition models to pth-order
dependence is explained in detail. The mtm library provides the ability to fit models up to
second-order dependence and provides a score test for whether or not there is evidence for
third-order dependence. Here, we briefly describe the extension of the first-order model to
a second-order model.

Extensions of equations (3) and (4) allow Yit to depend on the history through the
previous two responses, Yit−1 and Yit−2, by combining the marginal mean model of equation
(1) with

µC
it = E(Yit | Xit, Yij = yij , j < t) (7)

logit
(
µC

it

)
= ∆it + γit,1yit−1 + γit,2yit−2 (8)

γit,j = Zit,jαj for j = 1,2 (9)

Similar to first-order models, the second-order marginalized transition model separates
the specification of the regression model of the outcome Yit on covariates Xit from the
dependence of Yit on the previous two outcomes Yit−1, Yit−2 (autocorrelation). Second
order models allow dependence of Yit on the two previous responses, Yit−1 and Yit−2,
where the parameters α1 again reflect how the dependence on the previous response is
affected by covariates Zit,1 and the parameters α2 determine how the dependence on the
second previous response varies by covariates Zit,2.

3 mtm Implementation in R

The mtm R library contains the functions mtm.lag1() and mtm.lag2() that fit marginal
transition models with first and second order dependence respectively. The functions
print.mtm1() and print.mtm2() are also contained in mtm and may be used to display a
summary of the model output.

3.1 R Function Description: mtm.lag1()

A lag-1 marginalized transition model is called with the following R syntax:

mtm.lag1(marginal, trans1, id, beta=NULL, alpha1=NULL, offset=NULL,
data=NULL, tol = 1e-4)

marginal a symbolic description of the marginal model to be fit that generally
takes the form y ∼ x where y are serial binary outcome data and x are the
covariates. The covariates x are a series of terms separated by + which
specify the marginal linear predictor for y.
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trans1 covariates used to estimate the dependence of y(t) on y(t-1). In general,
trans1 has the form ∼ z1 where z1 is a subset of covariates x
and is a series of terms separated by +.

id a vector that identifies the clusters which correspond to the binary
response vector given by y.

beta (optional) initial parameter estimate(s) of how the covariates x(t)
influence the average response y(t). The number of estimates provided
in beta should correspond to the number of covariates in x,
including an intercept.

alpha1 (optional) initial estimate(s) of how the dependence of y(t) on
y(t-1) varies as a function of covariate(s) z1. The number of
estimates provided in alpha1 should correspond to the number of
covariates in z1 used to assess the serial dependence in the outcome
measure.

offset an optional argument used to specify an a priori known component
to be included in the linear predictor during fitting

data (optional) a data frame containing the variables in the model. If not
found in data, the variables are taken from environment(formula).

tol tolerance is a measure used in the numerical calculations to determine
whether or not convergence of the point estimates has occurred.
The default is 1e-4.

3.2 R Function Description: mtm.lag2()

The R call for a lag-2 marginal transition model is similar to a lag-1 model with the
exceptions detailed below:

mtm.lag2(marginal, trans1, trans2, id, beta=NULL, alpha1=NULL,
alpha2=NULL, tol = 1e-4, iter = 50, data)

marginal is a symbolic description of the model to be fit that generally takes the
form y ∼ x, where y are serial binary outcome data and x are the
covariates. The covariates x are a series of terms separated by + which
specify the marginal linear predictor for y.

trans1 covariates used to estimate the dependence of y(t) on y(t-1). In general,
trans1 has the form ∼ z1 where z1 is a subset of covariates x.

trans2 covariates used to estimate the dependence of y(t) on y(t-2). In general,
trans2 has the form ∼ z2 where z2 is a subset of covariates x.

beta (optional) initial parameter estimate(s) of how the covariates x(t) influence
the average response y(t). The number of estimates provided in beta
should correspond to the number of covariates in x, including an intercept.

4



alpha1 (optional) initial estimate(s) of how the dependence of y(t) on y(t-1)
varies as a function of covariate(s) z1. The number of initial estimates
provided in alpha1 should correspond to the number of covariates in z1
used to assess the serial dependence in the outcome measure.

alpha2 (optional) initial estimate(s) of how the dependence of y(t) on y(t-2)
varies as a function of covariate(s) z2. The number of initial provided in
alpha2 should correspond to the number of covariates in z used to
assess the serial dependence in the outcome measure.

3.3 mtm.lag1 and mtm.lag2 Function Output

Maximized log-likelihood Maximized log-likelihood of model.
Beta estimates Marginal model log-odds ratio estimates (est.),

model-based standard errors (s.e.M), empirical
standard errors (s.e.E), and z-score test statistics
derived using the model-based standard errors.

Alpha1 estimates First-order dependence model log-odds ratio
estimates, model-based standard errors, empirical
standard errors, and z-score test statistics derived
using the model-based standard errors.

Alpha2 estimates Second-order dependence model log-odds ratio
estimates, model-based standard errors, empirical
standard errors, and z-score test statistics derived
using the model-based standard errors.

Lag-3 score test A score test for evidence of outcome dependence
beyond first and second order.

3.4 An Example

In this section, we present analyses of the Madras Longitudinal Schizophrenia Study
data (Thara et al., 1994) that were explored with these methods in detail in Heagerty
(2002). The Madras data are included in the mtm library and may be loaded in R with
data(madras).

The data contain serial binary outcome measures yit that denote the presence of positive
psychiatric symptoms over the course of t = 0,. . . , 11 months during the first year following
hospitalization for schizophrenia for patients i = 1,. . . ,86 (denoted by id). The dataset
also contains the binary indicator of whether or not the patient’s age at hospitalization <
20 (0 = age ≥ 20, 1 = age < 20), and gender (0 = male, 1 = female), and the interactions
between both of these covariates with time (month). Finally, the data contain a binary
indicator, labeled initial of whether or not month = 1. This indicator variable allows α1

to be used for both the second-order model Yit | Yit−1, Yit−2, and the initial state, Yi1 | Yi0.
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The goal of this data analysis is to determine factors that may correlate with the course
of illness. Specifically, we would like to examine whether the rate of decline in symptoms
prevalence differs across gender and age-at-onset subgroups. This question will be explored
by evaluating marginal effects of the interaction terms of age and gender with month.

The following R code is used to explore this data with a second-order marginalized
transition model with mtm.lag2():

## Load mtm library and madras data
> library(mtm)
> data(madras)
> attach(madras)
> madras[1:10, ] # Print the first 10 lines...

id y month age gender monthXage monthXgender initial
1 1 1 0 0 0 0 0 0
2 1 1 1 0 0 0 0 1
3 1 1 2 0 0 0 0 0
4 1 1 3 0 0 0 0 0
5 1 1 4 0 0 0 0 0
6 1 0 5 0 0 0 0 0
7 1 0 6 0 0 0 0 0
8 1 0 7 0 0 0 0 0
9 1 0 8 0 0 0 0 0
10 1 0 9 0 0 0 0 0

As an example of a second-order transition model, the first and second order time trend
terms of Model 5 in Heagerty (2002) are presented below:

## lag-2 transition model -- model 5 of Heagerty (2002):
> model2 <- mtm.lag2(marginal = y ~ month + age + gender + monthXage + monthXgender,

trans1 = ~ initial + month, trans2 = ~ 1, id=id, data=madras)
> print.mtm2(model2)

Marginalized Transition Models - lag 2

maximized logLikelihood = -332.931

Beta estimates:

est. s.e. M s.e. E Z
(Intercept) 0.568 0.295 0.291 1.924
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month -0.234 0.054 0.056 -4.324
age 0.619 0.434 0.461 1.425
gender -0.160 0.407 0.424 -0.395
monthXage -0.100 0.091 0.090 -1.098
monthXgender -0.149 0.089 0.096 -1.672

Alpha1 estimates:

est. s.e. M s.e. E Z
(Intercept) 2.099 0.559 0.568 3.755
initial 0.403 0.740 0.732 0.544
month 0.156 0.096 0.093 1.626

Alpha2 estimates:

est. s.e. M s.e. E Z
(Intercept) 0.597 0.293 0.262 2.035

Score test for lag-3 coefficient = 0.072 p-val = 0.789

The model output provides both model-based (s.e.M) and empirical (s.e.E) standard
errors for the log-odds ratio estimates. The estimates provided under the Beta estimates
model output indicate to what extent symptoms in the current month (month = t) are
correlated with specific covariates. For example, among males with later age-at-onset the
estimated rate of decline in the log odds of schizophrenic symptoms is -0.234 per month,
denoted by the beta estimate month (z = -4.324). This translates to more than a 20%
average reduction in the presence of symptoms per month after the initial hospitalization
(OR = 0.79, 95% CI: 0.71 - 0.88) for this particular subgroup. The other marginal estimates
may be interpreted in a similar manner.

The dependence of current outcomes on previous outcomes is summarized under the
headings Alpha 1 estimates and Alpha 2 estimates. For instance, one may obtain an
estimate of the odds ratio comparing the odds of symptoms at month = 1 (Y1 = 1) given
symptoms at baseline (Y0 = 1) to the odds of symptoms at one month (Y1 = 1) given no
symptoms at baseline (Y0 = 0). In this case, the odds ratio is estimated by:

OR = eInterceptα1+initialα1+monthα1

= e2.099+0.403+0.156

= 14.27
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Similarly, one may obtain an estimate of the odds ratio comparing the odds of Y5 = 1
given Y4 = 1 and Y3 = 1 to the odds of Y5 = 1 given Y4 = 0 and Y3 = 0. Here, the odds
ratio is estimated by:

OR = eInterceptα1+5∗monthα1+Interceptα2

= e2.099+5∗0.156+0.597

= 32.33

The individual estimates provided under the Alpha 1 estimates model output indi-
cate to what extent symptoms in the current month (month = t) are dependent on the
previous month’s (month = t-1 ) symptoms for specific subgroups. For instance, while
we observed above that there was a 20% decline in the marginal odds of symptoms per
month, we see that patients whose symptoms persist over time (from one month to the
next) are more likely to continue to have symptoms. For every one-month increase post-
hospitalization, those with persistent symptoms in the preceding month were exp(0.156)
times, or 17%, more likely to have symptoms in the current month. However, this result
was not significant at the nominal 0.05 level (p = 0.104).

Similarly, the estimates provided under the Alpha 2 estimates model output indicate to
what extent symptoms in the current month (month = t) are dependent on the presence
of symptoms two months ago (month = t-2 ). In this particular model, an intercept was
included to describe the dependence of the currents months symptoms on those that were
reported two months previously. The model output suggests that the presence of symptoms
two months earlier are associated with an 82% higher odds of schizophrenic symptoms in
the present month independent of the presence symptoms in the previous month (month
= t-1 ), (OR = 1.82, 95% CI: 1.02 - 3.23).

4 Conclusions

Marginalized transition models allow for simultaneous likelihood-based estimation of the
average response and for the correlation among longitudinal observations. Such models are
permissible both when subjects have varying lengths of follow-up and when data may be
missing at random (MAR). The latter characteristic is an advantage over semiparametric
approaches such as generalized estimating equations (GEE) which may produce biased
results unless data are missing completely at random (MCAR). In this document, we
introduced a new R-package mtm which contains functions to fit first and second order
marginalized transition models to equally spaced binary response data.
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