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A motivating example

e Suppose in a randomized clinical trial (RCT), whether or not
getting a certain disease after treatment (treated by drug or
placebo, denoted by Z = 1,0) is recorded in every patient as
Y, and also baseline covariates, such as demographic
information, is also recorded before treatment assigned as X,
then how do we compare the treatment effect?

e One quick answer:

logit{E(Y[Z)} = Po + f1(Z = 1)

e How can we incorporate information from X7
In late session, we have discussed bias due to non-collapsibility
if applying to adjustment.



A quote

"Every clinical trial is a problem of missing data.”

— Professor Scott Emerson



Missing-ness problem?

e Suppose we want to estimate average of outcome in
treatment group: Y{s and in control group: Y{s;

e Since Y{s are missing in control group and Y{s in treatment
group = Missing completely at random



Missing data strategy

e Complete case analysis: This is our quick answer.
Not using any information in auxiliary covariates X.

e Inverse weight method:
We utilize information of X by estimate the probability of
non-missed given some X:

7(x) = Pr(Z = 11X = x)

VA
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H1 = n E TI'(X,')
i=1

e Double Robust Estimator:
Two models are specified for E(Y1|X = x) = u(x,~1) and
Pr(Z = 1|X = x) = 7(x, y2) and the estimator is

nlz< (s = 106 32) + % 30)
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Parametric Model Review

e Consider the parametric model
P ={p(x;B,n): feT CRI,ne ANCR"}

where g and r are finite and parameter 3 is of interest while 7
is a nuisance parameter.
e Previously in 5817, we studied that RAL estimators of 3y have
influence functions satisfying the following properties
1. Any influence functions of 3 belong to the orthogonal

complement of the nuisance tangent space, which is
defined as

Ay = {qurL, : B9 any fixed real matrix}

Blogp(X;Bo,m0)

where [, = o



Parametric Model Review continued

2. The most efficient influence function of 3 is
¢ = By nolI5" (X: Bos m0)I5™ (X: Bo,m0) 1M ET (X: o, mo)

where I£(X; 8o, m0) = I5(X: Bo,m0) — T1lIs(X; Bo, mo)|Ay]
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But can we make connections between what we know
and the novel semi-parametric model?

e A semi-parametric model: {Py : 0 € O}

0= (B",n")": B €RI < oo, nis not restricted and thus we
are allowing © to be infinite-dimensional.

e Working procedure

1. Define a parametric sub-model a as being contained in the
semi-parametric model and containing the truth: 8 = 5y € RY
and n =n9 € R;

2. Working with the above defined semi-parametric model a,

finding the space A3 orthogonal to the nuisance tangent space

AN

3. By doing the above steps infinite times, the intersection of all
Nj's should serve as the space in the true data-generating
model and we can the intersection.
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Semi-parametric efficiency bound: “sup” of C-R bounds

Consequently,

1. The influence function of 3y from semi-parametric model
should be orthogonal to nuisance tangent spaces from all
parametric sub-models.

2. The variance of any RAL semi-parametric must be greater
than or equal to any C-R bound from parametric sub-models.
So it can be written as

s;pEgm[igff (X; Bo, m0) I (X; Bo,mo) ']



Critical Assumption of this paper

/ Py xiz(y. x|z B ¥)dx = pyizylz ) (1)

/ Py xiz(y.x|z: B,1, ) dy = px(x) 2)

Comment: though look quite trivial, these assumptions tell us that
we can write the two nuisance parameter vectors: n and 1
separately, and thus we can find their tangent space: N\, and Ay
separately and form the final space by arbitrary linear combinations.



Proposing a parametric sub-model

Denote the true parameters as (Bo, 70, %0): o € RY, np € R and
g € R%2. Then the parametric sub-model nuisance tangent space

of n and % is
{BI*S,(Y, X, Z) + By*®S,(Y, X, Z)}

where S,(Y,X,Z) = 2 - log(logpy x|z(y. x|z; Bo, 0, %0)) and
similarly for Sy(Y, X Z)
Also define A}, = 88 log(logpy z(y m0))-




Working under the first assumption

In first restriction, taking derivative of 7 after taking log of both
sides of the first equation:

0
fosl%/og/PY,X\z(y7X\Z;507770,¢o)dx
I epy x12(y: x|2: Bo, 10, o) dx
pr,X|Z(an|z;ﬂ05n07w0)dx

_ RIXs1
= B1

J ((%/ngy,mz(yaﬂzi50,770,1/)0)) Py x1z(¥, x|Z; Bo, 10, o) dx
py|z(y|z: Bos o)

_ qXxsi
= Bl

S1 S1 a *
= fo E(Sn(yvxa Z)|Y = y7Z = Z) = fo %/ngY\Z(y‘Z; ﬂ07770) S An
Any element from parametric sub-model nuisance tangent space:
h(Y,X,Z)=B7*"S,(Y,X,Z)+ BJ*2S,(Y, X, Z) must satisfy
the condition
E(h(Y,X,2)|Y,Z) € A\, (3)



Working under the second assumption

As above, with similar trick in taking derivative of n and ¢ after
taking log of both sides of the second equation:
5 a 5
By~ la*n"’g/PY,X\z(%X\Z: Bo, M0, o)dy = BY LE(S, (Y, X, Z)|X = x, Z = 2)
s 8 5
B J108 [ oy xiz(r:x12: o, o, vo)dy = BIFTES, (Y, X, D)X = x, 7 = 2)

Any element from parametric sub-model nuisance tangent space:
h(Y,X,Z)=B]*"S,(Y,X,Z)+ BJ*%2S,(Y, X, Z) must also
satisfy the condition

E(h(Y,X,Z)|X,Z) € Ay (4)

where A, = {h(X) : Eh(X) = 0}
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Orthogonal complement of semi-paramtric nuisance
tangent space

e Functions satisfying (3) is A + A1 where
AN ={m(Y,X,Z2): E{m(Y,X,2)|Y,Z} =0}

e Functions satisfying (4) is Ax + A2 where
N={h(Y.X,2Z2): E{h(Y,X,2Z2)|X,Z} =0}

e The nuisance tangent space from the above parametric
sub-model a can be written out as

Ny = (N + M) (A + A2)
e It can be shown that this space works just fine for our

semi-parametric model!
e Then orthogonal complement: At = (/\j;L NAL) + (AN AY)



Semi-parametric estimation equation deriving

o (NENAL): exactly the 'primitive’ estimating equation!:
Original part.
e (Af N A3): Augmentation part.
o Ay ={h(X,Z):Eh(X,Z)=0};
o A ={h(X,2) : E{h(X, Z)|X} = 0};
e Taking intersection, we have {h(X, Z) : E{h(X, Z)|X} = 0}.
e By simple projections we can show that the estimating
equation for By is

k

m(Y.Z;)+) ((Z=g) —ng) E(m(Y.Z;B)|X,Z=g) =0
g=1



Simulation: binary outcome Y

A binary outcome from a two-arm RCT of 600 subjects, with
5,000 Monte Carlo datasets:

logit (E(Y|2)) = B + Ba1(Z = 2)

in which 3 is the parameter being estimated.
Data generating
mechanism:logit (Pr(Y = 1|Z = g, X)) = aog + a;X, g=12
e Mild association: (o1, @g2) = (0.025,—0.8),
a; = (0.8,0.5,0,0,0,0,0,0) and ap = (0.3,0.7,0.3,0.8,0,0,0,0)
e Moderate association: (ag1, ag2) = (0.38,—0.8),
ay = (1.2,1.0,0,0,0,0,0,0) and as = (0.5,1.3,0.5,1.5,0,0,0,0)
e Strong association:agz) = (0.8, —0.8), oy = (1.5,1.8,0,0,0,0,0,0)
and ap = (1.0,1.3,0.8,2.5,0,0,0,0).
On estimating E(m(Y, Z; 8)| X, Z = g), they only used X used to
generate the data to do OLS.
They used the same X's in estimating E(m(Y, Z; 5)|X,Z = g) to
run the adjusted case.
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Simulation results

Method B2 MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.

Mild Association

Unadjusted -0.494 0.00044 0.1668 0.1661 95.0% 1.00

Aug. -0.494 -0.00042 0.1545 0.1533 94.9% 1.16

Adjusted -0.494 -0.091 0.1831 0.1822 92.6% 0.66

Moderate Association

Unadjusted -0.490 -0.0025 0.1634 0.1650 95.5% 1.00

Aug. -0.490 -0.0026 0.1390 0.1392 95.1% 1.39

Adjusted -0.490 -0.2208 0.2015 0.2015 81.2% 0.31
Strong Association

Unadjusted -0.460 -0.0026 0.1662 0.1655 95.2% 1.00

Aug. -0.460 -0.0026 0.132 0.131 95.2% 1.55

Adjusted -0.460 -0.3266 0.222 0.2210 68.8% 0.18



Questions?



