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Linear mixed effects models with informative censoring

Motivating Example

e HIV Therapeutic drug trial originally analyzed by Paxton et al.
(1997)

Outcome of interest: Viral load measurements

Viral load is measured in RNA copies per mL of blood
At the time, lower detection limit was 500 RNA copies/ml

In Paxton's data, 38% of observations were censored

Concern is how to accurately estimate fixed effects and variance
components.

As statisticians, we are especially wary of the ad hoc methods of
simply replacing the censored observation with the known level of
detection (dl) or some function of it.

Hughes presents a Monte Carlo EM algorithm to obtain better
estimates.



The Model

We model the complete data for the it individual as
Y =XiB+Zb; +e;
Where
e e; is a vector of random errors independent of b;

e b; ~ N(0,G())
e &~ N(0,0‘z)

Marginally,
Y N (X8, Ei(e))

Where
¥i(a) = Z,GZ] + %

We want to estimate 8 = (3, c, 02).



Recall the EM Method (Complete Data)

(The E Step) We first estimate:

m -1 m

g — (fof:lx,) (Zx,Tf:lY,-)
i=1 i=1

6% — &z7E (Y - X;B)

e = (1-z627E (Y - XiB)

1

And for each individual compute
{e e,\Y,,B )} = é,-Té,-

[b bT|Y,,0k)} — bb



Recall the EM Method (Complete Data)

(The M Step) And use them to estimate the variance components:
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Then iterate between the E and M step until convergence!

But in our problem we don’'t have complete data.



The Observed Data

Let d) and d, be the lower and upper detection limits. Define c;; to
be an indicator variable which not only indicates censoring and the

direction of the censoring:

-1 if
Cij = 0 if

So we observe (Q;, C;) where

Qi > Y
Qj=Yj



Modified EM for Censored Data

In the E-Step, we compute
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Instead of integrating something hard E [e,Te,-]Q,-, C,-,O( )], we use
a Gibbs sampler.



Simple Example

(k)

S’'pose we observe (Q;,C;) and C; = (0,—1,0,1)" and let 0" be

our current estimate of 8. We want to use Gibbs to obtain a

Y& ~ f(v;Q;,c;, 8%

1

We need a (good) starting value and we know Yi; < d|
sample u ~ Unif(0, d)) and let Y3 = ®(uv)

And then we can do the standard Gibbs procedure.



Introducing MC Gibbs

Sample Yj4 from the conditional distribution given Yji1, Yi3, and
Y102.
A(k
VG~ £(Yia| Ya, Yia, Yio = Y3, Yia = d, 8))
Update the conditional distribution of Yj, to gain a new estimate

of Yin

Y5~ f<Yi2 | Vi, Yia, Yia = Y5, Y2 < d, 9(k)>

Good thing we assumed normality - these are simply truncated
univariate conditional normal distributions.



The E Step

After a brief burn-in, Y,(.s) = (Y,-l, Yl(zs), Yis, Y( )) represent

random samples from f(Y,—\Q,-,C,-,O( )). So we just generate N

samples. For each Y,(.s), we compute

%1’5 = é,-’;sé,'75 + 6’2 (n,- — 52tr(z,'))

f2’5 = 6,’756,-7:5 + G — GZ,Ti,'Z,'G

Where
éi,s - (In,- — Z,GZ,TiTI)(YES) _ X’B)
bis = GZ7E(YY -x,B)



The MCE Step

For each cluster, we estimate the conditional expectations with
average over the Gibbs samples. We let
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And then use those estimates in the M step.



Modified EM for Censored Data

The M-Step is to compute:

m -1
Bk (Zx,rfz‘lx,> <ZXT>: E[Y:|Q;,C;.6 )]>
: i=1

p2HD = Y Ee] e,|Q,,c,,o“}/Zn,

=1

[ Em:E[ b71Q:, ¢, 0% )}

i=1

1
m

(k+1)

Head back to the MCE Step using 0 and repeat until

convergence!
A few details

e Double Gibbs sample size at each iteration that reduces the
log-likelihood
e Stop when the change in log-likelihood was less than 0.01%



Aside: ML vs REML

Why do we care about REML estimates?

We know the MLE for 02 is biased downwards in classical
linear models; REML standard error estimates are typically
less biased than the MLE.

Laird & Ware showed how to obtain both ML and REML estimates
using the EM algorithm, so an analogous extension can be made
for the case of censored data.

The good news: the MCEM procedures are equivalent, but there
are some differences in the E step

| will highlight the key differences.



Aside: ML vs REML

In the E Step, estimate b; and &; using the current estimate o).
ML: Y — XiB = (1, — Xi(X] X:)"XT)Y;

)

oo

W _ Gzls My - X,B)
W — - zcsz N - XiB)

o>

REML: (I — X;(XT="X) ‘X 1)y

Y = GZ7E (17 — X,(XTEIX) IXE Y)Y
e — (1-z,6Z7£ ) (1 - x,(XTEX) 'XZ )Y

Where I,.+ is such that IfY =Y;



Aside: ML to REML

And the expectations can be worked out ML:

E [e]eilY;,0 )} = 8]+ 520 (n—o
E [bib]1v;, 8] = bib, + 6" — "
REML:
E[e,Te,-|Y,-,é(k)] — &le;+ 52K ( PN

E [bib]|Y;. é(k)] —

2] (%

Where
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g A (k)

_ H,-)Z,-G

H, = =1 (XTE1X) 7 IXx !

The variables without i's are the ‘stacked’ matrices and X is a

mn; x mn; block diagonal matrix of X;’s



Simulations

Simulated, instead
Y, = ﬁglni + G time 4+ 5o X; + biO]-n,- + bj1 time + €jj

Where

40 individuals (m = 40) with 10 observations each (n; = 10)
X; is binary treatment indicator

b, ~ N(0,G)

ej ~ N(0,02)

time is from 0 to 9



Simulations

We specify:

o B=(11,-1,-05)"
G is diag(1.5, 2.5) & bjp is independent of bj;
° 0'2 =2

Only considering censoring below the level of detection

Percentage of censored observations: 10-80%

Gibbs sampling sizes start at 500

Note: Censoring must not be done randomly!

To start, each individual has the same level of censoring, although
at different (known) levels.



Simulations

For each dataset, we compare:

e Hughes’ FORTRAN program (ML only)

Fisher's hand-coded ML and REML programs
ML & REML using the detection limit (dI)

ML & REML using half the detection limit (dI2)
ML & REML estimates using the complete data

A few differences between Fisher and Hughes

e Max Gibbs sample sizes: 4,000 vs 16,384,000+7
e Max number of EM steps: 60 vs 100



Estimating the 3's

10% Censoring, 60 Simulations 20% Censoring, 50 Simulations
N v
o o
o | >4~
S 3
%} S [%] wn
o 2
& 8| 7
7 e
a4
© 1
a
T L]
a4
T T T ! T T T
Bo=11 B=-1 B=-05  Bo=11 B=-1 B=-0.5
30% Censoring, 30 Simulations 50% Censoring, 10 Simulations
n
° ] A ]
o
Qo S
°© —
B Qo
1%} 1%} -
K 8 |
o =] o -
g
! N
N
- I
S S }
o o
! T T T ! T T T
Bo=11 Bi=-1 B=-0.5  Bo=11 B=-1 B,=-0.5
— hughes —— completeml - - remldl
— lfish.ml - - complete.reml —— ml.dI2

- - lfish.reml — mldl - - remldi2



Bias of ﬁ's vs Percentage Censored
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Estimating the variance components

10% Censoring, 60 Simulations 20% Censoring, 50 Simulations
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Bias in Variance Components vs Percentage Censored
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Big Picture

We should think hard about how to obtain good estimates when
faced with informative censoring.

Ad hoc methods are almost always a bad idea, especially when
there are relatively simple methods that are known to give less
biased results.

The MCEM takes the sensible EM algorithm, uses a Gibbs sampler
to do difficult integration, and results in much less biased
estimates, especially for the variance components.



Any questions?



