Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Min Zhang, Anastasios A. Tsiatis and Marie Davidian (2008, Biometrics)

Presented by Rui Zhang

May 31, 2012

A motivating example

- Suppose in a randomized clinical trial (RCT), whether or not getting a certain disease after treatment (treated by drug or placebo, denoted by Z = 1,0) is recorded in every patient as Y, and also baseline covariates, such as demographic information, is also recorded *before treatment assigned* as X, then how do we compare the treatment effect?
- One quick answer:

$$logit{\mathbb{E}(Y|Z)} = \beta_0 + \beta_1(Z=1)$$

• How can we incorporate information from X?

One quick answer: adjustment

Linear links – good idea!

No bias, gain in efficiency.

Non-linear – problematic!

		Un-adjusted	Adjusted
Linear Model	MC bias of \hat{eta}'	0.001	0.000
$\beta = 2.000$	MC mean in $s.e.(\hat{eta}')$	0.04161	0.008160
Logistic Model	MC bias of \hat{eta}'	0.014	0.108
eta= 1.910	MC mean in $s.e.(\hat{eta}')$	0.2089	0.2165

Adjustment consequence in logistic model:

- 1. β further away from 0 and s.e. larger;
- 2. Interpretation is subgroup-specific, not marginal.

A quote

"Every clinical trial is a problem of missing data."

- Professor Scott Emerson

Missing data problem?

- Start with 2-treatment arm scenario;
- Suppose outcomes are (Y₀, Y₁) for each patient under placebo and treatment;
- Treatment group: Y'_1s observed and Y_0 missing
- Control group: Y'_0s observed and Y_1 missing
- ⇒ Missing at random
- Moreover, in RCT, it is Missing completely at random

• Complete case analysis: use observed Y_1 's average.

$$\hat{\mu}_{11} = n_1^{-1} \sum_{i=1}^n Z_i Y_{1i}$$

 Inverse weight method: We utilize information in X by estimating probability of non-missed given some X:

$$\pi(x) \equiv \Pr(Z=1|X=x)$$

and thus re-weighted average of Y_1 becomes:

$$\hat{\mu}_{12} = n_1^{-1} \sum_{i=1}^n \frac{Z_i Y_{1i}}{\hat{\pi}(X_i)}$$

μ_1 estimation continued

 Imputation by regression: We utilize information in X by estimating conditional expectation of Y₁ given X's, 𝔼(Y₁|X), in the form as Xγ₁:

$$\hat{\mu}_{13} = n_1^{-1} \sum_{i=1}^n x_i \hat{\gamma}_1$$

where $\hat{\gamma}_1$ is obtained via regression observed Y_1 's on their respective X's.

• Double Robust Estimator: Combining $\pi(X)$ and $\mathbb{E}(Y_1|X)$:

$$\hat{\mu}_{14} = n_1^{-1} \sum_{i=1}^n \left(\frac{Z_i}{\hat{\pi}(X_i)} \left(Y_{1i} - X_i \hat{\gamma}_1 \right) + X_i \hat{\gamma}_1 \right)$$

Double-Robust Estimator

- Double-robustness: whichever γ₁ or π(X_i), is modelled correctly, the estimator is consistent.
- In RCT: $\pi(X_i)$ is always correct! It is a constant.
- More generally, replacing
 - Y_i with U_i , the marginal x_i -free estimating equation;
 - $\mu(X_i, \hat{\gamma}_1)$ with ϕ_i , some arbitrary term that may depend on x_i ;

and denote $\frac{Z_i}{\pi(X_i)}$ as w_i and in RCT, it is a constant. We have

$$\sum_{i=1}^{n} (w_i U_i + (1 - w_i)\phi_i) = 0$$

 Choosing φ_i = E(U_i|x_i) gives a semi-parametric efficient estimator. Our more general "Double-Robust Estimator": from an "augmented" EE

• In this paper, we proposed a more general estimator by considering multiple treatment groups.

$$U(Y, Z; \beta) + \sum_{g=1}^{k} (I(Z = g) - \pi_g) \mathbb{E}(U(Y, Z; \beta) | X_i, Z_i = g) = 0$$
(1)

- First part: original estimating equation;
- Second part: "augmented part";
- It reaches semi-parametric efficiency bound.

A small summary

$$U(Y,Z;\beta) + \sum_{g=1}^{k} (I(Z=g) - \pi_g) \mathbb{E}(U(Y,Z;\beta)|X_i, Z_i = g) = 0$$

- By double-robust estimator property, our estimator should always be consistent-beating adjustment estimators!
- By "augmented part", new EE has lower variance and thus new estimator has lower variance-beating original un-adjustment estimators!
- Estimator from above EE conveniently has Wald test and consequently a (locally most) power χ^2 test can be derived!

How do we get to it?

- Instead of generalizing original double robust estimators proposed by other papers and show it is semi-parametric efficient, this paper directly works from a semi-parametric model.
- Proposing their semi-parametric model.
 - Step 1

Consider Y and Z jointly as we did in "classic" analysis

$$f(y, z; \beta, \eta)$$

- β is parameter of interest: (μ_0, μ_1)
- $\boldsymbol{\eta}$ is nuisance parameter. For example
 - Y is normal, then η is σ , the standard deviation;
 - Y is binary, then no η ;
- Step 2

Consider Y, Z and X jointly

$$f(y,z,x;\beta,\eta,\psi)$$

 ψ a nuisance parameter to parametrize the three jointly.

How do we get to it? - Work by parametric sub-model

- But we do not want to assume anything further than β so η and ψ are going to be anything the data tell us \rightarrow infinite-dimensional parameters
- Consider a subset of the semi-parametric model where (η, ψ) are finite-dimensional and contain the truth (η_0, ψ_0) :

$$\eta = \eta_0 + \alpha u(\alpha) \quad \psi = \psi_0 + \tau v(\tau)$$

where $u(\cdot)$ and $v(\cdot)$ are fixed functions.

- When $\alpha = \tau = 0$, we have the truth.
- Now we have a set of parametric models!
- With nuisance parameters η and ψ, the most efficient estimator of β should be orthogonal to nuisance tangent space, which is spanned by likelihood scores of η and ψ

Working streamline for a parametric model

Work in finite and generalize into infinite

- The left part is ready: our original EE;
- The right part is complicated to work with but we can show it is

$$\{h(X,Z): \mathbb{E}\{h(X,Z)|X\}=0\}$$

• Combining them together we get:

$$U(Y,Z;\beta) + \sum_{g=1}^{k} (I(Z=g) - \pi_g) \mathbb{E}(U(Y,Z;\beta)|X_i, Z_i = g) = 0$$

- Since u(·) and v(·) are any fixed functions, our EE should work for all parametric models contained in the semi-parametric model
- The above EE works for semi-parametric model!

Simulation: binary outcome Y

- A binary outcome from a two-arm RCT of 600 subjects, with 5,000 Monte Carlo datasets.
- Data generating mechanism:

$$logit (Pr(Y = 1 | Z = g, X)) = \alpha_{0g} + \alpha_g^T X \quad g = 1, 2$$

• Correlation levels between Y and X

	$\frac{Var(\mathbb{E}(Y_1 X))}{Var(Y_1)}$	$\frac{Var(\mathbb{E}(Y_0 X))}{Var(Y_0)}$
Mild association	0.16	0.18
Moderate association	0.33	0.32
Strong association	0.8	0.38

- Original un-adjusted estimator;
- Proposed estimator from "augmented" EE;
- Adjusted for X's estimator.

Simulation results

Method	β_2	MC Bias	MC SD	Ave. SE	Cov. Prob	Rel. Eff.	
Mild Association							
Unadjusted	-0.494	-0.00044	0.1668	0.1661	95.0%	1.00	
Aug.	-0.494	-0.00042	0.1545	0.1533	94.9%	1.17	
Adjusted	-0.494	-0.091	0.1831	0.1822	92.6%	0.67	
Moderate Association							
Unadjusted	-0.490	-0.0025	0.1634	0.1650	95.5%	1.00	
Aug.	-0.490	-0.0026	0.1390	0.1392	95.1%	1.38	
Adjusted	-0.490	-0.2208	0.2015	0.2015	81.2%	0.30	
Strong Association							
Unadjusted	-0.460	-0.0026	0.1662	0.1655	95.2%	1.00	
Aug.	-0.460	-0.0026	0.132	0.131	95.2%	1.59	
Adjusted	-0.460	-0.3266	0.222	0.2210	68.8%	0.18	

Simulation: more powerful test

• A normal outcome from a three-arm RCT of 200 or 400 subjects, with 10,000 Monte Carlo datasets:

$$\left(\begin{array}{c}Y\\X\end{array}\right)|Z \sim \mathcal{N}\left(\left(\begin{array}{c}\beta_1 I(Z=1) + \beta_2 I(Z=2)\\0\end{array}\right), \left(\begin{array}{c}1&\rho\\\rho&1\end{array}\right)\right)$$

in which β is the parameter being estimated.

- Mild association: $\rho = 0.25$
- Moderate association: $\rho = 0.5$
- Strong association: $\rho = 0.75$
- Null hypothesis: $\beta_1 = \beta_2 = 0$
- Alternative hypothesis: $\beta_1 = 0.25$, $\beta_2 = 0.4$
- Compared to: Kruskal-Wallis Test (reduces to Wilcoxon-rank test when k = 2).

Simulation Results

		Νι	ıll	Alternative		
ρ	п	K-W Test	Our Test	K-W Test	Our Test	
0.25	200	0.05	0.05	0.51	0.57	
0.25	400	0.05	0.05	0.83	0.87	
0 50	200	0.05	0.05	0.51	0.67	
0.50	400	0.05	0.05	0.83	0.94	
0.75	200	0.05	0.05	0.50	0.89	
0.75	400	0.05	0.05	0.83	1.00	

Conclusion and Discussion

$$U(Y,Z;\beta) + \sum_{g=1}^{k} (I(Z=g) - \pi_g) \mathbb{E}(U(Y,Z;\beta)|X_i,Z_i=g) = 0$$

- By double-robust estimator property, our estimator should always be consistent-beating adjustment estimators!
- By residual bias correction, the second term, we are beating original un-adjustment estimators!
- Estimator from above EE conveniently has Wald test and consequently a (locally most) power χ^2 test can be derived!
- We are making few assumptions: no assumptions except for β ;
- But...

sometimes it can be very hard to estimate $\mathbb{E}(U(Y, Z; \beta)|X_i, Z_i = g)$ and if we are unlucky and find a wrong model to do regression, we might not gain much efficiency.

Wrong model for $\mathbb{E}(U(Y, Z; \beta)|X_i, Z_i = g)$

- Correct model: $\mathbb{E}(U(Y, Z; \beta)|X_i, Z_i = g) = aX_1 + bX_2 + cX_3 + dX_4$
- Regression model: $\mathbb{E}(U(Y, Z; \beta)|X_i, Z_i = g) \sim a^*X_1^3 + b^*e^{X_2} + c^*log(abs(X_3))$

Method	β_2	MC Bias	MC SD	Ave. SE	Cov. Prob	Rel. Eff.		
Mild Association								
Unadjusted	-0.494	-0.00044	0.1668	0.1661	95.0%	1.00		
Augmented	-0.494	-0.00061	0.1598	0.1587	95.1%	1.09		
Moderate Association								
Unadjusted	-0.490	-0.0025	0.1634	0.1650	95.5%	1.00		
Augmented	-0.490	-0.0029	0.1525	0.1517	95.2%	1.15		
Strong Association								
Unadjusted	-0.460	-0.0026	0.1662	0.1655	95.2%	1.00		
Augmented	-0.460	-0.0050	0.1516	0.1500	95.3%	1.20		

Questions?