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Remember the problem

e HIV Therapeutic drug trial originally analyzed by Paxton et al.
(1997)

Outcome of interest: Viral load measurements

Viral load is measured in RNA copies per mL of blood

At the time, lower detection limit was 500 RNA copies/ml

In Paxton's data, 38% of observations were censored

In some cases censoring for a given individual was much higher.

Hughes proposed a Monte Carlo EM Algorithm for mixed effects
models with censoring.



The Model

We model the complete data for the it individual as
Y, =X;B8+Zb;+e;
Where

e e; is a vector of random errors independent of b;
« b ~ N(0,G(c))
° e,-j ~ N(O, 0'2)

We want to estimate 8 = (3, c, 02).



In a perfect world...

We would observe (Y;,b;) and would estimate 3 using weighted
least squares (WLS)

m -1 m
B = (Z x,Tzlx,-> (Z x,.T):lv,-)
i=1 i=1

And we would estimate the covariance components with:

m m m
62 = E e,-Te,-/E n,-:tl/g n;
i=1 i=1 i=1

A 1<~ . T
G = mgb,bi —t2/m



In the real world, we didn’t see b;

We estimate what we don't observe:

m -1 m
B = <Z x,Tf:lx,-) (Z x,T>“:1Y,->
i=1 i=1

= CA;Z,'T}A:iil(Yi — X;3)
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That is (basically) what the EM Algorithm does.



Estimating the b;’s
With our knowledge of normal distributions we can write:
Yilind o ([XiB (o) ZiG(e)
b; 0 |’|G(x)Z] G(a)

Ti(a) = Z,GZ] + o2

Where

Marginally,

YN (X8, Ei(a)

And conditionally,

ind

biY; % N(GZT SN (Y~ Xif), (02272, +67) )



E is for Expectation

Call 8 = (B, a,0?) and let é(k) be the estimate at step k.

. ~(k o
In the E-step, we take our current estimate, 0( ) to compute t;
and t

g — E[

= K
Z e,-Te,-]Y,-, 9( )]
i=1

_,_

é + trace(Var [e,|Y,,0( )} )

Where £ = z.6(a()zT + 524



E is for Expectation

And we can similarly compute

£ S bib] 1Y, 6%
i=1

d
_ zm:BB +Var[ \Y,,a(k)}




M is for Maximize

We use the expectations from the E-step to compute the k + 1
estimates:

p 30 /3,
i=1

G(kH) = Egk)/m

Iterate between the E and M steps until convergence.



The Observed Data

Let d) and d, be the lower and upper detection limits. Define c;; to
be an indicator variable which not only indicates censoring and the

direction of the censoring:

-1 if
Cij = 0 if

So we observe (Q;, C;) where

Qi > Y
Qj=Yj



What do we do with (Q;, C;)?

If the observation is uncensored, ie c;; = 0, we use the observed
data in our computations (duh!)

If the observation is censored, we use conditional expectations in
our computations

If cjj = —1, use E[Yj|Yj; < d}, 6]
If c;j =1, use E[Y}|Y}; > dy, 0]



E as in cEnsored Expectation

In the E-Step, we will need to compute the following conditional
expectations

. -1
B(k) (le_’fi_lxl) (ZXTZ E[Y;|Q;,C;,8 )]>
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E as in Eeeks!

Consider computing for the ith individual

E eiTei‘Qi’Ci,é(k)} = E [E[eiTeiWi,é(k)] | Qi,ci»é(k)}

= E[e]e+5%0n —5*0u(£]7) ] Q;,C;, 8"

If e; has length 1 - this is a function of the variance of a truncated
normal, which we can compute (ie use R or look up the formula on
Wikipedia).

Two dimensional case can be done with some bivariate truncated
normals.

If there are 10 observations, and 6 of them are censored, we are
considering a multivariate normal distribution where some of the
observations are truncated...

Which is why we use Gibbs!



And now for the easy part

The M-Step is to compute:

- -1
B(k+1) _ ZX:‘Ti_IX’) <ZXTZ E[Y/|Q;,C;,0 )]>
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MCEM Algorithm

The basic idea

e E-step: Use Monte Carlo methods to evaluate the estimated
expectations of the log-likelihood functions with respect to
the conditional distributions under the current estimates of
the parameters

e M-step: Find new estimates of the parameters that maximize
the expectations

Repeat until convergence



Next Steps

Next up:

e Start simulating
e Clean up the math
e Thoughts? ldeas?



