### Project Paper Update

Tracey Marsh

Group Health Research Institute University of Washington, Department of Biostatistics



#### Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance Sampling

Adrain E. Raftery and Le Bao

**Biometrics 2010** 

#### **Incremental Mixture Importance Sampling**

- numerical algorithm for sampling from a posterior
- addresses limitations of current algorithm Sampling Importance Resampling (SIR) posteriors with multimodality & nonlinear ridges

# Bayesian framework in the context of modeling

- Model:  $\theta \xrightarrow{M} \rho$ 
  - *M* deterministic scientific model population dynamics model for bowhead whales
  - $\theta$  input parameters for model (settings) birth and death rates, initial population size, ....
  - $\rho = M(\theta)$  model output population size by year
- Model Calibration (select  $\theta$ )
  - prior on input parameters:  $\pi(\theta)$
  - X is observed real data
    - for certain years: observed population counts
  - posterior on input parameters:  $\pi(\theta|X)$ use  $\mathbb{E}[\theta|X]$  for point estimates of  $\rho$ samples from  $\pi(\theta|X)$  for intervals around  $\hat{\rho}$

• Bayes Formula: 
$$\pi(\theta|X) = rac{L(X|M( heta))\pi( heta)}{L(X)}$$

## Sampling Importance Re-sampling

- sample from prior:  $\{\theta_1, \ldots, \theta_N\} \sim \pi_0$
- run model to get output for each:  $\{M(\theta_1), \ldots, M(\theta_N)\}$
- calculate likelihood of model output:  $L_i \equiv L(X|M(\theta_i))$
- calculate importance weight:  $\omega_i = \frac{L_i}{\sum_i L_i}$
- weighted re-sample of θ<sub>1</sub>,..., θ<sub>N</sub> estimate of posterior: π(θ|X)

Note: unique points of posterior will always be a subset of the unique points sampled from prior.

## Incremental Mixture Importance Sampling

- Initial sample and weights:  $\left\{ \left( \theta_i, \omega_i = \frac{L_i}{\sum_j L_j} \right) 1 \le i \le N_0 \right\}$  resampling now gives SIR estimate of posterior
- 'fill-in' important regions: 1 ≤ k ≤ K identify underrepresented neighborhood add B points of Normal mass use mixture distribution as new prior: π<sub>k</sub> update weights: ω<sub>i</sub><sup>k</sup>
- repeat until stopping criteria met: K times expected % unique points in resample  $\geq 1 1/e$
- weighted re-sample from {(θ<sub>i</sub>, ω<sub>i</sub><sup>K</sup>) 1 ≤ i ≤ N<sub>0</sub> + KB} estimate of posterior: π(θ|X)

## IMIS - Add Normal Mass

Expand sample with B points sampled from  $q_k = N\left(\theta^k, \Sigma^k\right)$ 

$$S_k = S_{k-1} \cup \{\theta_{k,1} \dots \theta_{k,B}\}$$
$$N_k \equiv \#S_k = N_0 + kB$$

### Side Note - Mahalanobis Metric

$$d(\theta_i, \theta^k) = \sqrt{(\theta_i - \theta^k)^T \Sigma^{-1} (\theta_i - \theta^k)}$$

 $\Sigma$  is covariance matrix for  $\pi_0$ 

Can be thought of as a dissimilarity measure between two points of the same distribution with covariance  $\Sigma$ .

Using this to grab all the B points of the sample that form the narrowest percentile range centered at  $\theta^k$ .

## IMIS -Update weights

At end of iteration k,

mixing sampling distribution:

• 
$$\pi_k(\theta) = N_k^{-1} \left( N_0 \pi_0(\theta) + B \sum_j^k q_k(\theta) \right)$$

weights:

• 
$$\omega_i^k \propto L_i(X|M(\theta_i)) \times \underbrace{\pi_0(\theta_i)\pi_k(\theta_i)^{-1}}_{adj}$$
  
away from important spots:  $adj \approx L_i$   
near  $\theta^k$ :  $adj \ll 1$   
 $\pi_k = \pi(\theta|X)$ , then  $\omega_i \propto 1$ 

## **Replication Goal**

Reproduce results for two methods of interest from simulation study.

| Scenario   | SIR    | IMIS   |
|------------|--------|--------|
| Ridge-Like | 2e-5   | 0.0675 |
| Bimodal    | 0.0002 | 0.2063 |

Table :  $ESS/N_K$ 

- Prior, model, and likelihood of model output specified
- Evaluated in terms of efficiency: <u>ESS</u> #evaluations

## Simulation - Set-up

Scenario: Ridge-Like Model:

$$(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) \xrightarrow{M} \left(\prod_{i=1}^4 \theta_i, \theta_2 \theta_4, \frac{\theta_1}{\theta_5}, \theta_3 \theta_6\right)$$

Prior:

$$\pi_0( heta) \sim \textit{N}(\mu_0, \mathsf{Diag}(\sigma_0)) \quad \mu_0, \sigma_0 \text{ specified}$$

Likelihood:

 $L(X|M(\theta)) \sim N(\mu_L, \text{Diag}(\sigma_L)) \quad \mu_L, \sigma_L \text{ specified}$ 

#### Methods - Evaluation

Evaluated in terms of efficiency:  $\frac{ESS}{N_K} \leq 1$ 

- ESS = effective sample size of  $N_K$  indirect samples
- compared to  $N_K$  direct samples from  $\pi(\theta|X)$

Effective sample size [Kong JASA 1994]:

$$ESS = \frac{N_{\kappa}}{1 + CV}$$
$$= \frac{N_{\kappa}}{1 + \frac{VAR[\omega]}{\mathbb{E}^{2}[\omega]}}$$
$$= \frac{N_{\kappa}}{\frac{\mathbb{E}[\omega^{2}]}{\mathbb{E}^{2}[\omega]}}$$
$$\widehat{ESS} = \frac{1}{\sum_{i} \omega_{i}^{2}} \quad \widehat{\mathbb{E}[\omega]} = 1/N_{k}$$

## Next Steps

- stopping criteria understand expected % of unique points  $\geq 1 1/e$  value when weights all equal
- simulation

numerical under/over-flow issues covariance estimates - not positive definite empirically approximate stopping criteria