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A motivating example

• Suppose in a randomized clinical trial (RCT), whether or not
getting a certain disease after treatment (treated by drug or
placebo, denoted by Z = 1, 0) is recorded in every patient as
Y , and also baseline covariates, such as demographic
information, is also recorded before treatment assigned as X ,
then how do we compare the treatment effect?

• One quick answer:

logit{E(Y |Z )} = β0 + β1(Z = 1)

• How can we incorporate information from X?
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One quick answer: adjustment

• Linear links – good idea!

No bias, gain in efficiency.

• Non-linear – problematic!

Un-adjusted Adjusted

Linear Model MC bias of β̂′ 0.001 0.000

β = 2.000 MC mean in s.e.(β̂′) 0.04161 0.008160

Logistic Model MC bias of β̂′ 0.014 0.108

β = 1.910 MC mean in s.e.(β̂′) 0.2089 0.2165

Adjustment consequence in logistic model:

1. β further away from 0 and s.e. larger;

2. Interpretation is subgroup-specific, not marginal.
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A quote

”Every clinical trial is a problem of missing data.”

– Professor Scott Emerson
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Missing data problem?

• Start with 2-treatment arm scenario;

• Suppose outcomes are (Y0,Y1) for each patient under placebo
and treatment;

• Treatment group: Y ′1s observed and Y0 missing

• Control group: Y ′0s observed and Y1 missing

• ⇒ Missing at random

• Moreover, in RCT, it is Missing completely at random
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Missing data strategy: estimating µ1 = EY1

• Complete case analysis: use observed Y1’s average.

µ̂11 = n−11

n∑
i=1

ZiY1i

• Inverse weight method:
We utilize information in X by estimating probability of
non-missed given some X :

π(x) ≡ Pr(Z = 1|X = x)

and thus re-weighted average of Y1 becomes:

µ̂12 = n−11

n∑
i=1

ZiY1i

π̂(Xi )
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µ1 estimation continued

• Imputation by regression:
We utilize information in X by estimating conditional
expectation of Y1 given X ′s, E(Y1|X ), in the form as Xγ1:

µ̂13 = n−11

n∑
i=1

xi γ̂1

where γ̂1 is obtained via regression observed Y1’s on their
respective X ′s.

• Double Robust Estimator: Combining π(X ) and E(Y1|X ):

µ̂14 = n−11

n∑
i=1

(
Zi

π̂(Xi )
(Y1i − Xi γ̂1) + Xi γ̂1

)
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Double-Robust Estimator

• Double-robustness: whichever γ1 or π(Xi ), is modelled
correctly, the estimator is consistent.

• In RCT: π(Xi ) is always correct! It is a constant.

• More generally, replacing
• Yi with Ui , the marginal xi -free estimating equation;
• µ(Xi , γ̂1) with φi , some arbitrary term that may depend on xi ;

and denote Zi
π(Xi )

as wi and in RCT, it is a constant. We have

n∑
i=1

(wiUi + (1− wi )φi ) = 0

• Choosing φi = E(Ui |xi ) gives a semi-parametric efficient
estimator.
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Our more general ”Double-Robust Estimator”: from an
”augmented” EE

• In this paper, we proposed a more general estimator by
considering multiple treatment groups.

•

U(Y ,Z ;β)+
k∑

g=1

(I (Z = g)− πg )E(U(Y ,Z ;β)|Xi ,Zi = g) = 0

(1)

• First part: original estimating equation;

• Second part: ”augmented part”;

• It reaches semi-parametric efficiency bound.
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A small summary

U(Y ,Z ;β) +
k∑

g=1

(I (Z = g)− πg )E(U(Y ,Z ;β)|Xi ,Zi = g) = 0

• By double-robust estimator property, our estimator should
always be consistent–beating adjustment estimators!

• By ”augmented part”, new EE has lower variance and thus
new estimator has lower variance–beating original
un-adjustment estimators!

• Estimator from above EE conveniently has Wald test and
consequently a (locally most) power χ2 test can be derived!
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How do we get to it?

• Instead of generalizing original double robust estimators
proposed by other papers and show it is semi-parametric
efficient, this paper directly works from a semi-parametric
model.

• Proposing their semi-parametric model.
• Step 1

Consider Y and Z jointly as we did in ”classic” analysis

f (y , z ;β, η)

β is parameter of interest: (µ0, µ1)
η is nuisance parameter. For example

• Y is normal, then η is σ, the standard deviation;
• Y is binary, then no η;

• Step 2
Consider Y , Z and X jointly

f (y , z , x ;β, η, ψ)

ψ a nuisance parameter to parametrize the three jointly.
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How do we get to it? – Work by parametric sub-model

• But we do not want to assume anything further than β so η
and ψ are going to be anything the data tell us →
infinite-dimensional parameters

• Consider a subset of the semi-parametric model where (η, ψ)
are finite-dimensional and contain the truth (η0, ψ0):

η = η0 + αu(α) ψ = ψ0 + τv(τ)

where u(·) and v(·) are fixed functions.

• When α = τ = 0, we have the truth.

• Now we have a set of parametric models!

• With nuisance parameters η and ψ, the most efficient
estimator of β should be orthogonal to nuisance tangent
space, which is spanned by likelihood scores of η and ψ
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Working streamline for a parametric model

Define Nuisance 
Parameters: η and ψ 
 

Find tangent space 
of η 

Find tangent space 
of ψ 

Find orthogonal 
space of it 

Find orthogonal 
space of it 

Taking sum of the 
two spaces 
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Work in finite and generalize into infinite

• The left part is ready: our original EE;

• The right part is complicated to work with but we can show it
is

{h(X ,Z ) : E{h(X ,Z )|X} = 0}

• Combining them together we get:

U(Y ,Z ;β)+
k∑

g=1

(I (Z = g)− πg )E(U(Y ,Z ;β)|Xi ,Zi = g) = 0

• Since u(·) and v(·) are any fixed functions, our EE should
work for all parametric models contained in the
semi-parametric model

• The above EE works for semi-parametric model!
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Simulation: binary outcome Y

• A binary outcome from a two-arm RCT of 600 subjects, with
5, 000 Monte Carlo datasets.

• Data generating mechanism:

logit (Pr(Y = 1|Z = g ,X )) = α0g + αT
g X g = 1, 2

• Correlation levels between Y and X
Var(E(Y1|X ))

Var(Y1)
Var(E(Y0|X ))

Var(Y0)

Mild association 0.16 0.18
Moderate association 0.33 0.32

Strong association 0.8 0.38

• Original un-adjusted estimator;

• Proposed estimator from ”augmented” EE;

• Adjusted for X ′s estimator.
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Simulation results

Method β2 MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.
Mild Association

Unadjusted -0.494 -0.00044 0.1668 0.1661 95.0% 1.00
Aug. -0.494 -0.00042 0.1545 0.1533 94.9% 1.17

Adjusted -0.494 -0.091 0.1831 0.1822 92.6% 0.67
Moderate Association

Unadjusted -0.490 -0.0025 0.1634 0.1650 95.5% 1.00
Aug. -0.490 -0.0026 0.1390 0.1392 95.1% 1.38

Adjusted -0.490 -0.2208 0.2015 0.2015 81.2% 0.30
Strong Association

Unadjusted -0.460 -0.0026 0.1662 0.1655 95.2% 1.00
Aug. -0.460 -0.0026 0.132 0.131 95.2% 1.59

Adjusted -0.460 -0.3266 0.222 0.2210 68.8% 0.18
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Simulation: more powerful test

• A normal outcome from a three-arm RCT of 200 or 400
subjects, with 10, 000 Monte Carlo datasets:(

Y
X

)
|Z ∼ N

((
β1I (Z = 1) + β2I (Z = 2)

0

)
,

(
1 ρ
ρ 1

))
in which β is the parameter being estimated.

• Mild association: ρ = 0.25

• Moderate association: ρ = 0.5

• Strong association: ρ = 0.75

• Null hypothesis: β1 = β2 = 0

• Alternative hypothesis: β1 = 0.25, β2 = 0.4

• Compared to: Kruskal-Wallis Test (reduces to Wilcoxon-rank
test when k = 2).
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Simulation Results

Null Alternative
ρ n K-W Test Our Test K-W Test Our Test

0.25
200 0.05 0.05 0.51 0.57
400 0.05 0.05 0.83 0.87

0.50
200 0.05 0.05 0.51 0.67
400 0.05 0.05 0.83 0.94

0.75
200 0.05 0.05 0.50 0.89
400 0.05 0.05 0.83 1.00
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Conclusion and Discussion

U(Y ,Z ;β) +
k∑

g=1

(I (Z = g)− πg )E(U(Y ,Z ;β)|Xi ,Zi = g) = 0

• By double-robust estimator property, our estimator should
always be consistent–beating adjustment estimators!

• By residual bias correction, the second term, we are beating
original un-adjustment estimators!

• Estimator from above EE conveniently has Wald test and
consequently a (locally most) power χ2 test can be derived!

• We are making few assumptions: no assumptions except for β;

• But...
sometimes it can be very hard to estimate
E(U(Y ,Z ;β)|Xi ,Zi = g) and if we are unlucky and find a
wrong model to do regression, we might not gain much
efficiency.
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Wrong model for E(U(Y ,Z ; β)|Xi ,Zi = g)

• Correct model:
E(U(Y ,Z ;β)|Xi ,Zi = g) = aX1 + bX2 + cX3 + dX4

• Regression model:
E(U(Y ,Z ;β)|Xi ,Zi = g) ∼ a∗X 3

1 + b∗eX2 + c∗log(abs(X3))

Method β2 MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.
Mild Association

Unadjusted -0.494 -0.00044 0.1668 0.1661 95.0% 1.00
Augmented -0.494 -0.00061 0.1598 0.1587 95.1% 1.09

Moderate Association
Unadjusted -0.490 -0.0025 0.1634 0.1650 95.5% 1.00
Augmented -0.490 -0.0029 0.1525 0.1517 95.2% 1.15

Strong Association
Unadjusted -0.460 -0.0026 0.1662 0.1655 95.2% 1.00
Augmented -0.460 -0.0050 0.1516 0.1500 95.3% 1.20
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Questions?


