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Method - IMIS

Incremental Mixture Importance Sampling

e numerical algorithm for sampling from a posterior

e addresses limitations of current algorithm
Sampling-Importance-Resampling (SIR)
posteriors with multi-modality & nonlinear ridges



Bayesian framework in the context of modeling

o Model: 6 %

o M deterministic scientific model
population dynamics model for bowhead whales
e 0 input parameters for model (settings)
birth and death rates, initial population size, ....
e p = M(#) model output
population size by year
e Model Calibration (select )
e prior on input parameters: 7(6)
e X is observed real data
for certain years: observed population counts
e posterior on input parameters: 7(6|X)
use E[0|X] for point estimates of p
samples from 7(0|X) for intervals around p

e Bayes Formula: 7(0|X) = w



Bayesian model calibration - early steps

e International Whaling Commission (IWC)
e 1990s request for quantifying variability
e Bayesian Synthesis - Raftery
e joint prior: 7(6, ¢)
e {(0,0):0=M(0)} C{(0,9) :0€O,¢c®}

e Borel Paradox
e Bayesian Melding - Raftery
o p(0,¢) = pl1(0)pl?N(¢) o q1(6)q2(¢)L1(Ds, ) L2(Dy, ¢)



Sampling-Importance-Resampling

e sample from prior: S, = {01,...,0n} ~ m0(0)
e run model to get output for each: {M(6,),..., M(0n)}

e calculate likelihood of model output: L; = L(X|M(6;))
L;
Zj Lj
e weighted re-sample of 61,...,0y = S,
estimate of posterior: 7(6|X)

e calculate importance weight: w; =

Note: unique points of posterior will always be a subset of the
unique points sampled from prior.



Weighted Sampling - Concept

View multiplication between prior and likelihood
m(0|X) o< L(M(8)|X) mo(6)
———

as effected by the weighting of a sample from the prior:

— —

(0] X) = S(weight = w, set = mo(0))
s S

Weighted re-sample, S, can thus be seen as a sample from
the posterior.



Incremental Mixture Importance Sampling

Initial sample and weights: {(0,,w, = Z o ) 1<i< No}
resampling now gives SIR estimate of posterior

fill-in" important regions: 1 < k < K
identify underrepresented neighborhood
add B points of Normal mass
mixture distribution is new sampling distribution: gy

update weights: w¥

repeat until stopping criteria met: K times
expected % unique points in resample > 1 —1/e

weighted re-sample from {(0;,wf) 1 <i < Ny + KB}
estimate of posterior: 7(6]X)



IMIS - Add Normal Mass

Expand sample with B points sampled from H, = N (6%, £¥)

o 0% = arg maxy, {w*"1(0:)}
center of important neighborhood
o YK
weighted covariance of B points of current sample
in the neighborhood of 6*
Mahalanobis metric w.r.t. mg
weights o< w; + 1/ Ny

Sk = Sk—l U {9;{’1 R Hk,B}
N, = Ny + kB



IMIS -Update weights

At end of iteration k,

mixture sampling distribution:

o 9u(0) = & (Nomo(6) + B} Hu(6))

weights:
0;)
o Wk oc Li(X|M(0; . Tol0:
{ o LXIM(B) x 22
——
adj

if gx = 7(0]X), then w; x 1



Weighted Sampling - Concept
View multiplication between prior and likelihood

T(01X) o L(6]X)mo(6)
7T0(9
k(0

~—

o< L(0]X) qi(0)

Q
~—

|

wk

as effected by the weighting of a sample from the prior:

7r(/9|7) = S(weight = Wk, set = q/k(jﬁ))
S S

Weighted re-sample, S, can thus be seen as a sample from
the posterior (at any iteration k).



IMIS- Stopping Criteria

¢ Role of stopping criteria is QA

e Stop when expected fraction of unique points in
re-sample > 1—1/e
° Expected number of unique points in re-sample
il - (1w}
e Property arises in idealized scenario
e when sampling distribution is posterior: w; =

o 1/e=limp, so0o(l — 1/Ny)Ne

1
N



Simulation - Ridge Set-up

Model:

(61,02, 03, 64, 05, 05) — (H9:79294, 9396>

Prior:

mo(#) ~ N(uo, Diag(ag))  po, o specified

Likelihood:

L(X|M(6)) ~ N(u., Diag(o?))  pe, 0} specified



Simulation - Bi-modal Set-up

Model:
none - evaluating a prior outside of modeling context
Prior:
mo(0) ~ Uni([—3,12]*) specified
Likelihood:

L(X|6) ~ %M(u — 0, AR(—0.95)) + %N4(u — 9, AR(0.95))



Methods - Evaluation

Evaluated in terms of efficiency: %{5 <1

e ESS = effective sample size of Nk indirect samples

e compared to Nk direct samples from 7(6]X)

Effective sample size [Kong JASA 1994]:

ESS =

1+ 2

Nk

Ew?]

o)

— 1 —_—

65 = o ERl=1/M,




Simulation Results

Reporting efficiency: ESS/Nk and sample set size Ny.
IMIS: Np = d % 1,000, B = d =100, J=3,000/ SIR: N = N

Scenario d  SIR IMIS Ny
Ridge 6 2e-5 0.0675 35,400
Bimodal 4 0.0002 0.2063 16,800

Table : Results presented in paper.

Scenario SIR IMIS N, Code
Ridge  0.00026 0.092 27,000 Marsh
- 0.087 27,600 R Pkg

Bimodal 1.1e-4 0.2555 11,600 Marsh
- 0.2442 11,200 R Pkg

Table : Results by Marsh.




Simulation Results - Variability
Reporting efficiency: ESS/Ny and sample set size Nj.

Scenario SIR IMIS N,
Ridge 2e-5  0.0675 35,400
Bimodal 0.0002 0.2063 16,800

Table : Results presented in paper.

Scenario SIR IMIS Nk (1,000s) Code

Ridge  (5e-5)-0.0004 0.082-0.110 22.2-30.6  Marsh
- 0.081-0.115  22.2-30.6 R Pkg

Bimodal (9e-5)-0.0006 0.224-0.349  9.2-12.4  Marsh
- 0.225-0.341 88120 R Pkg

Table : Ranges of results from 100 runs by Marsh.



Promise of IMIS

Good for:

e priors with features like non-linear ridges and bi-modality

o typical of deterministic scientific models
e probably applicable to stochastic scientific models

e low (< 30) dimensional parameters

e potential efficiency gains
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