Project Paper Update

Tracey Marsh

Group Health Research Institute
University of Washington, Department of Biostatistics

Adrain E. Raftery and Le Bao

Biometrics 2010
Incremental Mixture Importance Sampling

- numerical algorithm for sampling from a posterior
- addresses limitations of current algorithm
 Sampling Importance Resampling (SIR)
 posteriors with multimodality & nonlinear ridges
Bayesian framework in the context of modeling

- **Model**: \(\theta \xrightarrow{M} \rho \)
 - \(M \) deterministic scientific model
 - population dynamics model for bowhead whales
 - \(\theta \) input parameters for model (settings)
 - birth and death rates, initial population size,
 - \(\rho = M(\theta) \) model output
 - population size by year

- **Model Calibration (select \(\theta \))**
 - prior on input parameters: \(\pi(\theta) \)
 - \(X \) is observed real data
 - for certain years: observed population counts
 - posterior on input parameters: \(\pi(\theta|X) \)
 - use \(E[\theta|X] \) for point estimates of \(\rho \)
 - samples from \(\pi(\theta|X) \) for intervals around \(\hat{\rho} \)

- **Bayes Formula**: \(\pi(\theta|X) = \frac{L(X|M(\theta))\pi(\theta)}{L(X)} \)
Sampling Importance Re-sampling

- sample from prior: \(\{\theta_1, \ldots, \theta_N\} \sim \pi_0 \)
- run model to get output for each: \(\{M(\theta_1), \ldots, M(\theta_N)\} \)
- calculate likelihood of model output: \(L_i \equiv L(X|M(\theta_i)) \)
- calculate importance weight: \(\omega_i = \frac{L_i}{\sum_j L_j} \)
- weighted re-sample of \(\theta_1, \ldots, \theta_N \)
 estimate of posterior: \(\pi(\theta|X) \)

Note: unique points of posterior will always be a subset of the unique points sampled from prior.
Incremental Mixture Importance Sampling

- Initial sample and weights: \(\{ (\theta_i, \omega_i = \frac{L_i}{\sum_j L_j}) \mid 1 \leq i \leq N_0 \} \)
 resampling now gives SIR estimate of posterior

- 'fill-in' important regions: \(1 \leq k \leq K \)
 identify underrepresented neighborhood
 add \(B \) points of Normal mass
 use mixture distribution as new prior: \(\pi_k \)
 update weights: \(\omega_i^k \)

- repeat until stopping criteria met: \(K \) times
 expected % unique points in resample \(\geq 1 - 1/e \)

- weighted re-sample from \(\{ (\theta_i, \omega_i^K) \mid 1 \leq i \leq N_0 + KB \} \)
 estimate of posterior: \(\pi(\theta|X) \)
IMIS - Add Normal Mass

Expand sample with B points sampled from \(q_k = \mathcal{N}(\theta^k, \Sigma^k) \)

- \(\theta^k = \arg\max_{\theta_i} \{ \omega^{k-1}(\theta_i) \} \)
 center of important neighborhood
- \(\Sigma^k \)
 weighted covariance of \(B \) points of current sample in the neighborhood of \(\theta^k \)
 Mahalanobis metric w.r.t. \(\pi_0 \)
 weights \(\propto \omega_i + 1/N_k \)

\[
S_k = S_{k-1} \cup \{ \theta_{k,1} \ldots \theta_{k,B} \}
\]
\[
N_k \equiv \#S_k = N_0 + kB
\]
Side Note - Mahalanobis Metric

\[d(\theta_i, \theta^k) = \sqrt{(\theta_i - \theta^k)^T \Sigma^{-1} (\theta_i - \theta^k)} \]

\(\Sigma \) is covariance matrix for \(\pi_0 \)

Can be thought of as a dissimilarity measure between two points of the same distribution with covariance \(\Sigma \).

Using this to grab all the B points of the sample that form the narrowest percentile range centered at \(\theta^k \).
IMIS - Update weights

At end of iteration k,

mixing sampling distribution:

- $\pi_k(\theta) = N_k^{-1} \left(N_0\pi_0(\theta) + B \sum_j q_k(\theta) \right)$

weights:

- $\omega^k_i \propto L_i(X|M(\theta_i)) \times \pi^0(\theta_i)\pi_k(\theta_i)^{-1}$

away from important spots: $adj \approx L_i$

near θ^k: $adj \ll 1$

$\pi_k = \pi(\theta|X)$, then $\omega_i \propto 1$
Replication Goal

Reproduce results for two methods of interest from simulation study.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>SIR</th>
<th>IMIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge-Like</td>
<td>2e-5</td>
<td>0.0675</td>
</tr>
<tr>
<td>Bimodal</td>
<td>0.0002</td>
<td>0.2063</td>
</tr>
</tbody>
</table>

Table: ESS/N_K

- Prior, model, and likelihood of model output specified
- Evaluated in terms of efficiency: $\frac{ESS}{\#evaluations}$
Simulation - Set-up

Scenario: Ridge-Like
Model:

\[
(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) \xrightarrow{M} \left(\prod_{i=1}^{4} \theta_i, \theta_2\theta_4, \frac{\theta_1}{\theta_5}, \theta_3\theta_6 \right)
\]

Prior:

\[
\pi_0(\theta) \sim \mathcal{N}(\mu_0, \text{Diag}(\sigma_0)) \quad \mu_0, \sigma_0 \text{ specified}
\]

Likelihood:

\[
L(X|M(\theta)) \sim \mathcal{N}(\mu_L, \text{Diag}(\sigma_L)) \quad \mu_L, \sigma_L \text{ specified}
\]
Methods - Evaluation

Evaluated in terms of efficiency: \(\frac{ESS}{N_k} \leq 1 \)

- \(ESS = \) effective sample size of \(N_k \) indirect samples
- compared to \(N_k \) direct samples from \(\pi(\theta | X) \)

Effective sample size [Kong JASA 1994]:

\[
ESS = \frac{N_k}{1 + CV} = \frac{N_k}{1 + \frac{VAR[\omega]}{E^2[\omega]}} = \frac{N_k}{E[\omega^2] E^2[\omega]}
\]

\[
\hat{ESS} = \frac{1}{\sum_i \omega_i^2} \quad \hat{E}[\omega] = 1/N_k
\]
Next Steps

• stopping criteria - understand expected % of unique points $\geq 1 - 1/e$
 value when weights all equal

• simulation
 numerical under/over-flow issues
 covariance estimates - not positive definite
 empirically approximate stopping criteria