Project Paper - Final Review

Tracey Marsh

Group Health Research Institute University of Washington, Department of Biostatistics

Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance Sampling

Adrain E. Raftery and Le Bao

Biometrics 2010

Incremental Mixture Importance Sampling

- numerical algorithm for sampling from a posterior
- addresses limitations of current algorithm Sampling-Importance-Resampling (SIR) posteriors with multi-modality & nonlinear ridges

Bayesian framework in the context of modeling

- Model: $\theta \xrightarrow{M} \rho$
 - *M* deterministic scientific model population dynamics model for bowhead whales
 - θ input parameters for model (settings) birth and death rates, initial population size,
 - $\rho = M(\theta)$ model output population size by year
- Model Calibration (select θ)
 - prior on input parameters: $\pi(\theta)$
 - X is observed real data
 - for certain years: observed population counts
 - posterior on input parameters: $\pi(\theta|X)$ use $\mathbb{E}[\theta|X]$ for point estimates of ρ samples from $\pi(\theta|X)$ for intervals around $\hat{\rho}$

• Bayes Formula:
$$\pi(\theta|X) = rac{L(X|M(heta))\pi(heta)}{L(X)}$$

Bayesian model calibration - early steps

- International Whaling Commission (IWC)
 - 1990s request for quantifying variability
- Bayesian Synthesis Raftery
 - joint prior: $\pi(\theta, \phi)$
 - $\{(\theta, \phi) : \phi = M(\theta)\} \subset \{(\theta, \phi) : \theta \in \Theta, \phi \in \Phi\}$
 - Borel Paradox
- Bayesian Melding Raftery
 - $p(\theta,\phi) = p^{[\theta]}(\theta)p^{[\phi]}(\phi) \propto q_1(\theta)q_2(\phi)L_1(D_\theta,\theta)L_2(D_\phi,\phi)$

Sampling-Importance-Resampling

- sample from prior: $\mathcal{S}_{\pi_0} = \{\theta_1, \dots, \theta_N\} \sim \pi_0(\theta)$
- run model to get output for each: $\{M(\theta_1), \ldots, M(\theta_N)\}$
- calculate likelihood of model output: $L_i \equiv L(X|M(\theta_i))$
- calculate importance weight: $\omega_i = \frac{L_i}{\sum_i L_i}$
- weighted re-sample of $\theta_1, \ldots, \theta_N = S_{\pi}$ estimate of posterior: $\pi(\theta|X)$

Note: unique points of posterior will always be a subset of the unique points sampled from prior.

Weighted Sampling - Concept

View multiplication between prior and likelihood

$$\pi(\theta|X) \propto \underbrace{\mathcal{L}(\mathcal{M}(\theta)|X)}_{\omega} \pi_0(\theta)$$

as effected by the weighting of a sample from the prior:

$$\underbrace{\widehat{\pi(\theta|X)}}_{\mathcal{S}_{\pi}} = \mathcal{S}(\textit{weight} = \omega, \textit{set} = \underbrace{\widehat{\pi_{0}(\theta)}}_{\mathcal{S}_{\pi_{0}}})$$

Weighted re-sample, S_{π} , can thus be seen as a sample from the posterior.

Incremental Mixture Importance Sampling

- Initial sample and weights: $\left\{ \left(\theta_i, \omega_i = \frac{L_i}{\sum_j L_j} \right) 1 \le i \le N_0 \right\}$ resampling now gives SIR estimate of posterior
- 'fill-in' important regions: 1 ≤ k ≤ K identify underrepresented neighborhood add B points of Normal mass mixture distribution is new sampling distribution: q_k update weights: ω_i^k
- repeat until stopping criteria met: K times expected % unique points in resample $\geq 1 1/e$
- weighted re-sample from {(θ_i, ω_i^K) 1 ≤ i ≤ N₀ + KB} estimate of posterior: π(θ|X)

IMIS - Add Normal Mass

Expand sample with B points sampled from $H_k = N\left(\theta^k, \Sigma^k\right)$

Σ^k

weighted covariance of *B* points of current sample in the neighborhood of θ^k Mahalanobis metric w.r.t. π_0 weights $\propto \omega_i + 1/N_k$

$$S_k = S_{k-1} \cup \{\theta_{k,1} \dots \theta_{k,B}\}$$
$$N_k = N_0 + kB$$

IMIS -Update weights

At end of iteration k,

mixture sampling distribution:

•
$$q_k(\theta) = \frac{1}{N_k} \left(N_0 \pi_0(\theta) + B \sum_j^k H_k(\theta) \right)$$

weights:

•
$$\omega_i^k \propto L_i(X|M(\theta_i)) \times \underbrace{\frac{\pi_0(\theta_i)}{q_k(\theta_i)}}_{\substack{adj\\adj}}$$

if $q_k = \pi(\theta|X)$, then $\omega_i \propto 1$

Weighted Sampling - Concept

View multiplication between prior and likelihood

$$\pi(heta|X) \propto L(heta|X)\pi_0(heta) \ \propto \underbrace{L(heta|X)rac{\pi_0(heta)}{q_k(heta)}}_{\omega^k}q_k(heta)$$

as effected by the weighting of a sample from the prior:

$$\underbrace{\widehat{\pi(\theta|X)}}_{\mathcal{S}_{\pi}} = \mathcal{S}(weight = \omega^{k}, set = \underbrace{\widehat{q_{k}(\theta)}}_{\mathcal{S}_{k}})$$

Weighted re-sample, S_{π} , can thus be seen as a sample from the posterior (at any iteration k).

IMIS- Stopping Criteria

- Role of stopping criteria is QA
- Stop when expected fraction of unique points in re-sample $\geq 1-1/e$
 - Expected number of unique points in re-sample $\sum_{i=1}^{N_k} \{1 (1 \omega_i^k)^J\}$
- Property arises in idealized scenario
 - when sampling distribution is posterior: $\omega_i = \frac{1}{N_{\nu}}$
 - $1/e = \lim_{N_k \to \infty} (1 1/N_k)^{N_k}$

Simulation - Ridge Set-up

Model:

$$(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) \xrightarrow{M} \left(\prod_{i=1}^4 \theta_i, \theta_2 \theta_4, \frac{\theta_1}{\theta_5}, \theta_3 \theta_6\right)$$

Prior:

$$\pi_0(heta) \sim \mathcal{N}(\mu_0, \mathsf{Diag}(\sigma_0^2)) \quad \mu_0, \sigma_0^2 \text{ specified}$$

Likelihood:

$$L(X|M(\theta)) \sim N(\mu_L, \text{Diag}(\sigma_L^2)) = \mu_L, \sigma_L^2$$
 specified

Simulation - Bi-modal Set-up

Model:

none - evaluating a prior outside of modeling context

Prior:

$$\pi_0(\theta) \sim Uni([-3,12]^4)$$
 specified

Likelihood:

$$L(X| heta) \sim rac{1}{2} N_4(\mu = \mathbf{0}, \mathsf{AR}(-0.95)) + rac{1}{2} N_4(\mu = \mathbf{9}, \mathsf{AR}(0.95))$$

Methods - Evaluation

Evaluated in terms of efficiency: $\frac{ESS}{N_K} \leq 1$

- ESS = effective sample size of N_K indirect samples
- compared to N_K direct samples from $\pi(\theta|X)$

Effective sample size [Kong JASA 1994]:

$$ESS = \frac{N_{\kappa}}{1 + CV}$$
$$= \frac{N_{\kappa}}{1 + \frac{VAR[\omega]}{\mathbb{E}^{2}[\omega]}}$$
$$= \frac{N_{\kappa}}{\frac{\mathbb{E}[\omega^{2}]}{\mathbb{E}^{2}[\omega]}}$$
$$\widehat{ESS} = \frac{1}{\sum_{i} \omega_{i}^{2}} \quad \widehat{\mathbb{E}[\omega]} = 1/N_{k}$$

Simulation Results

Reporting efficiency: ESS/N_K and sample set size N_k . IMIS: $N_0 = d * 1,000$, B = d * 100, J = 3,000/ SIR: $N = N_k$

Scenario	d	SIR	IMIS	N_k
Ridge	6	2e-5	0.0675	35,400
Bimodal	4	0.0002	0.2063	16,800

Table : Results presented in paper.

Scenario	SIR	IMIS	N_k	Code
Ridge	0.00026	0.092	27,000	Marsh
	-	0.087	27,600	R Pkg
Bimodal	1.1e-4	0.2555	11,600	Marsh
	-	0.2442	11,200	R Pkg

Table : Results by Marsh.

Simulation Results - Variability

Reporting efficiency: ESS/N_K and sample set size N_k .

Scenario	SIR	IMIS	N_k
Ridge	2e-5	0.0675	35,400
Bimodal	0.0002	0.2063	16,800

Table : Results presented in paper.

Scenario	SIR	IMIS	N_k (1,000s)	Code
Ridge	(5e-5)-0.0004	0.082-0.110	22.2-30.6	Marsh
	-	0.081-0.115	22.2-30.6	R Pkg
Bimodal	(9e-5)-0.0006	0.224-0.349	9.2-12.4	Marsh
	-	0.225-0.341	8.8-12.0	R Pkg

Table : Ranges of results from 100 runs by Marsh.

Promise of IMIS

Good for:

- priors with features like non-linear ridges and bi-modality
 - typical of deterministic scientific models
 - probably applicable to stochastic scientific models
- low (< 30) dimensional parameters
- potential efficiency gains