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Recap

• Transparent Parametrizations of Models for Potential
Outcomes

• Model used to estimate causal effects

• Imperfect compliance

• Separate the identifiable parameters from the
unidentified



General Potential Outcomes model
• Observed

• Z = Assignment to treatment (Instrument)
• X = Receipt/Exposure to treatment
• Y = Response

• Unobserved (describing potential outcomes)
• tX = Underlying compliance ”type”
• tY = Underlying response ”type”
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Compliance Types (tX )

• Z = Assigned treatment

• Xz = Potential receipt/exposure to treatment given
assignment Z = z

• Xz = observed X under the consistency axiom

Xz=0 Xz=1 Compliance Type tX
0 0 NT Never Taker
1 0 DE Defier
0 1 CO Complier
1 1 AT Always Taker

Table: Compliance types (tX ) based on potential outcomes



Potential Outcomes

• Yxz = Potential response under receipt/exposure to
treatment x , and treatment assignment z

• In a general model, Z may have an effect on Y , and tY
would take 16 = 222 possible states.

• Under the Instrumental Variable model [Angrist et al.,
1996] , the effect of Z on Y is only through X .



Response Types (tY )

• This is represented by the Exclusion Restriction:
Yxz = Yxz ′ = Yx · for z , z ′ ∈ {0, 1}.

• Yx · = Potential response under receipt/exposure to
treatment x , regardless of assigned treatment

Y0· Y1· Response Type tY
0 0 NR Never Recover
1 0 HU Hurt
0 1 HE Helped
1 1 AR Always Recover

Table: Response types (tY ) based on potential outcomes under
Instrumental Variable model



Instrumental Variable Model

• Exclusion Restriction

• Effect of Assignment (Z ) on Response (Y ) is only
through Receipt/Exposure (X )

• Causal estimand of interest: Average Causal Effect (ACE)

• ACE (X → Y ) = p(Helped)− p(Hurt)
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What’s wrong with this approach?

• Non-identifiability

• Distribution over potential outcomes p(tX , tY ) may only
be partially-identified

• Causal estimands of interest (e.g. ACE) would hence
depend on parameters that are not fully-identified.

• How to get meaningful information about causal effects?

• Pearl [2000] proposed bounds on ACE
• Find the set of distributions p(tX , tY ) compatible with

observed data
• Find the minimum and maximum ACE



Motivating Example

• Data from a double-blind placebo-controlled randomized
trial

• Compliance and response were dichotomized

• There are no DEfiers and no Always Takers since
Z = 0⇒ X = 0

z x y count z x y count
0 0 0 158 1 0 0 52
0 0 1 14 1 0 1 12
0 1 0 0 1 1 0 23
0 1 1 0 1 1 1 78

Table: Lipid data; there are two structural zeros



Finding the ACE

• Bounds[
p(y = 1 | z = 1)− p(y = 1 | z = 0)

]
−
[
p(y = 1, x = 0 | z = 1) + p(y = 0, x = 1 | z = 0)

]
≤ ACE (X → Y ) ≤[
p(y = 1 | z = 1)− p(y = 1 | z = 0)

]
+
[
p(y = 0, x = 0 | z = 1) + p(y = 1, x = 1 | z = 0)

]
• From the data: (0.39, 0.78)



Bayesian Approach

• Prior distribution over potential outcomes p(tX , tY )

• Reflects proportion of individuals in population that
possess characteristics corresponding to (tX , tY )

• Dirichlet prior

• Posterior

• Gibbs sampling to sample (tX , tY ) from resulting
posterior

• Find ACE (X → Y ) = p(Helped | data)− p(Hurt | data)



Posterior: Sensitive to prior?

• Uniform

• Dir (1, . . . , 1)→ Dir (1, . . . , 1.2, 1, 0.8)

• Unit

• Dir (18 , . . . ,
1
8)→ Dir (1, . . . , 3

16 ,
1
8 ,

1
16)

• Such perturbation should not have large effect on
posterior ACE



Posterior: Sensitive to prior?



Transparent Parametrizations

• Re-parameterize p(tX , tY ) into f (θ, ζ)

• θ = identifiable parameter (estimable from observed
(X ,Y ,Z ))

• ζ = non-identifiable parameter
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Transparent Parametrizations



Next Steps

• Inference based on posterior distribution

• Work out the distribution of the observed data
p(y , x | z) implied by the transparent model

• Compute the posterior distribution of the parameters

• Apply inequality restrictions (”truncate”) by
Monte-Carlo rejection sampling

• Find ACE (X → Y ) as a function of the unidentified
parameter(s)



Next Steps

• Extend to general setting

• Various assumptions or restrictions: 8 different models

• Derive bounds on conditional causal contrasts e.g.
Average Controlled Direct Effect

ACDENT (x0) = E
(
Yx=0,z=1 − Yx=0,z=0 | NT

)
• Evaluate bounds conditional Intention-To-Treat effect

e.g. ITTCO = E
(
Yx=1,z=1 − Yx=0,z=0 | CO

)
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