Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Min Zhang, Anastasios A. Tsiatis and Marie Davidian (2008, Biometrics)

Presented by Rui Zhang

May 8, 2012
A motivating example

• Suppose in a randomized clinical trial (RCT), whether or not getting a certain disease after treatment (treated by drug or placebo, denoted by $Z = 1, 0$) is recorded in every patient as Y, and also baseline covariates, such as demographic information, is also recorded before treatment assigned as X, then how do we compare the treatment effect?

• One quick answer:

$$\logit\{E(Y|Z)\} = \beta_0 + \beta_1(Z = 1)$$

• How can we incorporate information from X?
 In late session, we have discussed bias due to non-collapsibility if applying to adjustment.
"Every clinical trial is a problem of missing data."

– Professor Scott Emerson
Missing-ness problem?

• Suppose we want to estimate average of outcome in treatment group: Y_1's and in control group: Y_0's;
• Since Y_1's are missing in control group and Y_0's in treatment group ⇒ Missing completely at random
Missing data strategy

- **Complete case analysis:** This is our quick answer. Not using any information in auxiliary covariates X.

- **Inverse weight method:**
 We utilize information of X by estimate the probability of non-missed given some X:
 \[
 \pi(x) \equiv Pr(Z = 1|X = x)
 \]
 \[
 \hat{\mu}_1 = n_1^{-1} \sum_{i=1}^{n} \frac{Z_i Y_{1i}}{\pi(X_i)}
 \]

- **Double Robust Estimator:**
 Two models are specified for $\mathbb{E}(Y_1|X = x) = \mu(x, \gamma_1)$ and $Pr(Z = 1|X = x) = \pi(x, \gamma_2)$ and the estimator is
 \[
 \hat{\mu}_1 = n_1^{-1} \sum_{i=1}^{n} \left(\frac{Z_i}{\pi(X_i)} (Y_{1i} - \mu(X_i, \hat{\gamma}_1)) + \mu(X_i, \hat{\gamma}_1) \right)
 \]
Parametric Model Review

• Consider the parametric model

\[\mathcal{P} = \{ p(x; \beta, \eta) : \beta \in \Gamma \subset \mathbb{R}^q, \eta \in \Lambda \subset \mathbb{R}^r \} \]

where \(q \) and \(r \) are finite and parameter \(\beta \) is of interest while \(\eta \) is a nuisance parameter.

• Previously in 581?, we studied that RAL estimators of \(\beta_0 \) have influence functions satisfying the following properties

1. Any influence functions of \(\beta \) belong to the orthogonal complement of the nuisance tangent space, which is defined as

\[\Lambda_{\eta} \equiv \{ B^{q \times r} \hat{l}_{\eta} : B^{q \times r} \text{ any fixed real matrix} \} \]

where

\[\hat{l}_{\eta} = \frac{\partial \log p(X; \beta_0, \eta_0)}{\partial \eta} \]
2. The most efficient influence function of β is

$$\phi^{\text{eff}} = \mathbb{E}_{\beta_0, \eta_0} [i^{\text{eff}}_\beta (X; \beta_0, \eta_0) i^{\text{eff}}_\beta (X; \beta_0, \eta_0)^T]^{-1} i^{\text{eff}}_\beta (X; \beta_0, \eta_0)$$

where $i^{\text{eff}}_\beta (X; \beta_0, \eta_0) = i_\beta (X; \beta_0, \eta_0) - \prod [i_\beta (X; \beta_0, \eta_0) | \Lambda_\eta]$
But can we make connections between what we know and the novel semi-parametric model?

- A semi-parametric model: \(\{ P_\theta : \theta \in \Theta \} \)
 \[\theta = (\beta^T, \eta^T)^T : \beta \in \mathbb{R}^q < \infty, \eta \text{ is not restricted and thus we are allowing } \Theta \text{ to be infinite-dimensional.} \]
- Working procedure
 1. Define a parametric sub-model \(a \) as being contained in the semi-parametric model and containing the truth: \(\beta = \beta_0 \in \mathbb{R}^q \) and \(\eta = \eta_0 \in \mathbb{R}^r \);
 2. Working with the above defined semi-parametric model \(a \), finding the space \(\Lambda_\beta^a \) orthogonal to the nuisance tangent space \(\Lambda_\eta^a \);
 3. By doing the above steps infinite times, the intersection of all \(\Lambda_\beta^a \)'s should serve as the space in the true data-generating model and we can the intersection.
Semi-parametric efficiency bound: "sup" of C-R bounds

Consequently,

1. The influence function of β_0 from semi-parametric model should be orthogonal to nuisance tangent spaces from all parametric sub-models.

2. The variance of any RAL semi-parametric must be greater than or equal to any C-R bound from parametric sub-models.

So it can be written as

$$\sup_{P_s} \mathbb{E}_{\beta_0, \eta_0} \left[i_{\beta}^{\text{eff}} (X; \beta_0, \eta_0) i_{\beta}^{\text{eff}} (X; \beta_0, \eta_0)^T \right]^{-1}$$
Critical Assumption of this paper

\[
\int p_{Y,X|Z}(y,x|z; \beta, \eta, \psi)dx = p_{Y|Z}(y|z; \beta, \eta) \tag{1}
\]

\[
\int p_{Y,X|Z}(y,x|z; \beta, \eta, \psi)dy = p_X(x) \tag{2}
\]

Comment: though look quite trivial, these assumptions tell us that we can write the two nuisance parameter vectors: \(\eta \) and \(\psi \) separately, and thus we can find their tangent space: \(\Lambda_\eta \) and \(\lambda_\psi \) separately and form the final space by arbitrary linear combinations.
Proposing a parametric sub-model

Denote the true parameters as \((\beta_0, \eta_0, \psi_0)\): \(\beta_0 \in \mathbb{R}^q\), \(\eta_0 \in \mathbb{R}^{s_1}\) and \(\psi_0 \in \mathbb{R}^{s_2}\). Then the parametric sub-model nuisance tangent space of \(\eta\) and \(\psi\) is

\[
\{ B_1^{q \times s_1} S_\eta(Y, X, Z) + B_2^{q \times s_2} S_\psi(Y, X, Z) \}
\]

where \(S_\eta(Y, X, Z) \equiv \frac{\partial}{\partial \eta} \log \left(\log p_{Y|Z}(y, x|z; \beta_0, \eta_0, \psi_0) \right)\) and similarly for \(S_\psi(Y, X, Z)\).

Also define \(\Lambda^*_\eta \equiv \frac{\partial}{\partial \eta} \log \left(\log p_Y|Z(y|z; \beta_0, \eta_0) \right)\).
Working under the first assumption

In first restriction, taking derivative of η after taking log of both sides of the first equation:

$$B_{1}^{q \times s_{1}} \frac{\partial}{\partial \eta} \log \int p_{Y, X|Z}(y, x|z; \beta_{0}, \eta_{0}, \psi_{0}) \, dx$$

$$= B_{1}^{q \times s_{1}} \frac{\int \frac{\partial}{\partial \eta} p_{Y, X|Z}(y, x|z; \beta_{0}, \eta_{0}, \psi_{0}) \, dx}{\int p_{Y, X|Z}(y, x|z; \beta_{0}, \eta_{0}, \psi_{0}) \, dx}$$

$$= B_{1}^{q \times s_{1}} \left(\frac{\partial}{\partial \eta} \log p_{Y, X|Z}(y, x|z; \beta_{0}, \eta_{0}, \psi_{0}) \right) p_{Y, X|Z}(y, x|z; \beta_{0}, \eta_{0}, \psi_{0}) \, dx$$

$$= B_{1}^{q \times s_{1}} \mathbb{E}(S_{\eta}(Y, X, Z)|Y = y, Z = z) = B_{1}^{q \times s_{1}} \frac{\partial}{\partial \eta} \log p_{Y|Z}(y|z; \beta_{0}, \eta_{0}) \in \Lambda_{\eta}^{*}$$

Any element from parametric sub-model nuisance tangent space:

$$h(Y, X, Z) = B_{1}^{q \times s_{1}} S_{\eta}(Y, X, Z) + B_{2}^{q \times s_{2}} S_{\psi}(Y, X, Z)$$

must satisfy the condition

$$\mathbb{E}(h(Y, X, Z)|Y, Z) \in \Lambda_{\eta}$$ \hspace{1cm} (3)
Working under the second assumption

As above, with similar trick in taking derivative of η and ψ after taking log of both sides of the second equation:

$$B_1^{q \times s_1} \frac{\partial}{\partial \eta} \log \int p_{Y, X|Z}(y, x|z; \beta_0, \eta_0, \psi_0) dy = B_1^{q \times s_1} \mathbb{E}(S_\eta(Y, X, Z)|X = x, Z = z)$$

$$B_2^{q \times s_2} \frac{\partial}{\partial \psi} \log \int p_{Y, X|Z}(y, x|z; \beta_0, \eta_0, \psi_0) dy = B_2^{q \times s_2} \mathbb{E}(S_\psi(Y, X, Z)|X = x, Z = z)$$

Any element from parametric sub-model nuisance tangent space:

$$h(Y, X, Z) = B_1^{q \times s_1} S_\eta(Y, X, Z) + B_2^{q \times s_2} S_\psi(Y, X, Z)$$

must also satisfy the condition

$$\mathbb{E}(h(Y, X, Z)|X, Z) \in \Lambda_X$$ \hspace{1cm} (4)

where $\Lambda_X \equiv \{ h(X) : \mathbb{E}h(X) = 0 \}$
Orthogonal complement of semi-parametric nuisance tangent space

- Functions satisfying (3) is $\Lambda^*_\eta + \Lambda_1$ where
 $\Lambda_1 \equiv \{ h_1(Y, X, Z) : \mathbb{E}\{ h_1(Y, X, Z) | Y, Z \} = 0 \}$
- Functions satisfying (4) is $\Lambda_x + \Lambda_2$ where
 $\Lambda_2 \equiv \{ h_2(Y, X, Z) : \mathbb{E}\{ h_2(Y, X, Z) | X, Z \} = 0 \}$
- The nuisance tangent space from the above parametric sub-model a can be written out as
 $\Lambda^a_{\eta, \psi} = (\Lambda^*_\eta + \Lambda_1) \cap (\Lambda_x + \Lambda_2)$
- It can be shown that this space works just fine for our semi-parametric model!
- Then orthogonal complement: $\Lambda^\perp = (\Lambda^*_\eta \cap \Lambda_1^\perp) + (\Lambda_x^\perp \cap \Lambda_2^\perp)$
Semi-parametric estimation equation deriving

- \((\Lambda^* \perp \eta \cap \Lambda^\perp_1)\): exactly the 'primitive' estimating equation!
 - Original part.

- \((\Lambda^\perp x \cap \Lambda^\perp_2)\): Augmentation part.
 - \(\Lambda^\perp_2 = \{ h(X, Z) : \mathbb{E}h(X, Z) = 0 \}\);
 - \(\Lambda^\perp x = \{ h(X, Z) : \mathbb{E}\{h(X, Z)|X\} = 0 \}\);
 - Taking intersection, we have \(\{ h(X, Z) : \mathbb{E}\{h(X, Z)|X\} = 0 \}\).

- By simple projections we can show that the estimating equation for \(\beta_0\) is

 \[
m(Y, Z; \beta) + \sum_{g=1}^k (I(Z = g) - \pi_g) \mathbb{E}(m(Y, Z; \beta)|X, Z = g) = 0
\]

 \[
m(Y, Z; \beta) + \sum_{g=1}^k (I(Z = g) - \pi_g) \mathbb{E}(m(Y, Z; \beta)|X, Z = g) = 0
\]
Simulation: binary outcome Y

A binary outcome from a two-arm RCT of 600 subjects, with 5,000 Monte Carlo datasets:

$$\text{logit} \left(\mathbb{E}(Y|Z) \right) = \beta_1 + \beta_2 I(Z = 2)$$

in which β is the parameter being estimated.

Data generating mechanism:

$$\text{logit} \left(\Pr(Y = 1|Z = g, X) \right) = \alpha_{0g} + \alpha_g^T X, \ g = 1, 2.$$

- Mild association: $(\alpha_{01}, \alpha_{02}) = (0.025, -0.8)$, $\alpha_1 = (0.8, 0.5, 0, 0, 0, 0, 0, 0)$ and $\alpha_2 = (0.3, 0.7, 0.3, 0.8, 0, 0, 0, 0)$
- Moderate association: $(\alpha_{01}, \alpha_{02}) = (0.38, -0.8)$, $\alpha_1 = (1.2, 1.0, 0, 0, 0, 0, 0, 0)$ and $\alpha_2 = (0.5, 1.3, 0.5, 1.5, 0, 0, 0, 0)$
- Strong association: $\alpha_{02} = (0.8, -0.8)$, $\alpha_1 = (1.5, 1.8, 0, 0, 0, 0, 0, 0)$ and $\alpha_2 = (1.0, 1.3, 0.8, 2.5, 0, 0, 0, 0)$

On estimating $\mathbb{E}(m(Y, Z; \beta)|X, Z = g)$, they only used X used to generate the data to do OLS. They used the same X's in estimating $\mathbb{E}(m(Y, Z; \beta)|X, Z = g)$ to run the adjusted case.
Simulation results

<table>
<thead>
<tr>
<th>Method</th>
<th>β_2</th>
<th>MC Bias</th>
<th>MC SD</th>
<th>Ave. SE</th>
<th>Cov. Prob</th>
<th>Rel. Eff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>-0.494</td>
<td>0.00044</td>
<td>0.1668</td>
<td>0.1661</td>
<td>95.0%</td>
<td>1.00</td>
</tr>
<tr>
<td>Aug.</td>
<td>-0.494</td>
<td>-0.00042</td>
<td>0.1545</td>
<td>0.1533</td>
<td>94.9%</td>
<td>1.16</td>
</tr>
<tr>
<td>Adjusted</td>
<td>-0.494</td>
<td>-0.091</td>
<td>0.1831</td>
<td>0.1822</td>
<td>92.6%</td>
<td>0.66</td>
</tr>
<tr>
<td>Moderate Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>-0.490</td>
<td>-0.0025</td>
<td>0.1634</td>
<td>0.1650</td>
<td>95.5%</td>
<td>1.00</td>
</tr>
<tr>
<td>Aug.</td>
<td>-0.490</td>
<td>-0.0026</td>
<td>0.1390</td>
<td>0.1392</td>
<td>95.1%</td>
<td>1.39</td>
</tr>
<tr>
<td>Adjusted</td>
<td>-0.490</td>
<td>-0.2208</td>
<td>0.2015</td>
<td>0.2015</td>
<td>81.2%</td>
<td>0.31</td>
</tr>
<tr>
<td>Strong Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>-0.460</td>
<td>-0.0026</td>
<td>0.1662</td>
<td>0.1655</td>
<td>95.2%</td>
<td>1.00</td>
</tr>
<tr>
<td>Aug.</td>
<td>-0.460</td>
<td>-0.0026</td>
<td>0.132</td>
<td>0.131</td>
<td>95.2%</td>
<td>1.55</td>
</tr>
<tr>
<td>Adjusted</td>
<td>-0.460</td>
<td>-0.3266</td>
<td>0.222</td>
<td>0.2210</td>
<td>68.8%</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Questions?