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Randomized Clinical Trials: introduction

• Clinical Trials:
• Outcome Y : continuous, binary or categorical, usually recorded

before (Y0) and after treatment (Y1), possibly multiple times
after treatment carry-out, forming longitudinal data

• Baseline covariates X : such as demographic information,
recorded before treatment starts. Y0 is also a baseline
covariates.

• Treatment arm Z : treatment group assignment

• Randomized Clinical Trials: patients assigned to treatment
arms randomly: X ,Y0 ⊥ Z
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Randomized Clinical Trials: analyse

How do we compare outcomes from different treatment arms?
One answer: comparing outcome means across treatment arms

• Y is continuous: ANOVA, t-test, linear regression

• Y is binary: odds ratio, logistic regression

• In summary, (Generalized) Linear regression:
g(E(Y |Z )) ∼ α + βZ
β here represents treatment effect(s), can either be a number
or a vector.
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Then why do researchers also record baseline variable X
and Y0?

• Someone argued that baseline variable X and Y0 can also
contribute to β estimation efficiency, when they are correlated
with Y .

• A more efficient method (looking quite suspicious): regress Y
against treatments Z , adjusting for X or Y0:

g(E(Y |Z ,X )) ∼ α + β′Z + γX (1)

Yang (2001) Efficiency Study of Estimators for a Treatment
Effect in a Pretest-Posttest Trial

g(E(Y |Z ,X )) ∼ α + β′Z + γY0 (2)
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After adjusting for X or Y0

• Interpretation of results changed:
• So now we are estimating treatment effects conditioning on X

or Y0

• Instead of estimating the population-specific treatment effect,
we are estimating subject-specific effect.

• Making some assumptions:
In both two models, we are assuming linear regression
relationship between outcome and baseline variables.
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After adjusting for X or Y0: do we get a correct result
and gain efficiency?

• Y is continuous:
• β′ and β coincide in magnitude
• X ⊥ Z , X serves as a precision variable (the same argument

for Y0)
• Adjusting for X or Y0 reduces treatment effect

Regression adjustment is a good solution.

• Y is binary and we used a log/logit link
• β′ is moved further away from NULL, i.e., 0
• s.d .(β̂′) is larger
• It is hard to tell if power of Wald test increases or decreases
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Simulation results for X adjustment

Adjusted Un-adjusted

Linear Model MC mean in β̂′ 2.001 2.000

β = 2.000 MC mean in s.e.(β̂′) 0.04161 0.008160

Logistic Model MC mean in β̂′ 1.924 2.018

β = 1.910 MC mean in s.e.(β̂′) 0.2089 0.2165
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Another solution: semi-parametric model

• What is a semi-parametric model?
Under certain circumstances, we are only interested in part of
the distribution characteristics (such as first moment), but do
not want to estimated the whole distribution explicitly.
For example, we want to estimate g(X ) from E(Y |X ) = g(X )
without assuming any higher moment informations.

• Why they choose it?
In this paper the estimating equation was proved to be

n∑
i=1

{m(Yi ,Zi ; θ)−
k∑

g=1

{I (Zi = g)−πg}×E{m(Y ,Z ; θ)|Xi ,Z = g}} = 0

”separates estimation of the treatment effect from the adjustment”
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Semi-parametric model Construction
Suppose we can write out the set of density functions representing
our data (Y ,Z ,X ) as

P = {p(x , y , z , θ, π, η, ψ) : θ ∈ Θ ⊂ RK ,

π ∈ B1 ⊂ RK , α ∈ B2 ⊂ Rs , ψ ∈ B3 ⊂ R r}

• θ = (α, β)T , the parameter of interest

• π is treatment arm assignment probability, a known constant
vector

• η is nuisance parameters used to describe joint distribution
between Y and Z .

• ψ is nuisance parameter used to describe joint distribution
between Y , X and Z .

• Assume s and r to be infinite, that is, η and ψ, nuisance
parameters are of infinite dimension
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Finding an estimation equation: a sketch
Starting from a parametric model, in which parameters θ1, θ2
coming from finite Euclidean Space, in which we are only
interested in estimating θ1

Nuisance	  tangent	  
parameter	  space	  

Θ:	  parameter	  
under	  interest	  

Θ	  project	  
orthogonal	  
to	  nuisance	  
parameter	  
space	  	  

• Nuisance Tangent Space: spanned by score function of θ2
• We do not want to estimate θ2 nor have any information of it

• So we will focus on the part of θ1 orthogonal to plane
spanned by θ2
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Sketch continued

• In semi-parametric models, we start with a parametric
sub-model, which

1. is contained in semi-parametric model
2. contains the truth

• After finding some estimating equation, we can generalize it
into semi-parametric model case (hopefully)
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Next...

• Simulations using binary outcome and logit link

• And more proof details on semi-parametric model?


