STAT/BIOST 572 Update Student Presentation

Wen Wei Loh

April 26, 2012

Recap

- Transparent Parametrizations of Models for Potential Outcomes
 - Model used to estimate causal effects
 - Imperfect compliance
 - Separate the identifiable parameters from the unidentified

General Potential Outcomes model

- Observed
 - *Z* = Assignment to treatment (Instrument)
 - X = Receipt/Exposure to treatment
 - Y = Response
- Unobserved (describing *potential outcomes*)
 - $t_X =$ Underlying compliance "type"
 - t_Y = Underlying response "type"

Compliance Types (t_X)

- Z = Assigned treatment
- X_z = Potential receipt/exposure to treatment given assignment Z = z
- X_z = observed X under the consistency axiom

$X_{z=0}$	$X_{z=1}$	Compliance Type t_X		
0	0	NT	Never Taker	
1	0	DE	Defier	
0	1	CO	Complier	
1	1	AT	Always Taker	

Table: Compliance types (t_X) based on potential outcomes

Potential Outcomes

- Y_{xz} = Potential response under receipt/exposure to treatment x, and treatment assignment z
- In a general model, Z may have an effect on Y, and t_Y would take $16 = 2^{2^2}$ possible states.
- Under the Instrumental Variable model [Angrist et al., 1996], the effect of Z on Y is only through X.

Response Types (t_Y)

- This is represented by the Exclusion Restriction: $Y_{xz} = Y_{xz'} = Y_{x}$ for $z, z' \in \{0, 1\}$.
- $Y_{x.}$ = Potential response under receipt/exposure to treatment x, regardless of assigned treatment

<i>Y</i> ₀ .	$Y_{1.}$	Response Type t_Y			
0	0	NR	Never Recover		
1	0	ΗU	Hurt		
0	1	ΗE	Helped		
1	1	AR	Always Recover		

Table: Response types (t_Y) based on potential outcomes under Instrumental Variable model

Instrumental Variable Model

- Exclusion Restriction
 - Effect of Assignment (Z) on Response (Y) is only through Receipt/Exposure (X)
- Causal estimand of interest: Average Causal Effect (ACE)

•
$$ACE(X \rightarrow Y) = p(Helped) - p(Hurt)$$

What's wrong with this approach?

- Non-identifiability
 - Distribution over potential outcomes p(t_X, t_Y) may only be partially-identified
 - Causal estimands of interest (e.g. ACE) would hence depend on parameters that are not fully-identified.
- How to get meaningful information about causal effects?
 - Pearl [2000] proposed bounds on ACE
 - Find the set of distributions $p(t_X, t_Y)$ compatible with observed data
 - Find the minimum and maximum ACE

Motivating Example

- Data from a double-blind placebo-controlled randomized trial
- Compliance and response were dichotomized
- There are no DEfiers and no Always Takers since $Z = 0 \Rightarrow X = 0$

Ζ	X	y	count	Z	X	y	count
0	0	0	158	1	0	0	52
0	0	1	14	1	0	1	12
0	1	0	0	1	1	0	23
0	1	1	0	1	1	1	78

Table: Lipid data; there are two structural zeros

Finding the ACE

• Bounds

$$\begin{split} & \left[p(y=1 \mid z=1) - p(y=1 \mid z=0) \right] \\ & - \left[p(y=1, x=0 \mid z=1) + p(y=0, x=1 \mid z=0) \right] \\ & \leq ACE(X \to Y) \leq \\ & \left[p(y=1 \mid z=1) - p(y=1 \mid z=0) \right] \\ & + \left[p(y=0, x=0 \mid z=1) + p(y=1, x=1 \mid z=0) \right] \end{split}$$

• From the data: (0.39, 0.78)

Bayesian Approach

• Prior distribution over potential outcomes $p(t_X, t_Y)$

- Reflects proportion of individuals in population that possess characteristics corresponding to (t_X, t_Y)
- Dirichlet prior
- Posterior
 - Gibbs sampling to sample (t_X, t_Y) from resulting posterior

• Find $ACE(X \rightarrow Y) = p(Helped \mid data) - p(Hurt \mid data)$

Posterior: Sensitive to prior?

- Uniform
 - Dir $(1,\ldots,1) \rightarrow$ Dir $(1,\ldots,1.2,1,0.8)$
- Unit

• Dir
$$(\frac{1}{8}, \dots, \frac{1}{8}) \to \text{Dir} (1, \dots, \frac{3}{16}, \frac{1}{8}, \frac{1}{16})$$

• Such perturbation should not have large effect on posterior ACE

Posterior: Sensitive to prior?

Prior and posterior on ACE(X->Y) for Lipid data Uniform and perturbed uniform priors on potential outcomes

Prior and posterior on ACE(X->Y) for Lipid data Unit and perturbed unit priors on potential outcomes

Transparent Parametrizations

- Re-parameterize $p(t_X, t_Y)$ into $f(\theta, \zeta)$
 - θ = identifiable parameter (estimable from observed (X, Y, Z))
 - $\zeta = \text{non-identifiable parameter}$

Transparent Parametrizations

Figure 4: A graph representing the functional dependencies in the analysis of the simple IV model with no Always Takers or Defiers. Rectangular nodes are observed; oval nodes are unknown parameters. p(x=1|z=0) = 0, so p(y|x=1, z=0) is undefined, hence these nodes are omitted.

Next Steps

- Inference based on posterior distribution
 - Work out the distribution of the observed data $p(y, x \mid z)$ implied by the transparent model
 - Compute the posterior distribution of the parameters
 - Apply inequality restrictions ("truncate") by Monte-Carlo rejection sampling
 - Find ACE $(X \rightarrow Y)$ as a function of the unidentified parameter(s)

Next Steps

- Extend to general setting
 - Various assumptions or restrictions: 8 different models
 - Derive bounds on conditional causal contrasts e.g. Average Controlled Direct Effect $ACDE_{NT}(x_0) = E(Y_{x=0,z=1} - Y_{x=0,z=0} | NT)$
 - Evaluate bounds conditional Intention-To-Treat effect e.g. $ITT_{CO} = E(Y_{x=1,z=1} - Y_{x=0,z=0} | CO)$

References

- J.D. Angrist, G.W. Imbens, and D.B. Rubin. Identification of causal effects using instrumental variables. *Journal of the American Statistical Association*, 91(434):444–455, 1996.
- J. Pearl. *Causality: models, reasoning, and inference,* volume 47. Cambridge Univ Press, 2000.