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Remember the problem

• HIV Therapeutic drug trial originally analyzed by Paxton et al.
(1997)

• Outcome of interest: Viral load measurements

• Viral load is measured in RNA copies per mL of blood

• At the time, lower detection limit was 500 RNA copies/ml

• In Paxton’s data, 38% of observations were censored

In some cases censoring for a given individual was much higher.

Hughes proposed a Monte Carlo EM Algorithm for mixed effects
models with censoring.



The Model

We model the complete data for the i th individual as

Yi = Xiβ + Zibi + ei

Where

• ei is a vector of random errors independent of bi

• bi ∼ N(0,GGG(α))

• eij ∼ N(0, σ2)

We want to estimate θ = (β,α, σ2).



In a perfect world...

We would observe (Yi ,bi ) and would estimate β using weighted
least squares (WLS)
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In the real world, we didn’t see bi

We estimate what we don’t observe:
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And use them to estimate the variance compontents:
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That is (basically) what the EM Algorithm does.



Estimating the bi ’s

With our knowledge of normal distributions we can write:[
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E is for Expectation

Call θ = (β,α, σ2) and let θ̂
(k)

be the estimate at step k.

In the E-step, we take our current estimate, θ̂
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to compute t̂1
and t̂2

t̂
(k)
1 = E

[
m∑

i=1

eT
i ei |Yi , θ̂

(k)

]

=
m∑

i=1

êT
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i êi + σ̂2(k)

(
ni − σ̂2(k)tr

(
Σ̂

(k)
i

))]

Where Σ̂
(k)
i = ZiGGG(α̂(k))ZT

i + σ̂2(k)I



E is for Expectation

And we can similarly compute
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M is for Maximize

We use the expectations from the E-step to compute the k + 1
estimates:
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Iterate between the E and M steps until convergence.



The Observed Data

Let dl and du be the lower and upper detection limits. Define cij to
be an indicator variable which not only indicates censoring and the
direction of the censoring:

cij =


−1 if Yij ≤ dl

0 if dl ≤ Yij ≤ du

1 if Yij ≥ du

So we observe (Qi ,Ci ) where

Qij ≥ Yij if cij = −1

Qij = Yij if cij = 0

Qij ≤ Yij if cij = 1



What do we do with (Qi ,Ci)?

If the observation is uncensored, ie cij = 0, we use the observed
data in our computations (duh!)

If the observation is censored, we use conditional expectations in
our computations

If cij = −1, use E[Yij |Yij ≤ dl ,θ]

If cij = 1, use E[Yij |Yij ≥ du,θ]



E as in cEnsored Expectation

In the E-Step, we will need to compute the following conditional
expectations

β̂
(k)

=

(
m∑

i=1

XT
i Σ̂

−1
Xi

)−1( m∑
i=1

XT
i Σ̂

−1
E[Yi |Qi ,Ci , θ̂

(k)
]

)

t̂
(k)
1 =

m∑
i=1

E
[
eT
i ei |Qi ,Ci , θ̂

(k)
]

t̂
(k)
2 =

m∑
i=1

E
[
bib

T
i |Qi ,Ci , θ̂

(k)
]



E as in Eeeks!
Consider computing for the ith individual
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If ei has length 1 - this is a function of the variance of a truncated
normal, which we can compute (ie use R or look up the formula on
Wikipedia).

Two dimensional case can be done with some bivariate truncated
normals.

If there are 10 observations, and 6 of them are censored, we are
considering a multivariate normal distribution where some of the
observations are truncated...

Which is why we use Gibbs!



And now for the easy part

The M-Step is to compute:
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MCEM Algorithm

The basic idea

• E-step: Use Monte Carlo methods to evaluate the estimated
expectations of the log-likelihood functions with respect to
the conditional distributions under the current estimates of
the parameters

• M-step: Find new estimates of the parameters that maximize
the expectations

Repeat until convergence



Next Steps

Next up:

• Start simulating

• Clean up the math

• Thoughts? Ideas?


