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A motivating example

• Suppose in a randomized clinical trial (RCT), whether or not
getting a certain disease after treatment (treated by drug or
placebo, denoted by Z = 1, 0) is recorded in every patient as
Y , and also baseline covariates, such as demographic
information, is also recorded before treatment assigned as X ,
then how do we compare the treatment effect?

• One quick answer:

logit{E(Y |Z )} = β0 + β1(Z = 1)

• How can we incorporate information from X ?
In late session, we have discussed bias due to non-collapsibility
if applying to adjustment.
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A quote

”Every clinical trial is a problem of missing data.”

– Professor Scott Emerson
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Missing-ness problem?

• Suppose we want to estimate average of outcome in
treatment group: Y ′1s and in control group: Y ′0s;

• Since Y ′1s are missing in control group and Y ′0s in treatment
group ⇒ Missing completely at random
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Missing data strategy

• Complete case analysis: This is our quick answer.
Not using any information in auxiliary covariates X .

• Inverse weight method:
We utilize information of X by estimate the probability of
non-missed given some X :

π(x) ≡ Pr(Z = 1|X = x)

µ̂1 = n−1
1

n∑
i=1

Zi Y1i

π(Xi )

• Double Robust Estimator:
Two models are specified for E(Y1|X = x) = µ(x , γ1) and
Pr(Z = 1|X = x) = π(x , γ2) and the estimator is

µ̂1 = n−1
1

n∑
i=1

(
Zi

π(Xi )
(Y1i − µ(Xi , γ̂1)) + µ(Xi , γ̂1)

)
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Parametric Model Review

• Consider the parametric model

P = {p(x ;β, η) : β ∈ Γ ⊂ Rq, η ∈ Λ ⊂ Rr}

where q and r are finite and parameter β is of interest while η
is a nuisance parameter.

• Previously in 581?, we studied that RAL estimators of β0 have
influence functions satisfying the following properties

1. Any influence functions of β belong to the orthogonal
complement of the nuisance tangent space, which is
defined as

Λη ≡ {Bq×r l̇η : Bq×r any fixed real matrix}

where l̇η = ∂logp(X ;β0,η0)
∂η
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Parametric Model Review continued

2. The most efficient influence function of β is

φeff = Eβ0,η0 [l̇eff
β (X ;β0, η0)l̇eff

β (X ;β0, η0)T ]−1 l̇eff
β (X ;β0, η0)

where l̇eff
β (X ;β0, η0) = l̇β(X ;β0, η0)−

∏
[l̇β(X ;β0, η0)|Λη]
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But can we make connections between what we know
and the novel semi-parametric model?

• A semi-parametric model: {Pθ : θ ∈ Θ}
θ = (βT , ηT )T : β ∈ Rq <∞, η is not restricted and thus we
are allowing Θ to be infinite-dimensional.

• Working procedure

1. Define a parametric sub-model a as being contained in the
semi-parametric model and containing the truth: β = β0 ∈ Rq

and η = η0 ∈ Rr ;
2. Working with the above defined semi-parametric model a,

finding the space Λa
β orthogonal to the nuisance tangent space

Λa
η;

3. By doing the above steps infinite times, the intersection of all
Λa
β ’s should serve as the space in the true data-generating

model and we can the intersection.
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Semi-parametric efficiency bound: ”sup” of C-R bounds

Consequently,

1. The influence function of β0 from semi-parametric model
should be orthogonal to nuisance tangent spaces from all
parametric sub-models.

2. The variance of any RAL semi-parametric must be greater
than or equal to any C-R bound from parametric sub-models.
So it can be written as

sup
Ps

Eβ0,η0 [l̇eff
β (X ;β0, η0)l̇eff

β (X ;β0, η0)T ]−1
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Critical Assumption of this paper

∫
pY ,X |Z (y , x |z ;β, η, ψ)dx = pY |Z (y |z ;β, η) (1)∫

pY ,X |Z (y , x |z ;β, η, ψ)dy = pX (x) (2)

Comment: though look quite trivial, these assumptions tell us that
we can write the two nuisance parameter vectors: η and ψ
separately, and thus we can find their tangent space: Λη and λψ
separately and form the final space by arbitrary linear combinations.
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Proposing a parametric sub-model

Denote the true parameters as (β0, η0, ψ0): β0 ∈ Rq, η0 ∈ Rs1 and
ψ0 ∈ Rs2 . Then the parametric sub-model nuisance tangent space
of η and ψ is

{Bq×s1
1 Sη(Y ,X ,Z ) + Bq×s2

2 Sψ(Y ,X ,Z )}

where Sη(Y ,X ,Z ) ≡ ∂
∂η log(logpY ,X |Z (y , x |z ;β0, η0, ψ0)) and

similarly for Sψ(Y ,X ,Z ).
Also define Λ∗η ≡ ∂

∂η log(logpY |Z (y |z ;β0, η0)).
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Working under the first assumption
In first restriction, taking derivative of η after taking log of both
sides of the first equation:

Bq×s1

1

∂

∂η
log

∫
pY ,X |Z (y , x |z ;β0, η0, ψ0)dx

= Bq×s1

1

∫
∂
∂ηpY ,X |Z (y , x |z ;β0, η0, ψ0)dx∫
pY ,X |Z (y , x |z ;β0, η0, ψ0)dx

= Bq×s1

1

∫ (
∂
∂η logpY ,X |Z (y , x |z ;β0, η0, ψ0)

)
pY ,X |Z (y , x |z ;β0, η0, ψ0)dx

pY |Z (y |z ;β0, η0)

= Bq×s1

1 E(Sη(Y ,X ,Z )|Y = y ,Z = z) = Bq×s1

1

∂

∂η
logpY |Z (y |z ;β0, η0) ∈ Λ∗η

Any element from parametric sub-model nuisance tangent space:
h(Y ,X ,Z ) = Bq×s1

1 Sη(Y ,X ,Z ) + Bq×s2
2 Sψ(Y ,X ,Z ) must satisfy

the condition
E(h(Y ,X ,Z )|Y ,Z ) ∈ Λη (3)
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Working under the second assumption

As above, with similar trick in taking derivative of η and ψ after
taking log of both sides of the second equation:

B
q×s1
1

∂

∂η
log

∫
pY ,X|Z (y, x|z; β0, η0, ψ0)dy = B

q×s1
1 E(Sη(Y , X , Z)|X = x, Z = z)

B
q×s2
2

∂

∂ψ
log

∫
pY ,X|Z (y, x|z; β0, η0, ψ0)dy = B

q×s1
2 E(Sψ(Y , X , Z)|X = x, Z = z)

Any element from parametric sub-model nuisance tangent space:
h(Y ,X ,Z ) = Bq×s1

1 Sη(Y ,X ,Z ) + Bq×s2
2 Sψ(Y ,X ,Z ) must also

satisfy the condition

E(h(Y ,X ,Z )|X ,Z ) ∈ Λx (4)

where Λx ≡ {h(X ) : Eh(X ) = 0}
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Orthogonal complement of semi-paramtric nuisance
tangent space

• Functions satisfying (3) is Λ∗η + Λ1 where
Λ1 ≡ {h1(Y ,X ,Z ) : E{h1(Y ,X ,Z )|Y ,Z} = 0}

• Functions satisfying (4) is Λx + Λ2 where
Λ2 ≡ {h2(Y ,X ,Z ) : E{h2(Y ,X ,Z )|X ,Z} = 0}

• The nuisance tangent space from the above parametric
sub-model a can be written out as
Λa
η,ψ = (Λ∗η + Λ1)

⋂
(Λx + Λ2)

• It can be shown that this space works just fine for our
semi-parametric model!

• Then orthogonal complement: Λ⊥ = (Λ∗⊥η
⋂

Λ⊥1 ) + (Λ⊥x
⋂

Λ⊥2 )
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Semi-parametric estimation equation deriving

• (Λ∗⊥η
⋂

Λ⊥1 ): exactly the ’primitive’ estimating equation!:
Original part.

• (Λ⊥x
⋂

Λ⊥2 ): Augmentation part.
• Λ⊥2 = {h(X ,Z ) : Eh(X ,Z ) = 0};
• Λ⊥x = {h(X ,Z ) : E{h(X ,Z )|X} = 0};
• Taking intersection, we have {h(X ,Z ) : E{h(X ,Z )|X} = 0}.

• By simple projections we can show that the estimating
equation for β0 is

m(Y ,Z ;β)+
k∑

g=1

(I (Z = g)− πg )E(m(Y ,Z ;β)|X ,Z = g) = 0
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Simulation: binary outcome Y
A binary outcome from a two-arm RCT of 600 subjects, with
5, 000 Monte Carlo datasets:

logit (E(Y |Z )) = β1 + β2I (Z = 2)

in which β is the parameter being estimated.
Data generating
mechanism:logit (Pr(Y = 1|Z = g ,X )) = α0g + αT

g X , g = 1, 2.

• Mild association: (α01, α02) = (0.025,−0.8),
α1 = (0.8, 0.5, 0, 0, 0, 0, 0, 0) and α2 = (0.3, 0.7, 0.3, 0.8, 0, 0, 0, 0)

• Moderate association: (α01, α02) = (0.38,−0.8),
α1 = (1.2, 1.0, 0, 0, 0, 0, 0, 0) and α2 = (0.5, 1.3, 0.5, 1.5, 0, 0, 0, 0)

• Strong association:α02) = (0.8,−0.8), α1 = (1.5, 1.8, 0, 0, 0, 0, 0, 0)
and α2 = (1.0, 1.3, 0.8, 2.5, 0, 0, 0, 0).

On estimating E(m(Y ,Z ;β)|X ,Z = g), they only used X used to
generate the data to do OLS.
They used the same X ′s in estimating E(m(Y ,Z ;β)|X ,Z = g) to
run the adjusted case.
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Simulation results

Method β2 MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.
Mild Association

Unadjusted -0.494 0.00044 0.1668 0.1661 95.0% 1.00
Aug. -0.494 -0.00042 0.1545 0.1533 94.9% 1.16

Adjusted -0.494 -0.091 0.1831 0.1822 92.6% 0.66
Moderate Association

Unadjusted -0.490 -0.0025 0.1634 0.1650 95.5% 1.00
Aug. -0.490 -0.0026 0.1390 0.1392 95.1% 1.39

Adjusted -0.490 -0.2208 0.2015 0.2015 81.2% 0.31
Strong Association

Unadjusted -0.460 -0.0026 0.1662 0.1655 95.2% 1.00
Aug. -0.460 -0.0026 0.132 0.131 95.2% 1.55

Adjusted -0.460 -0.3266 0.222 0.2210 68.8% 0.18
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Questions?


