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Recap: Potential Outcomes under IV model

• Observed

• Z = Assignment to treatment (Instrument)
• X = Receipt/Exposure to treatment
• Y = Response

• Instrumental Variable : Effect of Z on Y is only through X

• Unobserved (due to imperfect compliance)

• tX = Underlying compliance ”type”
• tY = Underlying response ”type”
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Recap: tX and tY

Table: Compliance types (tX ) based on potential outcomes

Xz=0 Xz=1 Compliance Type tX
0 0 NT Never Taker
1 0 DE Defier
0 1 CO Complier
1 1 AT Always Taker

Table: Response types (tY ) based on potential outcomes under
Exclusion Restriction [Angrist et al., 1996]

Y0· Y1· Response Type tY
0 0 NR Never Recover
1 0 HU Hurt
0 1 HE Helped
1 1 AR Always Recover



Measuring the effects of causes

• Causal estimand of interest: Average Causal Effect (ACE)

• Marginal effect over the population
• ACE (X → Y ) = E[Yx=1· − Yx=0·] = p(HE )− p(HU)

=
∑
tX

[
p(tX ,HE )− p(tX ,HU)

]
• Depends on parameters that are not fully-identified e.g.
p(CO,HE ).
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Where are the partially-identified parameters?

p(y , x |z=1)
p(tx , ty ) y0, x0 y1, x0 y0, x1 y1, x1

p
(y
,x
|z

=
0

)

y0, x0 p(NT ,NR) p(CO,HE )

y1, x0 p(CO,AR)

y0, x1

y1, x1

Example: Type (tx = CO, ty = HE) is observed in p(y = 0, x = 0 | z = 0), and
p(y = 1, x = 1 | z = 1).

But . . . type (tx = NT , ty = NR) is also observed in p(y = 0, x = 0 | z = 0).

And . . . type (tx = CO, ty = AR) is observed in p(y = 1, x = 1 | z = 1)



Where are the partially-identified parameters?

p(y , x |z=1)
p(tx , ty ) y0, x0 y1, x0 y0, x1 y1, x1

p
(y
,x
|z

=
0

)

y0, x0 p(NT ,NR)+
p(NT ,HE )

p(CO,NR) p(CO,HE )

y1, x0 p(NT ,AR)+
p(NT ,HU)

p(CO,HU) p(CO,AR)

y0, x1 p(DE ,NR) p(DE ,HU) p(AT ,NR)+
p(AT ,HU)

y1, x1 p(DE ,HE ) p(DE ,AR) p(AT ,AR)+
p(AT ,HE )

Table: Two-way table for binary Instrumental Variable model



Recap: ACE bounds
• Pearl [2000] proposed bounds on ACE:

- minimum and maximum ACE, based on the set of
distributions of p(tX , tY ) compatible with observed data

• Illustrated with data from a double-blind
placebo-controlled randomized trial 1

• No DEfiers and no Always Takers since Z = 0⇒ X = 0

z x y count z x y count
0 0 0 158 1 0 0 52
0 0 1 14 1 0 1 12
0 1 0 0 1 1 0 23
0 1 1 0 1 1 1 78

Table: Lipid data; there are two structural zeros

1Compliance was originally a continuous measure (proportion of the
time during the trial that the patient took the medication), which was
dichotomized by Pearl [2000]



Recap: Prior sensitivity

• Prior distribution over potential outcomes p(tX , tY )

• Reflects our beliefs about the proportion of individuals in
population that possess characteristics corresponding to
(tX , tY )

• Uniform: Dir (1, . . . , 1)→ Dir (1, . . . , 1.2, 1, 0.8)
• Unit : Dir (18 , . . . ,

1
8)→ Dir (1, . . . , 3

16 ,
1
8 ,

1
16)

• Such perturbation should not have large effect on
posterior ACE

• Gibbs sampling to sample (tX , tY ) from resulting posterior

• Find ACE (X → Y ) = p(Helped | data)− p(Hurt | data)



Recap: Prior sensitivity
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Transparent Parametrization
• Re-parameterize p(tX , tY ) into f (θ, ψ)

• θ = identifiable parameter
i.e. estimable from observed (X ,Y ,Z )

• ψ = non-identifiable parameter
i.e. given θ, there is no information in the
likelihood/data concerning this parameter
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Transparent Parametrization

Some notation:

• γx=i
tx = Pr(Yx=i = 1 | tx) = Pr(y = 1 | x = i , tx)

• e.g. Probability of a COmplier recovering (y = 1) when
treatment is not received (x = 0) is:
γx=0
CO = Pr(Yx=0 = 1 | CO) = Pr(y = 1 | x = 0,CO).

• Probability does not depend on treatment assignment Z
(i.e. Instrumental Variable under Exclusion Restriction)

• πx = Probability that a subject is of compliance type tx



Transparent Parametrization

p(y = 1 | x = 0, z = 0)

γ0·CO γ0·NT πx γ1·NT γ1·CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)

Figure: Transparent parametrization of the simple IV model with
no Always Takers or DEfiers (from the Lipid data).
Oval nodes are (unknown) parameters in the model.
Rectangular nodes are observable probabilities from the data, and
are deterministic functions of their parents (oval nodes).



Transparent Parametrization
p(y = 1 | x = 0, z = 0)

γ0·CO γ0·NT πx γ1·NT γ1·CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)

(a) Characterize set of distributions πX compatible with
p(x | z):

πDE = πAT = 0

p(x = 1 | z = 1) = πCO

p(x = 0 | z = 1) = πNT



Transparent Parametrization

p(y = 1 | x = 0, z = 0)

γ0·CO γ0·NT πx γ1·NT γ1·CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)

(b) For fixed marginal distribution πX , describe set of values
of γx=i

tx compatible with observed p(y | x , z).

p(y = 1 | x = 1, z = 1) = γ1·CO

p(y = 1 | x = 0, z = 1) = γ0·NT

p(y = 1 | x = 0, z = 0) = γ0·NT · πNT + γ0·CO · πCO



Transparent Parametrization

(c) Identify the parameters

πCO = p(x = 1 | z = 1)

πNT = p(x = 0 | z = 1)

γ1·CO = p(y = 1 | x = 1, z = 1)

γ0·NT = p(y = 1 | x = 0, z = 1)

γ0·CO =
p(y = 1 | x = 0, z = 0)− γ0·NT · πNT

πCO

=
p(y = 1, x = 0 | z = 0)− p(y = 1, x = 0 | z = 1)

p(x = 1 | z = 1)

(d) Find restrictions on observed p(y , x | z)

γ0·CO ≥ 0⇒ p(y = 1, x = 0 | z = 0) ≥ p(y = 1, x = 0 | z = 1)

γ0·CO ≤ 1⇒ p(y = 0, x = 0 | z = 0) ≥ p(y = 0, x = 0 | z = 1)



Monte Carlo rejection sampling

1. Draw from uniform Dirichlet priors for p(y , x | z) ; z = {0, 1}

2. Update the conjugate Dirichlet posterior using a multinomial
likelihood, and simulate from the posterior

3. Truncate using restrictions (d) on previous slide
(discard simulations that violate the inequalities)

4. Estimate identifiable parameters using (c) on previous slide

5. Estimate causal effect as function of parameters:

e.g. ACE = E[Yx=1· − Yx=0·]

=
∑
tX

p(tX ) · E[Yx=1· − Yx=0· | tX ]

=
∑
tX

p(tX ) · (γ1·tX − γ
0·
tX )

= p(CO) · (γ1·CO − γ0·CO) + p(NT ) · (γ1·NT − γ0·NT )

= function of wholly unidentified parameter γ1·NT



Posterior ACE as a function of γ1·
NT
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General Framework

• Remove:

• Assumption of Exclusion Restriction 2

• Restrictions on state space (tX , tY )
i.e. don’t rule out possibility of Always Takers or DEfiers

• Consider the following causal estimands as well:

• ACDEtX (x) = E[Yx ,z=1 − Yx ,z=0 | tX ]

Average Controlled Direct Effect 3 , due to exposure x ,
for response type tX

• ITTtX = E[YXz=1,z=1 − YXz=0,z=0 | tX ]

Intent-To-Treat Effect for response type tX

2Effect of Z on Y is only through X
3vs Average Causal Effect ACE (X → Y ) = E[Yx=1· − Yx=0·]



Saturated Model: No assumptions or restrictions

on (tX , tY )

p(y = 1 | x = 0, z = 0) p(x | z = 0) p(y = 1 | x = 1, z = 0)

γ00CO γ00NT γ10AT γ10DE

πx γxztX e.g. γ10CO

γ01DE γ01NT γ11AT γ11CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)



Average Controlled Direct Effects: ACDEtX (x)

Deriving the bounds for NT and AT :

1−p(y = 0, x = 0 | z = 1) + p(y = 1, x = 0 | z = 0)

p(x = 0 | z = 0)− p(x = 1 | z = 1)

≤ ACDENT (x = 0) ≤
p(y = 0, x = 0 | z = 0) + p(y = 1, x = 0 | z = 1)

p(x = 0 | z = 0)− p(x = 1 | z = 1)
− 1

1−p(y = 0, x = 1 | z = 1) + p(y = 1, x = 1 | z = 0)

p(x = 1 | z = 1)− p(x = 0 | z = 0)

≤ ACDEAT (x = 1) ≤
p(y = 0, x = 1 | z = 0) + p(y = 1, x = 1 | z = 1)

p(x = 1 | z = 1)− p(x = 0 | z = 0)
− 1



Intent-To-Treat Effect: ITTtX

Under additional exclusion assumptions for COmpliers 4,
ITTCO is also the COmplier Average Causal Effect
of X on Y , with bounds:

1−p(y = 0, x = 1 | z = 1) + p(y = 1, x = 0 | z = 0)

p(x = 1 | z = 1)− p(x = 1 | z = 0)

≤ ITTCO ≤

p(y = 0, x = 0 | z = 0) + p(y = 1, x = 1 | z = 1)

p(x = 1 | z = 1)− p(x = 1 | z = 0)
− 1

4γ00CO = γ01CO = γ0·CO and γ11CO = γ10CO = γ1·CO



Motivating example: Flu vaccine data

• Z = 1 : Patient’s physician was asked to remind patients
to obtain flu shots

• X = 1 : Patient actually received a flu shot

• Y = 1 : Patient was not hospitalized

z x y count z x y count
0 0 0 99 1 0 0 84
0 0 1 1027 1 0 1 935
0 1 0 30 1 1 0 31
0 1 1 233 1 1 1 422

Table: Flu vaccine data previously analyzed by Hirano et al. [2000],
but now ignoring the baseline covariates



Motivating example: Flu vaccine data
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. . . And Then There Were Three . . .

• Now consider models with combinations where the
following three assumptions hold:

• MONX : Monotonic Compliance
⇒ No DEfiers

• EXNT : Stochastic Exclusion for Never-Takers under
non-exposure
⇒ γ0·NT = γ00NT = γ01NT

• EXAT : Stochastic Exclusion for Always-Takers under
exposure
⇒ γ1·AT = γ11AT = γ10AT



MONX

p(y = 1 | x = 0, z = 0) p(x | z = 0) p(y = 1 | x = 1, z = 0)

γ00CO γ00NT γ10AT

πx

γ01NT γ11AT γ11CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)



MONX + EXAT + EXNT

p(y = 1 | x = 0, z = 0) p(x | z = 0) p(y = 1 | x = 1, z = 0)

γ00CO

γ0·NT πx γ1·AT

γ11CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)



ITTCO under other models
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Conclusions

• The problem of non-compliance in causal models

• Instrumental variables are a well-established method of
estimating (population) causal effects

• However, the resulting posteriors may be highly sensitive
to the specification of the prior distribution over
compliance types



Conclusions

• Transparent parameterizations

• Re-parameterize the model such that the complete
parameter vector may be divided into point-identified
and entirely non-identified subvectors

• Work out the distribution of the observed data implied
by the transparent model

• Use Monte-Carlo rejection sampling to draw from the
conjugate posterior

• Obtain point estimates or develop bounds on causal
measures 5 in terms of identified parameter(s)

5regardless of chosen scale



Covered in the paper, but future work for me

• Incorporating covariates

• Examine causal effects in sub-populations defined by
baseline covariates V

• For discrete covariates with small numbers of levels,
repeat analysis within each level of V

• For continuous covariates, re-parametrize each of the set
of distributions, and construct (multivariate) generalized
linear models for p(y , x | z) as a function of V.

• Robustness to model mis-specification of nuisance models

• Posterior ITT estimate centered on MLE of ITT
asymptotically

• MLE generally inconsistent under the ITT null
hypothesis 6

• Results in high type I error

6That treatment assignment Z and response Y are independent



Finally . . .

Results without causes are much more impressive.

S. Holmes, 1893

The Adventure of the Stockbroker’s Clerk

The scientific and practical interpretations of the results
. . . dramatically different for descriptive and causal
questions.

P.W. Holland and D.B. Rubin, 1982

On Lord’s paradox; Prepared for the Festschrift in honor of

Frederic M. Lord



Thank You

p(y = 1 | x = 0, z = 0) p(x | z = 0) p(y = 1 | x = 1, z = 0)

γ00CO γ00NT γ10AT γ10DE

πx

γ01DE γ01NT γ11AT γ11CO

p(y = 1 | x = 0, z = 1) p(x | z = 1) p(y = 1 | x = 1, z = 1)
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